阵列信号处理-波达方向DOA-子空间方法

  • 前言
  • 子空间和子空间数据模型
    • 子空间
    • 子空间数据模型
    • 子空间模型的参数估计
      • 1.参数建模
      • 信号采样
      • 参数估计
    • DOA 估计问题
      • Deterministic maximum likelihood方法
      • Beam forming方法
  • MUSIC和ESPRIT
    • MUSIC
  • SRP-PHAT
  • CSSM
  • WAVES
  • TOPS
  • FRIDA
  • 术语和约定-notational conventions
    • ARMA
    • FSD
    • low-rank && full-rank
    • azimuth and elevation angles
    • wavefronts:planar or curvature
    • complex:in-phase and quadrature
    • coherent & incoherent
    • covariance协方差
    • 协方差矩阵
    • 特征向量、特征值
    • Tr. 矩阵的迹
    • Maximum likelihood estimation
    • Singular Value Decomposition(奇异值分解)
  • 参考文献

前言

波达方向-Direction Of Arrival是研究波束形成的重要课题,引用之前的老图,DOA要估算出来的就是两个角度:俯仰角φ\varphiφ和方位角θ\thetaθ,而如果是全向麦克风组成的线性阵列(z轴),那么方位角就可以省略了,只研究俯仰角就可以了,所以很多算法简化假设条件,然而实际中无法省略,不过可以通过阵列的摆放,设计的估算角度范围小一些,算法也会容易一些。

经典的DOA估算方法有波束形成测向方法(base),Capon最小功率估计器,ML极大似然估计器,MUSIC 多重信号分类方法,ESPRIT旋转不变量信号参数估计方法,随着时代进步,开源代码提供了丰富晚上的功能,本文跟随pyroomacoustic实现的方法,在参考文献中找出来这些神作,学习记录,以备后用。要研究这些算法,我们必须先了解一下子空间的基础知识。

子空间和子空间数据模型

说句题外话,我已经记不起来大学里学没学过这个概念了,不过在科幻电影主导荧幕的21世纪,提到多维空间的子空间是神秘而且令人兴奋的。只是线代里的子空间定义非常滴扼要,以至于看完了概念仍然一头雾水,尽管如此还是现学现卖了抄写一下公式吧。

子空间

【from 百度百科】假设设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间(或向量子空间),或简称子空间。
换句话讲,V的非空子集W是子空间的充分必要条件是:
(1)子集合W的任意两个向量α与β之和α+β仍是W中的向量;
(2)域P的任一数k与子集合W的任意一个向量α的积kα仍是W中的向量。
用直观的概念来理解,就是三维坐标中,任意由两个轴组成的平面即是这三维空间的二维子空间,所以多维空间中,子空间也有很多性质,都可以用三维空间来联想一下,方便记忆和理解。

子空间数据模型

【9】将阵列信号看成矩阵AAA的参数估计问题,假设:
x(t)=A(η)s(t)+n(t)x(t)= \mathbf{A}(\boldsymbol{\eta})s(t)+n(t) x(t)=A(η)s(t)+n(t)
这里先重新声明一下变量的意义和所属集合:
x(t)∈CMx(t)\in \Bbb{C}^Mx(t)∈CM,可以理解为有M个传感器变换的矩阵,在ttt时刻采集到的信号;
s(t)∈Cks(t)\in \Bbb{C}^ks(t)∈Ck,是远场输入的k个信号,n(t)∈CMn(t)\in \Bbb{C}^Mn(t)∈CM是加性噪声;
A∈CM×k\mathbf{A}\in \Bbb{C}^{M\times k}A∈CM×k是转换矩阵,假设在观测窗内具有时不变特性,而η∈Rq\boldsymbol{\eta}\in \Bbb{R}^qη∈Rq是决定这个矩阵的参数向量,如果是线阵理想的情况,就是入射角θ\thetaθ。
另外分析此类问题,还是离不开假设:

  1. A(η)\mathbf{A}(\boldsymbol{\eta})A(η)在观测周期时不变;
  2. 模型在 A\mathbf{A}A和sss上满足双线性(bilinear);
  3. 加性噪声;

基于以上所有的假设和定义,那么当k<Mk<Mk<M,或者说入射信号数量少于观测传感器数量的情况,那么信号x(t)∈CMx(t)\in \Bbb{C}^Mx(t)∈CM能够被压缩到CM\Bbb{C}^MCM一个kkk维子空间Ck\Bbb{C}^kCk,这个子空间被称为“信号子空间”。而噪声被假设为在所有维度上都有能量分布的,所以,此时阵列信号公式可以理解为满秩(full-rank)噪声数据模型所污染的低秩(low-rank)信号,这就是基于子空间的数据模型定义。
这个模型的几何意义,可以用三维坐标来说明,下图引自知乎上的博文:

如果x(t)∈C3x(t)\in \Bbb{C}^3x(t)∈C3被变换到子空间C2\Bbb{C}^2C2子空间来分析,那么弥散在整个三维空间的噪声大部分被降维规避了,分布于C2\Bbb{C}^2C2上的噪声能量势必远小于整个三维空间。

子空间模型的参数估计

本段基本翻译理解【9】,基于子空间模型的参数估计大致分三步:

1.参数建模

\quad建模一个参数η\boldsymbol{\eta}η的估计向量η=[η1,...,ηk]\boldsymbol{\eta}=[\boldsymbol{\eta}_1,...,\boldsymbol{\eta}_k]η=[η1​,...,ηk​]由(列)向量组成(矩阵)A(η)=[a(η1),...,a(ηk)]\mathbf{A}(\boldsymbol{\eta})=[\boldsymbol{a(\eta_1}),..., \boldsymbol{a(\eta_k})]A(η)=[a(η1​),...,a(ηk​)] A(η)\mathbf{A}(\boldsymbol{\eta})A(η)中的列向量a(ηk)\boldsymbol{a(\eta_k})a(ηk​)表示为第kkk个信号源的响应,线阵的方向列向量a(θk​)=[1,e−j2πdsinθk​/λ0​,..e−j2π(M−1)dsinθk​/λ0​]a(\theta_k​)=[1,e^{−j2πdsinθk​/λ0}​,..e^{−j2π(M−1)dsinθk​/λ0​}]a(θk​​)=[1,e−j2πdsinθk​/λ0​,..e−j2π(M−1)dsinθk​/λ0​]就是在线阵DOA估计中的一个实例。而一般情况下,ηk\boldsymbol{\eta_k}ηk​本身也是多维向量,有可能包含坐标信息,信号载波频率等等,从算法上只要这个向量的维度(假设ppp)小于阵元数量MMM,那么a(ηk)\boldsymbol{a(\eta_k})a(ηk​)能够在CM\Bbb{C}^MCM空间中,以ηk\boldsymbol{\eta_k}ηk​作为变量,绘制一个ppp维曲面,这个曲面被叫做阵列流形。数学上定义如下为A={a(ηk):η∈Θ}\mathscr{A}=\{\boldsymbol{a(\eta_k}): \boldsymbol{\eta} \in \boldsymbol{\Theta}\}A={a(ηk​):η∈Θ}这里Θ\boldsymbol{\Theta}Θ是参数向量所有可能取值的集合。很显然线阵的DOA情况p=1p=1p=1,ηk=θk\boldsymbol{\eta_k}=\theta_kηk​=θk​,那么A\mathscr{A}A是一个一维的曲线,这个曲线向绳子一样贯穿整个CM\Bbb{C}^MCM空间,在【9】中有一个图示如下:

从几何上来看,窄带DOA估计问题可以理解为流形和信号子空间的交汇的地方(懵懂中),这就是我们期望的估计点。


一般情况下,如果A\mathscr{A}A是确定的(unambiguous),并且阵元的个数MMM多于信源的个数kkk,那么矩阵A(η)\mathbf{A}(\boldsymbol{\eta})A(η)将是一个k维满秩的矩阵。集合阵元X\mathit{X}X和信源S\mathit{S}S的信号向量可以定义:X=A(η)S\mathit{X}=\mathbf{A}(\boldsymbol{\eta})\mathit{S}X=A(η)S按照子空间的理论,这个瞬间观察值(snapshot) 是矩阵A(η)\mathbf{A}(\boldsymbol{\eta})A(η)列的线性组合,或者说是每次观测都被限定在CM\Bbb{C}^MCM的kkk维子空间,这个子空间是被A(η)\mathbf{A}(\boldsymbol{\eta})A(η)的kkk列所定义的。而如果信源S\mathit{S}S本身是满秩的(kkk),那么A(η)\mathbf{A}(\boldsymbol{\eta})A(η)的生成子空间将等价于A\mathbf{A}A的生成子空间span(A)=span(A(η))span(\mathbf{A})=span(\mathbf{A}(\boldsymbol{\eta}))span(A)=span(A(η)),那么对阵元的观察向量X\mathit{X}X将填满这个低秩子空间,为后面的矩阵参数估计提供了数学假设和基础。在加入了零均值加性噪声之后的阵元信号X=A(η)S+N\mathit{X}=\mathbf{A}(\boldsymbol{\eta})\mathit{S}+\mathit{N}X=A(η)S+N

噪声就像鬼魂一样无处不在,看不见摸不着。但如鬼最好画,噪声也被各路大神描绘的惟妙惟肖,在这里将噪声假设成复稳态循环高斯随机过程,采样点之间完全不相关,以及空间协方差矩阵被定义为σ2Σ=ξ{n(t)n∗(t)}\sigma^2\Sigma=\boldsymbol{\xi}\{n(t)n^*(t)\}σ2Σ=ξ{n(t)n∗(t)} ,这样来表示噪声的数学期望,Σ\SigmaΣ是归一化的矩阵即行列式det(Σ)=1det(\Sigma)=1det(Σ)=1,σ2\sigma^2σ2表示的噪声能量。更大胆的假设是空间白噪声,那么用单位阵III直接替代Σ\SigmaΣ。
\quad开完了噪声的玩笑,但引入噪声后的实际信号向量会变得满秩,就是无法用低秩序列来直接表征了。如果说不考虑噪声的情况,利用N≥kN\geq kN≥k个数据向量所定义的信号子空间,寻找阵列流形和子空间的焦点作为解决方案。当噪声进来以后,就是要从数据中估计出来信号子空间,进而得到η\etaη,让生成的阵列流形最佳适配这个估计。实值上,带噪信号的处理效率是子空间方法的关键问题。接下来我们看看带噪的子空间估计(SVD方法此处被提到),阵列协方差矩阵RXX\boldsymbol{R}_{XX}RXX​可以被写成RXX=E[XX∗]=A(η)RSSA∗(η)+σ2I\boldsymbol{R}_{XX}=\boldsymbol{E}[{XX^*}]=\mathbf{A}(\boldsymbol{\eta})\boldsymbol{R}_{SS}\mathbf{A}^*(\boldsymbol{\eta})+\sigma^2\mathbf{I}RXX​=E[XX∗]=A(η)RSS​A∗(η)+σ2I这里RSS=E[SS∗]\boldsymbol{R}_{SS}=\boldsymbol{E}[{SS^*}]RSS​=E[SS∗]是信源协方差矩阵,这个矩阵是无法测量的,但从前面的推导,可以看出A(η)RSSA∗(η)\mathbf{A}(\boldsymbol{\eta})\boldsymbol{R}_{SS}\mathbf{A}^*(\boldsymbol{\eta})A(η)RSS​A∗(η)这个矩阵有一个低秩的特点,因为信源的个数也是茫然的,所以假设这是一个秩为d′<Md^{\prime}<Md′<M的矩阵,通过特征值分解(eigendecomposition)得出RXX=∑k=1Mλkekek∗\boldsymbol{R}_{XX}=\sum_{k=1}^M\lambda_ke_ke_k^*RXX​=k=1∑M​λk​ek​ek∗​
λ1>λ2>.....λM\quad\lambda_1>\lambda_2>.....\lambda_Mλ1​>λ2​>.....λM​为特征值,{ek}\{e_k\}{ek​}是相对应的特征向量。根据RXX=A(η)RSSA∗(η)+σ2I\boldsymbol{R}_{XX}=\mathbf{A}(\boldsymbol{\eta})\boldsymbol{R}_{SS}\mathbf{A}^*(\boldsymbol{\eta})+\sigma^2\mathbf{I}RXX​=A(η)RSS​A∗(η)+σ2I公式,RXX\boldsymbol{R}_{XX}RXX​是有一个秩为d′d^{\prime}d′的矩阵再加上一个定标的单位阵,这样会让你容易的推算出最后的M−d′M-d^\primeM−d′个特征值是非常小的,即λd′+1=λd′+2=.....λM=σ2\lambda_{d^\prime+1}=\lambda_{d^\prime+2}=.....\lambda_M=\sigma^2λd′+1​=λd′+2​=.....λM​=σ2,由此,定义ES=[e1,e2,...ed′]\boldsymbol{E_S}=[e_1,e_2,...e_{d^{\prime}}]ES​=[e1​,e2​,...ed′​]为信号子空间,和定义EN=[ed′+1,ed′+2,...eM]\boldsymbol{E_N}=[e_{d^{\prime}+1},e_{d^{\prime}+2},...e_M]EN​=[ed′+1​,ed′+2​,...eM​]作为噪声子空间,这两个空间是正教的(orthogonal complement)。而信号子空间包含于A(η)\mathbf{A}(\boldsymbol{\eta})A(η)的生成空间。到此,基于子空间估计的建模算是推导完毕。

信号采样

在测量空间,采样获取信号子空间的估计值A^\hat\mathbf{A}A^;实际中我们是估计R^XX\boldsymbol{\hat R}_{XX}R^XX​,那么基于N次采样的估计公式为R^XX=1N∑t=1Nx(t)x∗(t)\boldsymbol{\hat R}_{XX}=\frac{1}{N}\sum_{t=1}^Nx(t)x^*(t)R^XX​=N1​t=1∑N​x(t)x∗(t)经过特征分解后的(λ^k,e^k),1≤k≤M(\hat \lambda_k, \hat e_k), 1\leq k\leq M(λ^k​,e^k​),1≤k≤M是R^XX\boldsymbol{\hat R}_{XX}R^XX​的特征对,其中对最大的特征值进行保存,形成了信号子空间的持续估计,而信号子空间的维度也是基于特征值分布得到的。经典的方法有似然比(ikelihood ratio),MDL(minimum description length)和AIC(akaike information criterion)。到此可以看出计算矩阵的特征值分解将是最大的负担。

参数估计

估计一组参数η^\hat\boldsymbol{\eta}η^​,使得 A(η^)\mathbf{A}(\hat\boldsymbol{\eta})A(η^​)能够从某个层面最好的匹配A^\hat\mathbf{A}A^;但这个η^\hat\boldsymbol{\eta}η^​如何与A^\hat\mathbf{A}A^建立联系,最终得到一直想要却还没出现的DOA呢?

DOA 估计问题

了解了子空间的概念和一般的分析方法,这些方法可以用在估算信号的方向、波长、频率、幅度,甚至利用多普勒频移估算信号的速度。而用在DOA上,是如何建模的呢?这种方法叫做子空间拟合(subspace fitting)。【9】子空间拟合办法就是一个公式[A^,T^]=arg⁡min⁡A,T∣∣M−A(η)T∣∣F2\left [\hat \mathbf A,\hat \mathbf T\right]=\arg \min\limits_{A,T} ||\mathbf M-\mathbf{A}(\boldsymbol{\eta}) \mathbf T||^2_F[A^,T^]=argA,Tmin​∣∣M−A(η)T∣∣F2​相比于之前的一堆公式,多出来的MMM是一个m×qm\times qm×q矩阵,这个矩阵要从采样数据中重建。m×pm\times pm×p的矩阵是利用η\etaη参数化的,联想一下线阵的角向量。T\mathbf TT是一个任意p×qp\times qp×q矩阵,其中一个办法是替换一个T^=A†M\hat \mathbf T=\mathbf A^ \dagger \mathbf MT^=A†M,那个奇怪的符号表示conjugate transpose,又称埃尔米特共轭。用这个替换重新获得一个等价的问题A^=arg⁡max⁡ATr{PAMM∗},PA=A(A∗A)−1A∗\hat \mathbf A=\arg \max\limits_{A}Tr\{P_AMM^*\}, P_A=A(A^*A)^{-1}A^*A^=argAmax​Tr{PA​MM∗},PA​=A(A∗A)−1A∗PAP_APA​叫做投影矩阵,投影到A\mathbf AA的列空间。
\quad矩阵MMM的选择和包含A\mathbf AA的集合就成了解决子空间拟合的基本问题,在【9】中有一个概括的表格,比较了各种子空间拟合方法:
M&A{A∈Ad}{A∈A}{A∈ξ}MM∗=R^XXDet−MLBeamformingML−ESPRITM=E^SMD−MUSICMUSICTLS−ESPRITM=E^SWopt1/2WSFWeightedMUSICWeightedESPRIT\begin{array}{c|lcr} {M\&A} & \{A\in\mathscr{A}^d\} & \{A\in\mathscr{A}\} & \{A\in\boldsymbol{\xi}\}\\ \hline MM^*=\boldsymbol{\hat R}_{XX} & Det-ML & Beamforming & ML-ESPRIT \\ M=\hat E_S & MD-MUSIC & MUSIC & TLS-ESPRIT \\ M= \hat E_SW_{opt}^{1/2}& WSF & Weighted\ MUSIC & Weighted\ ESPRIT \end{array} M&AMM∗=R^XX​M=E^S​M=E^S​Wopt1/2​​{A∈Ad}Det−MLMD−MUSICWSF​{A∈A}BeamformingMUSICWeighted MUSIC​{A∈ξ}ML−ESPRITTLS−ESPRITWeighted ESPRIT​​

Deterministic maximum likelihood方法

这种方法不是基于统计模型设计的,这样数据阵XNX_NXN​最大化似然函数被认为是这样一个等价问题min⁡η,SNTr{(XN−A(η)SN)∗(XN−A(η)SN)}=min⁡η,SN∣∣(XN−A(η)SN)∣∣F2\min\limits_{\eta,S_N}Tr\{(X_N-\mathbf{A}(\boldsymbol{\eta}) \mathbf S_N)^*(X_N-\mathbf{A}(\boldsymbol{\eta}) \mathbf S_N)\}=\min\limits_{\eta,S_N}||(X_N-\mathbf{A}(\boldsymbol{\eta}) \mathbf S_N)||_F^2η,SN​min​Tr{(XN​−A(η)SN​)∗(XN​−A(η)SN​)}=η,SN​min​∣∣(XN​−A(η)SN​)∣∣F2​一般认为SNS_NSN​是确定的,只是未知,所以假设S^N=A†XN\hat \mathbf S_N=\mathbf A^ \dagger \mathbf X_NS^N​=A†XN​。代入上式替换SN\mathbf S_NSN​,经过推导(我寄几是推不出来)最后得出优化问题的公式η^=arg⁡max⁡ηTr{PA(η)R^XX}\hat \mathbf {\eta}=\arg \max\limits_{\eta}Tr\{ \boldsymbol{P_{A(\eta)}}\boldsymbol{\hat R}_{XX}\}η^​=argηmax​Tr{PA(η)​R^XX​}, R^XX=samplecovariancematrix\boldsymbol{\hat R}_{XX}=sample\ covariance\ matrixR^XX​=sample covariance matrix。这个方法是上面表格的第一个方法,计算负担很重,实际用的已经不多。

Beam forming方法

这里是指传统的’delay-and-sum method’,核心思想就是寻找加权输出的最大功率角度,阵列会扫描所有可能的方向已获得最优解。从公式的角度是取建模归一化的输出功率P(ηj)P(\eta_j)P(ηj​),利用列向量a(ηj)a(\eta_j)a(ηj​)以及矩阵方法求解P(ηj)=1N∑t=1N∣a∗(ηj)x(t)∣2∣a(ηj)∣2=a∗(ηj)R^XXa(ηj)a∗(ηj)a(ηj)=Tr{Pa(ηj)R^XX}P(\eta_j)=\frac{1}{N}\sum_{t=1}^N\frac{|a^*(\eta_j)x(t)|^2}{|a(\eta_j)|^2}=\frac{a^*(\eta_j)\hat R_{XX}a(\eta_j)}{a^*(\eta_j)a(\eta_j)}=Tr\{ \boldsymbol{P_{a(\eta_j)}}\boldsymbol{\hat R}_{XX}\}P(ηj​)=N1​t=1∑N​∣a(ηj​)∣2∣a∗(ηj​)x(t)∣2​=a∗(ηj​)a(ηj​)a∗(ηj​)R^XX​a(ηj​)​=Tr{Pa(ηj​)​R^XX​},Pa(ηj)=a(a∗a)−1a∗P_{a(\eta_j)}=a(a^*a)^{-1}a^*Pa(ηj​)​=a(a∗a)−1a∗,最大功率方向就是DOA的方向。比较DML方法,如果信源只有一个,两种方法是等价的;而分离度比较好的声源,两者的估计也相当。而要分辨靠得很近的声源辐射,阵列孔径的音素不得不考虑。

MUSIC和ESPRIT

Multiple Signal Classification多信号分类方法是最经典的空间谱估计方法,也是在加性噪声环境下成功的构建数据模型的第一个高精度算法。而Estimation of Signal Parameters via Rotational Invariance Techniques 则对MUSIC的精度和限制进行了改进,有人戏称ESPRIT是MUSIC的儿子【8】,两者都是以子空间(subspace)技术为基础的方法,认为信号和噪声是在不同的子空间。pyroomacoustic没有采用ESPRIT,猜想是因为MUSIC本身的稳定性和鲁棒性更好一些。

MUSIC

“音乐”方法是1981年Ralph Otto Schmidt在斯坦福的博士论文《A Signal Subspace Approach to Multiple Emmitter Location and Spectral Estimation》提出来的方法,距今已经有40年了。他在Multiple emitter location and signal parameter estimation文章里有算法的经典推导过程。

SRP-PHAT

Steered Response Power – Phase Transform

CSSM

Coherent Signal Subspace Method

WAVES

Weighted Average of Signal Subspaces

TOPS

Test of Orthogonality of Projected Subspaces

FRIDA

Finite Rate of Innovation Direction of Arrival

术语和约定-notational conventions

ARMA

Autoregressive moving average model 自回归滑动平均模型, 是研究时间序列的重要方法,由自回归模型(简称AR模型)与移动平均模型(简称MA模型)为基础“混合”构成。

FSD

fast subspace decomposition

low-rank && full-rank

azimuth and elevation angles

方位角和仰角

wavefronts:planar or curvature

complex:in-phase and quadrature

coherent & incoherent

covariance协方差

协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。(摘自百度百科)

协方差矩阵

统计学与概率论中,协方差矩阵的每个元素是各个向量元素之间的协方差,是从标量随机变量到高维度随机向量的自然推广。

特征向量、特征值

Tr. 矩阵的迹

Maximum likelihood estimation

似然和概率是鸡和蛋的问题,在给定条件θ\thetaθ下计算事件出现的概率可以表达为P(x∣θ)P(x|\theta)P(x∣θ),而根据事件发生的概率(结果)反推出条件就是似然的过程L(θ∣x)\mathcal{L}(\theta|x)L(θ∣x),所以最大似然估计是利用已知的样本的结果,在使用某个模型的基础上,反推最有可能导致这样结果的模型参数值。很显然求解DOA的过程也可以利用最大似然估计的办法。

Singular Value Decomposition(奇异值分解)

参考文献

【1】.R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag., Vol. 34, Num. 3, pp 276–280, 1986
【2】.J. H. DiBiase, A high-accuracy, low-latency technique for talker localization in reverberant environments using microphone arrays, PHD Thesis, Brown University, 2000
【3】.H. Wang, M. Kaveh, Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources, IEEE Trans. Acoust., Speech, Signal Process., Vol. 33, Num. 4, pp 823–831, 1985
【4】.E. D. di Claudio, R. Parisi, WAVES: Weighted average of signal subspaces for robust wideband direction finding, IEEE Trans. Signal Process., Vol. 49, Num. 10, 2179–2191, 2001
【5】.Y. Yeo-Sun, L. M. Kaplan, J. H. McClellan, TOPS: New DOA estimator for wideband signals, IEEE Trans. Signal Process., Vol. 54, Num 6., pp 1977–1989, 2006
【6】.H. Pan, R. Scheibler, E. Bezzam, I. Dokmanic, and M. Vetterli, FRIDA: FRI-based DOA estimation for arbitrary array layouts, Proc. ICASSP, pp 3186-3190, 2017
【7】.ESPRIT-Estimation of Signal Parameters Via Rotational Invariance Techniques
【8】.ESPRIT Algorithm- The Son of MUSIC
【9】Subspace Methods for Directions-of-Arrival, A. Paulraj, B. Ottersten, R. Roy, A. Swindlehurst, G. Xu and T. Kailath
【10】Performance Analysis of MUSIC and ESPRIT DOA Estimation Algorithms for Adaptive Array Smart Antenna in MobileCommunication
【11】Direction-of-Arrival Estimation Methods: APerformance-Complexity Tradeoff Perspective
【】

阵列信号处理笔记-波达方向DOA-子空间方法相关推荐

  1. 阵列信号处理仿真二——波束方向图的绘制

    均匀加权线阵的频率响应和波束方向图 导入 频率波束响应Υ(ψ)\Upsilon(\psi)Υ(ψ) 波数方向图 波束方向图的幅值在不同方向上的对应关系 阵元间距对波束方向图的影响 matlab的绘图代 ...

  2. 【阵列信号处理】DOA估计之MUSIC算法

    什么是MUSIC算法? 空间谱估计是阵列信号处理中很重要的一部分,而空间谱估计的一个主要内容就是估计空间信号源的方向,即DOA(Direction of arrival)的估计.MUSIC是一种有效的 ...

  3. 【阵列信号处理】DOA估计算法

    DOA估计中的ESPRIT算法 ESPRIT算法时一种利用子空间旋转法估计DOA参数的方法,其算法的基本思想是将阵列在结构上分成两个完全一致的子列,两个子列相应阵元偏移的距离相等,也就是说阵列的阵元被 ...

  4. 阵列信号处理——多重信号分类(MUSIC)

    阵列信号处理分为波束形成和波达方向估计两大技术.波达方向估计的代表性方法是高分辨空间谱估计. 功率谱密度描述信号功率随频率的分布,是信号的一种频域表示.由于阵列信号处理的主要任务是信号空间参数(信源的 ...

  5. python实现阵列信号处理(三):多重信号分类Music算法

    文章目录 一.概述 二.Music算法原理 三.python语言实现Music算法 四.Tips 一.概述   MUSIC算法是学者 Schmidt 等人 1979 年提出的, 该算法是空间谱估计理论 ...

  6. 《阵列信号处理及MATLAB实现》阵列响应矩阵(均匀线阵、均匀圆阵、L型阵列、平面阵列和任意阵列)

    2.7  阵列响应矢量/矩阵 常用的阵列形式包括均匀线阵.均匀圆阵.L型阵列.平面阵列和任意阵列等. 1.均匀线阵 假设接收信号满足窄带条件,即信号经过阵列长度所需的时间应远远小于信号的相干时间,信号 ...

  7. 《阵列信号处理及MATLAB实现》信源和噪声模型、阵列天线统计模型

    PS:文章内容为本人读书笔记,如想阅读更详细内容请购买正版书籍 2.5  信源和噪声模型 2.5.1 窄带信号 如果信号带宽远小于其中心频率,则该信号为窄带信号,即: 其中,为信号带宽,为中心频率.通 ...

  8. 【通信】基于非相干信号子空间(ISM)的宽带源DOA估计方法

    1 简介 智能天线技术作为未来移动通信系统的关键技术之一,是当前通信领域的研究重点.智能天线系统通过天线阵列扩展了空间域,充分利用了空间扩展所提供的资源,能有效提高系统容量.能提供更大带宽和降低多径效 ...

  9. 阵列信号处理之常规波束形成基础+matlab仿真(二)

    DOA估计的三种常见方法:CBF.MVDR(CAPON).MUSIC 统计阵列处理理论:入射波包含了期望信号.干扰信号和噪声,它们中的部分或者全部都可以看成空时随机过程的样本函数.利用信号.噪声和干扰 ...

  10. 基于毫米波的DOA估计方法浅谈

    关于毫米波信道的几种建模 <存在相位校准误差的毫米波大规模天线阵列角度估计算法研究(2018)>一文中,将毫米波建模为"带有相位误差的宽带DOA"进行处理. 原因做几点 ...

最新文章

  1. 深入理解PHP内存管理之谁动了我的内存
  2. 赛门铁克发布针对WannaCry勒索软件的更新预警
  3. 认知实习培训第四天总结
  4. 回调函数与PHP实例
  5. 安装JDK 9与使用jshell
  6. 3加密狗计算pin码_6 个芯片打造复古经典计算机:215 色显示,能编程能玩小游戏...
  7. 微软 VS Code 或将取代 Visual Studio!
  8. 2018-06-12 python读二进制文件
  9. linux生成ssl申请文件,Shell脚本实现生成SSL自签署证书
  10. 视觉培训4 完成手写识别项目
  11. 2018CUMCM(数学建模国赛)_B——智能RGV的动态调度策略
  12. JAVA 实现TCP请求转发
  13. 知其然知其所以然 itoa实现 整型转字符串
  14. 解决 Invalid MEX-file ‘xxx.mexw64‘: 找不到指定的模块 的问题
  15. gst 测试摄像头命令
  16. sqlserver数据库的使用
  17. 【2023】DevOps、SRE、运维开发面试宝典之Redis相关面试题
  18. 如何在pdf文件中编辑页眉页脚
  19. python的pandas库的pd.read_excel()常用解析
  20. xen(三)xl 工具使用

热门文章

  1. Java获得指定时区时间
  2. java语言,MP4视频文件合并功能
  3. 银河麒麟桌面V10微信不能登录
  4. 数据挖掘 任务一:预测贷款是否逾期
  5. 如何恢复被杀毒软件删除的文件
  6. 百度AI开放平台[Python]
  7. 使用Java调用shell脚本时遇到的问题
  8. 第十一个Java程序,计算QQ等级。
  9. 事件的三个阶段:捕获阶段 目标阶段 冒泡阶段
  10. 在微型计算机系统中 视频适配器为,一级计算机基础知识整理解说.xls