按位异或运算

按位异或运算是数学或者计算机中运用到的数据处理的方法。感觉是一种思路,当然也是运用到了他的原理。

异或运算

首先异或表示当两个数的二进制表示,进行异或运算时,当前位的两个二进制表示不同则为1 ,相同则为0. 改方法被广泛用来统计一个数的1的位数。

即:
0 ^ 0 = 0 ,
0 ^ 1 = 1,
1 ^ 0 = 1 ,
1 ^ 1 = 0 ,
按位异或的3个特点:
1.) 0 ^ 0 = 0 , 0 ^ 1 = 1, 0异或任何数=任何数。
2.)1 ^ 0 = 1 , 1 ^ 1 = 0 , 1异或任何数=任何数取反。
3.)任何数异或自己 = 把自己置0。

按位异或的几个常见用途:
(1) 使某些特定的位翻转
例如对数10100001的第2位和第3位翻转,则可以将该数与00000110进行按位异或运算。
      10100001^00000110 = 10100111

(2) 实现两个值的交换,而不必使用临时变量。
例如交换两个整数a=10100001,b=00000110的值,可通过下列语句实现:
    a = a^b;   //a=10100111
    b = b^a;   //b=10100001
    a = a^b;   //a=00000110

位运算

位运算时把数字用二进制表示之后,对每一位上0或者1的运算。理解位运算的第一步是理解二进制。二进制是指数字的每一位都是0或者1.比如十进制的2转化为二进制之后就是10。

其实二进制的运算并不是很难掌握,因为位运算总共只有5种运算:与、或、异或、左移、右移。如下表:
与(&) 0 & 0 = 0 1 & 0 = 0 0 & 1 = 0 1 & 1 = 1
或(|) 0 | 0 = 0 1 | 0 = 1 0 | 1 = 1 1 | 1 = 1
异或(^) 0 ^ 0 = 0 1 ^ 0 = 1 0 ^ 1 = 1 1 ^ 1 = 0

左移运算:

左移运算符m<<n表示吧m左移n位。左移n位的时候,最左边的n位将被丢弃,同时在最右边补上n个0.比如:

00001010 << 2 = 00101000

10001010 << 3 = 01010000

右移运算:

右移运算符m>>n表示把m右移n位。右移n位的时候,最右边的n位将被丢弃。但右移时处理最左边位的情形要稍微复杂一点。这里要特别注意,如果数字是一个无符号数值,则用0填补最左边的n位。如果数字是一个有符号数值,则用数字的符号位填补最左边的n位。也就是说如果数字原先是一个正数,则右移之后再最左边补n个0;如果数字原先是负数,则右移之后在最左边补n个1.下面是堆两个8位有符号数作右移的例子:

00001010 >> 2 = 00000010

10001010 >> 3 = 11110001

关于移位的运算有这样的等价关系:把整数右移一位和把整数除以2在数学上是等价的。

a << = 1 ; //a左移一位等效于a = a * 2;

a << = 2 ; //a左移2位等效于a = a * 2的2次方(4);
  计算机内部只识别1、0,十进制需变成二进制才能使用移位运算符<<,>> 。
int j = 8;
p = j << 1;
cout<<p<<endl;
在这里,8左移一位就是8*2的结果16 。

移位运算是最有效的计算乘/除乘法的运算之一。

按位与(&)其功能是参与运算的两数各对应的二进制位相与。只有对应的两个二进制位均为1时,结果位才为1,否则为0 。参与运算的数以补码方式出现。

先举一个例子如下:

题目:请实现一个函数,输入一个正数,输出该数二进制表示中1的个数。

int count(BYTE n)
{
int num = 0;
while(n){
n &= (n - 1);
num++;
}
return num;
}

这里用到了这样一个知识点:把一个整数减去1,再和原整数做与运算,会把该整数最右边一个1变成0 。 那么一个整数的二进制表示中有多少个1,就可以进行多少次这样的操作。

总结:把一个整数减去1之后再和原来的整数做位与运算,得到的结果相当于是把整数的二进制表示中的最右边一个1变成0 。

位运算的应用可以运用于很多场合:

清零特定位(mask中特定位置0,其它位为1 , s = s & mask)。
取某数中指定位(mask中特定位置,其它位为0, s = s & mask)。
举例:输入两个整数m和n,计算需要改变m的二进制表示中的多少位才能得到n。

解决方法:第一步,求这两个数的异或;第二步,统计异或结果中1的位数。

#include
using namespace std;
int main()
{
int a = 10 , b =13 , count = 0;
int c;
c = a ^ b;
while©{
c &= (c - 1);
count++;
}
cout<<count<<endl;

return 0;

}
接下来我们再举一例,就可以更好的说明移位运算了:用一条语句判断一个整数是不是2的整数次方。

解决方法:一个整数如果是2的整数次方,那么它的二进制表示中有且只有一位是1,而其它所有位都是0 。 根据前面的分析,把这个整数减去1后再和它自己做与运算,这个整数中唯一的1就变成0了。

解答:!(x & (x - 1))

按位异或运算符的讲解 (详细)相关推荐

  1. c语言上机注意事项,计算机三级(C语言)上机考试题型总结与注意事项(讲解详细)...

    计算机三级(C语言)上机考试题型总结与注意事项(讲解详细) C语言 三级上机考试题型总结与注意事项 按前面的分题型讲解,三级上机考试100道题被分为9大题型.每种题型在题库中占的比例也已经在题型名字后 ...

  2. c 语言 按位与或非运算符,C++中的按位与、按位与或|、按位异或^运算符详解

    按位与运算符:& 语法 expression & expression 备注 表达式可以是其他"与"表达式,或(遵循下面所述的类型限制)相等表达式.关系表达式.加法 ...

  3. 深入理解按位异或运算符

    深入理解按位异或运算符 参与运算的两个值,如果两个相应bit位相同,则结果为0,否则为1. 即: 0^0 = 0,        1^0 = 1,        0^1 = 1,        1^1 ...

  4. 用按位异或运算符交换两个数,不引入第三个变量

    2019独角兽企业重金招聘Python工程师标准>>> 用按位异或运算符交换两个数,不引入第三个变量 void swap(int &a , int &b) { a = ...

  5. [笔试题]交换两个数不使用第三方变量 深入理解按位异或运算符

    异或运算相当与mod 2运算: 1^1 = 0, 1^0 = 1, 0^1= 1, 0 ^ 0 = 0 (1+1)%2 = 0, (1+0)%2 = 1, (0+1)%2 = 1, (0+0)%2 = ...

  6. c语音异或运算符_C语言中的按位异或运算符有什么用处?

    原标题:C语言中的按位异或运算符有什么用处? 想知道C语言中的按位异.运算符有什么用处,首先C语言中^为按位异或运算符,若两个二进制位相同,则结果为0,不同为1 例: #include "s ...

  7. java按位异或的运算是,深入理解按位异或运算符

    参与运算的两个值,如果两个相应bit位相同,则结果为0,否则为1. 即: 0^0 = 0, 1^0 = 1, 0^1 = 1, 1^1 = 0 按位异或的3个特点: (1) 0^0=0,0^1=1  ...

  8. c语言中按位异或运算,^按位异或运算符

    ^表示按位异或运算符,顾名思义,相异,即不同则为1,反之为0 例如15和16进行异或运算,运算过程如下:15 0000 0000  0000 0000  0000 0000  0000 1111 16 ...

  9. C++:按位异或运算符:^

    C++:按位异或运算符:^ 语法 备注 示例 语法 表达式 **^**表达式 备注 按位 "异或" 运算符 (^) 将其第一个操作数的每个位与其第二操作数的相应位进行比较. 如果其 ...

最新文章

  1. JZOJ__Day 9:【普及模拟】算法学习(sfxx)
  2. 从性能参数到业务大数据,浅谈直播CDN服务监控
  3. Docker进阶-容器监控cAdvisor+InfluxDB+Granfana
  4. 2008技术内幕:T-SQL语言基础 联接查询摘记
  5. python取出字典中最大值_python找出字典中value最大值的几种方法
  6. ios http长连接_Nginx篇05——http长连接和keeplive
  7. 办公自动化-演练-统计日报的演练-0223
  8. Android--布局
  9. android API Guides学习--Introduction(1)
  10. 互联网大数据应用:浅谈用户行为分析
  11. 如何测试网页的登录页面(转载)
  12. 跨站点请求伪造攻击的原理及防御
  13. 从零开始了解推荐系统全貌
  14. java MultipartFile转换File
  15. 对线性时不变系统(LTI)中时不变(Time Invariant)的一点点理解
  16. idea工具整合前端vue,nodeJs步骤
  17. 达内python学费22000_交钱了,学了3天Python编程,我想放弃了......
  18. 求生之路无限子弹服务器,求生之路2怎么调无限子弹(在单机中)
  19. 爱奇艺发布iQUT未来影院,移动观影千亿新市场初露端倪
  20. H264码流打包成RTP包

热门文章

  1. Manifold learning 流形学习
  2. Cauchy-Schwarz不等式、Hölder不等式与Minkowski不等式
  3. motan rpc 接口统一异常处理
  4. 出现意外的服务器响应怎么解决,Web服务器出现意外时该如何处理?
  5. c语言二级考试题型分值,计算机二级c++考试题型和分值分布
  6. 动态规划之矩阵连乘问题
  7. 沦为“取数工具”的那些日子,我懂得了这些道理
  8. 智慧工地|看得见违章、嗅得到隐患,科技助力施工现场精细管控
  9. 代码重构-业务中台化
  10. 计算机辅助教育自考真题,自考真题在线学习-考试类(爱考题)学习软件站