Yan Z, Jiang A, Lai C. Adaptive Formation Control of Unmanned Underwater Vehicles with Collision Avoidance under Unknown Disturbances[J]. Journal of Marine Science and Engineering, 2022, 10(4): 516.

文章目录

  • 1. Introduction
  • 2. Preliminaries and Problem Formulation
    • 2.1. Feedback linearization of UUV model
    • 2.2. Graph theory
    • 2.3. Artificial potential field
  • 3. Adaptive Formation Control Scheme Design
    • 3.1. Adaptive sliding mode disturbance observer design
    • 3.2. Adaptive formation control with collision avoidance under unknown disturbance
  • 4. Experimental Results and Simulation
    • 4.1. Distrubance observer simulation result
    • 4.2. Collision Avoidance Simulation Result

1. Introduction

2. Preliminaries and Problem Formulation

2.1. Feedback linearization of UUV model

UUV的模型为

η˙=J(η)vMv˙=τˉ+ωˉ−D(v)v−C(v)(1)\begin{aligned} \dot{\eta} &= J(\eta) v \\ M \dot{v} &= \bar{\tau} + \bar{\omega} - D(v) v - C(v) \end{aligned} \tag{1}η˙​Mv˙​=J(η)v=τˉ+ωˉ−D(v)v−C(v)​(1)

其中
η=[xyzθψ]\eta = \left[\begin{matrix} x & y & z & \theta & \psi \end{matrix}\right]η=[x​y​z​θ​ψ​],
v=[uvwqr]v = \left[\begin{matrix} u & v & w & q & r \end{matrix}\right]v=[u​v​w​q​r​]。


线性简化后的UUV模型为

p˙i=viv˙i=τi+ω(4)\begin{aligned} \dot{p}_i &= v_i \\ \dot{v}_i &= \tau_i + \omega \end{aligned} \tag{4}p˙​i​v˙i​​=vi​=τi​+ω​(4)

其中
pi=[xiyiziθiψi]p_i = \left[\begin{matrix} x_i & y_i & z_i & \theta_i & \psi_i \end{matrix}\right]pi​=[xi​​yi​​zi​​θi​​ψi​​],
vi=[uiviwiqiri]v_i = \left[\begin{matrix} u_i & v_i & w_i & q_i & r_i \end{matrix}\right]vi​=[ui​​vi​​wi​​qi​​ri​​],
τi\tau_iτi​ 是控制输入,
ω\omegaω 是未知干扰。


假设存在了一个虚拟领航者

p˙l=vlv˙l=gl(t)(5)\begin{aligned} \dot{p}_l &= v_l \\ \dot{v}_l &= g_l(t) \end{aligned} \tag{5}p˙​l​v˙l​​=vl​=gl​(t)​(5)


误差变量为

epi=pi−pl−εievi=vi−vl(6)\begin{aligned} e_{pi} &= p_i - p_l - \varepsilon_i \\ e_{vi} &= v_i - v_l \end{aligned} \tag{6}epi​evi​​=pi​−pl​−εi​=vi​−vl​​(6)

其中
εi\varepsilon_iεi​ 表示与虚拟领航者之间的期望距离。

2.2. Graph theory

2.3. Artificial potential field

与传统的人工势场法类似,有安全距离 rsr_srs​,碰撞距离 rcr_crc​,两个UUV之间的距离为 ∥dij∥\|d_ij\|∥di​j∥。

当 ∥dij∥>rs\|d_{ij}\| > r_s∥dij​∥>rs​,安全,
当 rs≥∥dij∥>2rcr_s \ge\|d_{ij}\| > 2r_crs​≥∥dij​∥>2rc​,需要避障函数,
当 2rc≥∥dij∥2 r_c \ge\|d_{ij}\|2rc​≥∥dij​∥,撞上了。

因此,为了保证别撞上,有人工势场函数 δij(d)\delta_{ij}(d)δij​(d) 和动作函数 ς(d)\varsigma (d)ς(d) 定义如下

δij(d)=∫rsdς(s)dsς(d)={−βˉid2,d∈(2rc,rs)0,d∈[rs,∞)(8-9)\begin{aligned} \delta_{ij}(d) &= \int_{r_s}^{d} \varsigma(s) \text{d}s \\ \varsigma(d) &= \left\{\begin{aligned} &-\frac{\bar{\beta}_i}{d^2}, & d \in (2r_c, r_s) \\ & 0 , & d \in [r_s, \infty) \end{aligned}\right. \end{aligned} \tag{8-9}δij​(d)ς(d)​=∫rs​d​ς(s)ds=⎩⎨⎧​​−d2βˉ​i​​,0,​d∈(2rc​,rs​)d∈[rs​,∞)​​(8-9)

其中 βˉi\bar{\beta}_iβˉ​i​ 是一个设计参数。

斥力为

τica=βi∑j∈Nic−∇xiδij(d)=−βi∑j∈Nicς(∥dij∥)dij∥dij∥(10)\begin{aligned} \tau_{i}^{ca} &= \beta_i \sum_{j \in N_i^c} - \nabla_{x_i} \delta_{ij}(d) \\ &= -\beta_i \sum_{j \in N_i^c} \varsigma(\|d_{ij}\|) \frac{d_{ij}}{\|d_{ij}\|} \end{aligned} \tag{10}τica​​=βi​j∈Nic​∑​−∇xi​​δij​(d)=−βi​j∈Nic​∑​ς(∥dij​∥)∥dij​∥dij​​​(10)

3. Adaptive Formation Control Scheme Design

3.1. Adaptive sliding mode disturbance observer design

由于干扰 ω\omegaω 是非线性且未知的,因此我们先想办法估算出来这个干扰。这里我们使用滑模的方法。

给定一个辅助状态估计误差 e0e_0e0​

eo=z−v(13)\begin{aligned} e_o = z - v \\ \end{aligned} \tag{13}eo​=z−v​(13)

其中
zzz 是辅助状态向量,满足下述动态变化。

z˙=τ+vs(14)\begin{aligned} \dot{z} = \tau + v_s \\ \end{aligned} \tag{14}z˙=τ+vs​​(14)

其中
vsv_svs​ 是待设计的切换项。

将式 (4) (14) 代入到式 (13) 的微分中,有
e˙o=z˙−v˙=τ+vs−(τ+ω)=vs−ω(15)\begin{aligned} \dot{e}_o &= \dot{z} - \dot{v} \\ &= \tau + v_s - ( \tau+\omega ) \\ &= v_s - \omega \end{aligned} \tag{15}e˙o​​=z˙−v˙=τ+vs​−(τ+ω)=vs​−ω​(15)


为了保证误差变为0,我们设计如下切换项
vs=−Λ1eo−Λeomn−Ksgn(eo)(16)\begin{aligned} \blue{ v_s = -\Lambda_1 e_o - \Lambda e_o ^{\frac{m}{n}} - K \text{sgn}(e_o) \\ } \end{aligned} \tag{16}vs​=−Λ1​eo​−Λeonm​​−Ksgn(eo​)​(16)

3.2. Adaptive formation control with collision avoidance under unknown disturbance

编队控制方案为

τif=−μ1∑j∈Niaij(epi−epj)−μ2∑j∈Niaij(evi−evj)−θi(c1epi+c2evi)−vs(23)\begin{aligned} \tau_i^f = -\mu_1 \sum_{j \in N_i} a_{ij} (e_{pi} - e_{pj}) - \mu_2 \sum_{j \in N_i} a_{ij} (e_{vi} - e_{vj}) - \theta_i (c_1 e_{pi} + c_2 e_{vi}) - v_s \\ \end{aligned} \tag{23}τif​=−μ1​j∈Ni​∑​aij​(epi​−epj​)−μ2​j∈Ni​∑​aij​(evi​−evj​)−θi​(c1​epi​+c2​evi​)−vs​​(23)

τi=τif+τica(24)\begin{aligned} \tau_i = \tau_i^f + \tau_i^{ca} \\ \end{aligned} \tag{24}τi​=τif​+τica​​(24)

4. Experimental Results and Simulation

4.1. Distrubance observer simulation result

首先实现了利用滑模估计干扰的控制器,效果如下图,对应自写程序 Main_2022_Disturbance.m


调节一下时间长度,得到和论文中一致的干扰观测图


接下来取消滑模估计干扰时,在控制器下的效果如下图,对应自写程序 Main_2022.m

4.2. Collision Avoidance Simulation Result

以下讨论均基于程序代码 Main_2022_Disturbance_APF.m

关于使用人工势场函数的方法,最核心的图就是论文中的图7,也就是下图。

但是论文中没有给出对应的安全距离的碰撞距离,因此我自己假设了一下,而且这两个距离是可以修改的,如下所以。


需要程序请找本人的 WeChat:Zhao-Jichao

【Paper】2022_Adaptive Formation Control of Unmanned Underwater Vehicles with Collision Avoidance unde相关推荐

  1. 【Paper】2015_El H_Decentralized Control Architecture for UAV-UGV Cooperation

    Decentralized Control Architecture for UAV-UGV Cooperation 1 Introduction 2 Problem Statement and Ar ...

  2. 【Paper】2015_Active fault-tolerant control system design with trajectory re-planning against actuator

    Chamseddine A, Theilliol D, Zhang Y M, et al. Active fault‐tolerant control system design with traje ...

  3. 【Paper】2019_Bearing-only circumnavigation control of the multi-agent system around a moving target

    Yu Y, Li Z, Wang X, et al. Bearing-only circumnavigation control of the multi-agent system around a ...

  4. 【Paper】2019_Distributed Cooperative Control of a High-speed Train

    2019_Distributed Cooperative Control of a High-speed Train 文章目录 1. Introduction 2. Modeling of a hig ...

  5. 【Paper】2019_Distributed Optimal Control of Energy Storages in a DC Microgrid with Communication Dela

    M. Shi, X. Chen, J. Zhou, Y. Chen, J. Wen and H. He, "Distributed Optimal Control of Energy Sto ...

  6. 【Paper】2010_Distributed optimal control of multiple systems

    Dong W. Distributed optimal control of multiple systems[J]. International Journal of Control, 2010, ...

  7. 【Paper】2019_Consensus Control of Multiple AUVs Recovery System Under Switching Topologies and Time D

    Zhang W, Zeng J, Yan Z, et al. Consensus control of multiple AUVs recovery system under switching to ...

  8. 【Paper】2003_Consensus Problems in Networks of Agents with Switching Topology and Time-Delays

    此篇文章主要在于仿真代码,关于文献的解释请参考 [Paper]2003_Murr_Consensus Problems in Networks of Agents with Switching Top ...

  9. 【Paper】2021_Distributed Consensus Tracking of Networked Agent Systems Under Denial-of-Service Attack

    Y. Wan, G. Wen, X. Yu and T. Huang, "Distributed Consensus Tracking of Networked Agent Systems ...

最新文章

  1. 犯错是成为技术专家的必要条件
  2. c#如何实现在两个窗体(Form)间传输数据或变量
  3. CNN 中1X1卷积核的作用
  4. Java11 新特性
  5. [转载]PSCAD调用MATLAB/SIMULINK之接口元件设计
  6. 【Kafka】kafka命令kafka-console-consumer.sh
  7. PHP判断客户端协议类型是否为https
  8. jQuery 追加元素的方法如append、prepend、before,after(转)
  9. TensorFlow基础知识:计算图中的Op,边,和张量
  10. STM32 flash 大小
  11. Linux LCD 驱动
  12. 天龙架设linux环境配置,《果子资源》-天龙八部-手工纯端架设教程 - T-天龙八部 - Powered by Discuz!...
  13. Linux下的光盘刻录
  14. ORB-SLAM3中遇到的坑
  15. RabbitMQ概念篇 vhost
  16. ArcGis如何插入图片_在Word中批量插入多张图片,如何让图片统一缩小且清晰度不变?...
  17. 学计算机老了会怎么办,旧电脑我们怎么处理
  18. 算法刷题-哈希表-四数相加
  19. 【10G以太网】10G Ethernet Subsystem 学习记录
  20. 功能化M-IRPA-MOF负载型催化剂-单原子Ca-MOF纳米复合催化剂

热门文章

  1. 以太坊开发------Mist使用:合约及部署合约
  2. PDA车牌识别/手持机车牌识别SDK—应用处理
  3. 【Monkey Run】Excel编程 VBA
  4. OpenAI注册(ChatGPT)
  5. 给了一串数字:218916754,根据下面规则可以找出扣扣号码:首先删除第一个数,紧接着将第二个数放到这串数字的末尾,再将第三个数删除,并将第四个数放到这串数字的末尾......如此循环,知道剩下最后
  6. Unity的lookRotation和lookAt的区别理解,是什么意思。
  7. itools android玩游戏,itools模拟器能玩ios游戏吗?
  8. Android APP连接 MySQL
  9. ns-3中的数据跟踪与采集——Tracing系统的配置
  10. 熟练的运用计算机英语怎么说,熟练的英文翻译,熟练英语怎么说