前言

这一次,我尝试以不贴一行源代码的方式向你介绍 Flutter 路由的实现原理,同时为了提高你阅读源码的积极性,除了原理介绍以外,又补充了两个新的模块:从源码中学习到的编程技巧,以及 阅读源码之后对实际应用开发带来的帮助

希望这样1+2的模式,可以诱导你以非常积极的心态,很轻松的学习到 Flutter 路由相关的知识。

当然,不贴一行源代码,纯白话的讲解必然会隐藏很多细节知识,渴望知识的你一定不会满足的,所以我在原理介绍结束之后,又补充了一篇番外:贴了大段大段的纯源码解析的,知道大概原理的你再去读源码Flutter 路由源码解析,一定会轻松很多吧,希望这样的模式可以有效的帮助到你!

文章有些长!文末有福利!

本文大纲:

  • Flutter 路由实现

    • Flutter 路由实现的底层依赖
    • Flutter 路由过程
    • 番外:Flutter 路由源码解析
  • Navigator 源码里非常值得学习的 Flutter 编程技巧

    • Flutter中的“命令式编程”:对象引用查找与远程局部更新
    • 元素自治
    • 私有类包装:隔离逻辑与Widget
  • 阅读 Navigator 源码之后对实际应用开发的帮助

    • 路由动态监听
    • 路由监听中,识别 弹窗 or Page
    • 动态添加 Widget
    • 易踩的坑:多Navigator嵌套情况下的错误路由查找

Flutter 路由实现

Flutter 路由实现的底层依赖

如果你对 Flutter 的Widget Tree有些了解。应该知道 Flutter 中的根 Widget 是RenderObjectToWidgetAdapter,根 Widget 的 child 就是我们在void runApp(Widget app)中传入的自定义 Widget。

runApp开始,Flutter的列车便轰隆隆开动了。似乎一切都顺理成章,直到我们开始思考,执行Navigator.push()方法开启新的页面是如何实现的?

再继续分析之前,我们不妨先自己想想:如果让你来设计,你会如何设计Navigator? 如果是我的话,我大概会这样设计, 然后把这个 MyNavigator 放到 Widget 树的根部:

// 伪代码
class MyNavigator extends StatefulWidget{...Map<String,Page> pageMap = ...;String currentPage = "one";void setCurrentPage(String pageName){setState(() {currentPage = pageName;});}@overrideWidget build(BuildContext context) {return pageMap[currentPage];}
}
复制代码

那Flutter是如何实现的呢?

我们先看一个最普通的Flutter App 的 Widget 树结构:

哈哈,这个图乍一眼看有点懵,陌生的 Widget 可能有点多,挨个简单解释一下:

  • RenderObjectToWidgetAdapter: Flutter 中的 root widget。

  • MyApp: 我们在void runApp(Widget app)中传入的自定义 Widget。

  • MaterialApp : 就是那个Flutter 官方的 MaterialApp组件,通常我们会在自定义的根布局使用它,不用它的话很多官方Widget就没办法使用了。

  • Navigator: 实现路由跳转用的就是它,它也是一个Widget,已经早早的嵌入了 WidgetTree 中。它维护了一个Route集合,你调用push,pop方法时,Navigator都会以栈的方式对这个集合进行添加或删除,就是你所熟悉的界面栈。 (和我们所想的方案几乎一样是不是?)

  • Overlay: 顾名思义,一个可以实现一层层向上覆盖 Widget 的组件,它持有了一个集合List<OverlayEntry>,你可以获取这个 Widget 的引用来向集合中添加组件,使得新的组件覆盖在已有的组件上面。在Navigator体系中,你的Route对象,都将转化为OverlayEntry对象存入这个集合。

  • OverlayEntry: OverlayEntry在图中没有,因为它不是一个 Widget,而是一个纯纯的 Dart 类。Overlay维护的是一个纯 Dart 类集合,最后再根据这个 Dart 类集合去创建 Widget。为什么这样做呢?因为直接操作Widget并不是一件优雅安全的事情,这一点我们再下一节会将。

  • _Theatre: 这是一个私有类,并且只有Overlay使用了它。它的名字非常形象的表达了它的功能:剧院。你有很多组件以一层层覆盖的模式绘制在界面上,如果其中某一层的组件以全屏不透明的模式绘制在界面上,那它下层的组件就不需要再进行绘制了(下面的完全看不到了还绘制啥呀~)。_Theatre就在做这样的事,需要绘制的组件放置在“舞台之上”,其他不需要绘制的组件作为观众放置台下,仅 build 但不绘制。

  • Stack: 类似 Android 里的FrameLayout, 顺序绘制它的 child,第一个child被绘制在最底端,后面的依次在前一个child的上面。

  • _OverlayEntry: 上面我们有提到OverlayEntry,这个纯 Dart 类最终会以 _OverlayEntry的形式进入 Widget 树中。Overlay是以_OverlayEntry为最小 Widget 单位向Stack中添加 child 的。_OverlayEntry包裹了我们的自定义 Page。

  • MyPage:就是你自定义的页面。

听起来OverlayStack功能完全一样?

了解这个之前,你需要知道每个通过路由展示在界面的上的 Page 或 PopupWindow,都有两个状态值:

  • opaque:是否是全屏不透明的,当一个组件opaque=true时,那么可以认为它之下的组件都不需要再绘制了。一般情况下,一个 Page 的opaque=true, 不是全屏的 PopupWindow opaque=false
  • maintainState:一个已经不可见(被上面的盖住完全看不到啦~)的组件,是否还需要保存状态。当maintainState=true时,会让这个组件继续活着,但不会再进行绘制操作了。如果maintainState=false,则不会继续维持这个 Widget 的生存状态了。

画个图来解释下,线框代表屏幕,长条代表一个个层叠绘制在屏幕上的组件。蓝色代表需要被绘制,黄色代表需要维持它活着但不需要绘制,灰色代表可以被抛弃的。

好了,知道这两个知识点以后,我们继续讲OverlayStack

Overlay 的能力趋向于是一种逻辑管理,它维护了所有准备要绘制到界面上的组件。并倒序(后加入的组件绘制到最上方)遍历这些组件,最开始每个组件都有成为“演员的机会”,直到某个组件的opaque 的值为 true , 后面的组件便只有做 “观众” 的机会了,对于剩下的组件,判断他们的maintainState 值,为 true 的才有机会做观众,为false的没有入场机会了,他们这一阶段的生命周期将结束。之后将分类完成的“演员”和“观众”交给 _Theatre。

_Theatre维护了两个属性:onstageoffstageonstage里又持有了一个Stack,将所有的“演员”加入Stack中,依次覆盖绘制。offstage维护了所有的“观众”,只build他们,但不绘制。

Overlay 管理OverlayEntry 的逻辑类似下面这张图:

可能你会比较好奇_Theatreoffstage 是如何做到不绘制的。

你应该知道 Element 树的是通过其内部的mout方法将自己挂载到父 Element 上的。_Theatremout方法不太一样, onstage走正常的挂载流程,加入到Element 树中; offstage集合中的 Widget 仅创建了对应的 Element,并没有挂载到 Element 树中。没有进入到Element中,也就不会进入到 RenderObject树中,也就不走到绘制流程了。

这样你应该能理解Overlay其实是Stack的扩展。Overlay预先进行过滤,从而避免了无用的绘制。

Flutter 路由过程

经过上面讲的 Widget 树结构以及Overlay的能力和原理,你大概能猜到Navigator就是在Overlay的基础上扩展实现的。那具体是怎样一个过程呢?

你已经知道Navigator维护了一个 Route 集合(就是一个很普通的 List)。你调用push方法向集合中增加一个 Route时, 也同时会创建出两个对应的OverlayEntry, 一个是遮罩(对原理解释并不是很重要,后面我们会忽略它,你只要知道就好了),一个代表 Page 本身。

我们看下当路由中只有一个 Page 时的示意图:

Navigator 持有一个 Route 集合,里面只有一个 Page。同样的,Navigator内部的Overlay也持有一个OverlayEntry集合,并且有与 Page 对应的OverlayEntry。需要提醒的是,RouteOverlayEntry并不是一一对应的,而是1:2,上面我们讲了还有一个遮罩,只是这里为了图示简单,省略了它。

因为只有一个 Page 需要展示,所以它在_TheatreonstageStack里,最终将被绘制。此时offstage为空。

我们再看下当路由中又被 push 进一个 Page时的情况:

因为通常 Page 的 opaque=true, maintainState=true,所以 Page2 进入 onstage, Page1 不在需要被绘制,但需要保持状态,进入了offstage

当我们再次向路由中 push 一个 Page:

我们已经看了3个 Page 的情况,再看一个 popupWindow(dialog) 的情况,因为通常 popupWindow(dialog) 的 opaque=false,我们再向路由中 push 一个 dialog:

因为 dialog 并不是全屏不透明的,它下面还是要展示Page的一部分,所以它要和 Page 一起绘制在屏幕上,只不过 dialog 在最上层。

pop 的过程就是 push的反向,把4张图倒着看一遍就ok啦。

这里只讲了最简单的 push ,Navigator还提供了丰富的push和pop方法,但最终只是最基础的push或pop的扩展。

比如pushNamed,其实就是通过字符串匹配创建出对应的Route,然后调用push方法;pushReplacement其实就是push的同时pop出旧的Route,以你的聪明才智,一定很轻易就能猜到实现逻辑的,这里我就不多介绍啦。

番外:《Flutter 路由源码解析》

求知欲如此之强的你,一定渴望更多的细节。如果你还精力旺盛,就继续跟我去看看源码吧~

番外:《Flutter 路由源码解析》

不阅读源码不影响接下来的阅读哦~,但如果读过之后,下面的内容会更香!

Navigator 源码里非常值得学习的Flutter 编程技巧

Navigator 体系的源码,阅读理解起来,不是特别难,但也有一定的复杂性。所以其中包含了一些非常值得学习的 Flutter风格编程技巧。

Flutter中的“命令式编程”:对象引用查找与远程局部更新

区别于Androdi&iOS的命令式编程范式,Flutter 声明式的编程范式早期会给开发者带来极大的不适。最大的改变在于UI的更新是通过 rebuild 来实现的,以及对象引用的概念被弱化了(如果每一次都是重新创建,那持有一个 Widget 的引用也就不是很重要了)。

这样的改变较为容易引起你不适的点在于:

  • 1.在 Widget 树中,对某个 Widget 的引用获取。

    偶尔依然会有获取某个Widget引用的需求;

  • 2.参数层层传递问题。

    如果顶层持有的某个参数需要被传递到底层,层层传递是一件非常痛苦的事。如果能直接拿到上层 Widget 的引用,获取该 Widget 持有的参数的话就很方便了。

  • 3.当触发更新的点和要被更新的点在代码上距离较远时。

    若没有借助 Redux 等框架, 通常我们会将【触发更新的点】和【被更新的点】封装在尽可能小的范围里(封装在一个范围最小的StatefulWidget中)。但总有十万八千里的两个有缘人,这个时候触发大范围,甚至整颗Widget树的rebuild的话就不是很优雅了。

那这三个点如何解决呢?

在 Navigator 的源码体系里,有两个关键对象对外提供了全局引用的能力,分别是:NavigatorOverlay,借助的均是 BuildContextancestor*方法向上查找。

BuildContextElement 的抽象类,所以BuildContext的查找也就是在 Element 树中遍历查找需要的元素。

我们看看BuildContext都提供了哪些方法:

ancestorInheritedElementForWidgetOfExactType --- 向上查找最近的InheritedWidget的 InheritedElement
inheritFromWidgetOfExactType --- 向上查找最近的InheritedWidget
ancestorRenderObjectOfType   --- 向上查找最近的给定类型的RenderObject
ancestorStateOfType --- 向上查找最近的给定类型的StatefulWidget的State对象
ancestorWidgetOfExactType   --- 向上查找最近的给定类型的Widget
findRenderObject  --- 向下查找当前的RenderObject
rootAncestorStateOfType  --- 向上查找最顶层的给定类型的 StatevisitAncestorElements(bool visitor(Element element)) --- 向上遍历 Ancestor
复制代码

向上查找较为简单,传入对应类型即可,向下BuildContext也提供了遍历 child的方法:

visitChildElements(ElementVisitor visitor)  --- 向下遍历 child
复制代码

Overlay的静态方法of方法为例(Navigator也有类似的of方法),传入需要查找的类型对象TypeMatcher,向上查找到最近的OverlayState,使得Overlay无需层层向下传递自己的引用,底层 Widget 遍可以在任何地方拿到Overlay引用,并调用它的方法或属性,这解决1``2的问题:

class Overlay {
...
static OverlayState of(BuildContext context, { Widget debugRequiredFor }) {final OverlayState result = context.ancestorStateOfType(const TypeMatcher<OverlayState>());...return result;
}
...
复制代码

那么对于相聚千里之外的有缘人,如何通知对方 rebuild 呢? Overlay也给了我们很好的示例,以 OverlayStateinsert方法为例:

通过Overlay的静态方法of获取到OverlayState引用之后,调用insert,其内部直接调用了setState(() {} 方法修改了自己的数据内容,并触发了自己范围内的 rebuild 。

void insert(OverlayEntry entry, { OverlayEntry above }) {entry._overlay = this;setState(() {final int index = above == null ? _entries.length : _entries.indexOf(above) + 1;_entries.insert(index, entry);});}
复制代码

这样,1``2``3点便有了相应的解决方案,开发过程中不妨考虑用这样的方式优化你的代码。

但在Element树中遍历查找引用以及操作,毕竟不是一件高效和安全的事情,所以在某些场景下,可以考虑下面的一个技巧:“元素自治”。

元素自治

最佳示例依然来自于Overlay

传统编程思维方式中,集合负责存储元素,元素持有数据,某个 Manager 负责操作集合与集合里的元素。

OverlayState提供了三个操作集合的方法:

  void insert(OverlayEntry entry, { OverlayEntry above }) void insertAll(Iterable<OverlayEntry> entries, { OverlayEntry above }) void _remove(OverlayEntry entry)
复制代码

受限于 Flutter 声明式的编程方式,对象引用的查找成本较高,Manager 的实现在这个场景里也不够优雅。所以虽然insert方法依然需要通过Overlay的静态方法of查找OverlayState引用来调用。 但_remove却是一个私有方法,不允许你直接通过OverlayState来调用。

OverlayEntry的删除只能由OverlayEntry自己来执行:

class OverlayEntry {...void remove() {final OverlayState overlay = _overlay;_overlay = null;if (SchedulerBinding.instance.schedulerPhase == SchedulerPhase.persistentCallbacks) {SchedulerBinding.instance.addPostFrameCallback((Duration duration) {overlay._remove(this);});} else {overlay._remove(this);}}...
复制代码

这样的编程方式,既保证了元素“安全”,又避免了在树中的查找的损耗。

安全的理由是:元素的删除不仅是从集合中删除就结束了,还有一系列“卸载”和回调的需要被执行,元素自治屏蔽了外部直接操作集合删除元素的可能。

私有类包装:隔离逻辑与Widget

如果需要你来自定义一个Widget,这个Widget内部持有了多个children,这些children都是在不断变化的。你会怎么维护这个children列表呢?

直接创建一个 List<Widget> 集合吗?不,这并不优雅也不安全!

我们知道 Widget 是 Flutter 里的基础基石,每一个Widget在run起来之后都有无限的延伸,可能是短命不可复用的可能又是长期存在的,它们不但可以产出Element和RenderObject,还包括了完整的生命周和体系内的各种回调。

你可以保证能照顾好他们吗?

Flutter 世界里的一个潜规则是:Wideget的创建,尽可能只在build方法中进行!将Wideget的创建和销毁交给Flutter 系统来维护!

那么该如何做呢?

第三个示例还是来自于OverlayOverlay的设计真的不错!

Overlay 内部也持有了多个children:List<OverlayEntry> ,但OverlayEntry并不是一个Widget,它只是一个普通的 Dart 类。它持有了创建Widget必要的属性以及一些逻辑。

Overlay在build时真正创建的 Widget 是_OverlayEntry

class _OverlayEntry extends StatefulWidget {_OverlayEntry(this.entry): assert(entry != null),super(key: entry._key);final OverlayEntry entry;@override_OverlayEntryState createState() => _OverlayEntryState();
}class _OverlayEntryState extends State<_OverlayEntry> {@overrideWidget build(BuildContext context) {return widget.entry.builder(context);}void _markNeedsBuild() {setState(() { /* the state that changed is in the builder */ });}
}
复制代码

可以看到_OverlayEntry是一个私有类,它的代码非常简单,构造方法里传入一个OverlayEntry,build 时执行的是entry.builder(context)方法。

所以:如果你需要对一个Widget或Widget集合做频繁的操作,建议的做法是将逻辑和属性抽离出来,维护一个不变的逻辑对象,让Widget根据逻辑对象进行build或rebuild。 尽量避免直接操作一个Widget以及改变它内部的属性。

阅读 Navigator 源码之后对实际应用开发的帮助

源代码的阅读往往可以加深对系统执行过程的理解,在将来的某一天可能会起到至关重要的作用,却也可能永远用不到。这种收益的不确定性和源码阅读的枯燥性,往往会让大部分人望而却步。

所以在文章的最后,我简单的列出一些在源码阅读之后,对实际应用开发的帮助。由此,来增加你对源码学习的积极性。

路由动态监听

随着开发复杂度的上升,你一定会有监听路由变化的需求。如果你对MaterialApp有些许研究,会知道在构建MaterialApp时可以传入一个navigatorObservers的参数,大概像这样:

  Widget build(BuildContext context) {return new MaterialApp(navigatorObservers: [new MyNavigatorObserver()],home: new Scaffold(body: new MyPage(),),);}
复制代码

navigatorObservers是一个List<NavigatorObserver>集合,每当navigator发生变动时,都会遍历这个集合回调对应的方法。

即使你不知道MaterialApp有这样一个属性,在阅读NavigatorState源码时,pop,push等方法内部都有下面这样的代码, 了解到路由的变化是提供了observer的:

  @optionalTypeArgsFuture<T> push<T extends Object>(Route<T> route) {...for (NavigatorObserver observer in widget.observers)observer.didPush(route, oldRoute);...}
复制代码

另一个问题来了!

一个标准的工程,往往会将MaterialApp申明在最顶层,而大部分需要监听路由变动的场景,都在下层的业务代码里。笨办法是将监听函数层层传递,但这绝对是一个极其痛苦的过程。

一个相对优雅的解决方案是:动态添加路由监听。那如何实现呢?

NavigatorNavigatorState并没有直接暴露添加监听的接口(是官方并不建议吗?),但看过源码的你会知道,最终回调的observers是由Navigator持有的observers对象,幸好它是一个public属性。

所以,动态添加路由监听的方法可以这样实现:

  MyNavigatorObserver myObserver = MyNavigatorObserver();@overridevoid initState() {super.initState();//建议在initState时动态添加Observer,而不是build时,避免重复添加Navigator.of(context).widget.observers.add(myObserver);}@overridevoid dispose() {super.dispose();//dispose时记得移除监听Navigator.of(context).widget.observers.remove(myObserver);}复制代码

路由监听中,识别 弹窗 or Page

一个较为困扰的事情是,在 Flutter 的世界中,无论是页面还是弹窗,都是以路由的方式来实现的,所以在路由监听的回调中,弹窗的展示和消失也会触发回调。

如果你想识别回调中的路由是弹窗还是Page该怎么办? 有没有什么较为优雅的方式?

读过源码的你一定记得,在OverlayState的 build 方法中,通过OverlayEntryopaque属性,将所有将要进入_Theatre组件中的entry区分为了onstageChildrenoffstageChildren

opaque意义在哪呢?它决定了当前的Widget是否是一个“全屏不透明”的Widget,Page一般情况下占用全部屏幕,所以他是“全屏不透明的”,弹窗一般情况下只占用全部屏幕的一部分,所以它的“全屏透明的”。

读过源码的你会知道,Route的子类TransitionRoute持有了opaque属性,并且所有的"PageRoute"opaque=true,"PopupRoute"opaque=false

那么事情就很简单了:

class MyNavigatorObserver extends NavigatorObserver {@overridevoid didPush(Route<dynamic> route, Route<dynamic> previousRoute) {if ((previousRoute is TransitionRoute) && previousRoute.opaque) {//全屏不透明,通常是一个page} else {//全屏透明,通常是一个弹窗}}
}
复制代码

值得注意的是,opaque值并不能完全代表它是一个Page或弹窗,总是会有特殊情况的。所以对这一点的理解,更准确的说法是:识别previousRoute是否会占据全部屏幕,导致原本的route不可见。

动态添加 Widget

受限于Flutter 独特的编程方式,想要在代码中随时插入一个 Widget 还是比较困难的。

但读过源码的你已经知道了,在MaterialApp中已经预先内置了一个Overlay,虽然它是给 Navigator服务的,但你也完全可以拿来用:

//获取最近的一个Overlay进行操作,如果你没有添加自定义的,通常是`Navigator`的那个
Overlay.of(context).insert(entry);//获取最靠近根部的Overlay进行操作,通常是`Navigator`的那个
(context.rootAncestorStateOfType(const TypeMatcher<OverlayState>()) as OverlayState).insert(entry);复制代码

易踩的坑:多Navigator嵌套情况下的错误路由查找

成也 Widget,败也 Widget。万物皆 Widget 可以有无限的组合,但也可能导致 Widget 的滥用。

MaterialApp 在 Flutter 世界中的地位类似于 Android 中的 Application + BaseActivity。 理论上一个项目中只应该在顶层有唯一的一个MaterialApp ,但 Flutter 却也不限制你在 Widget 树中任意地方使用多个MaterialApp

另外Navigator也是一个 Widget,你也可以在树中的任意地方插入任意多个Navigator

这会造成什么问题呢?假设我们有这样一个 Widget 树:

- MaterialApp- ...-  Navigator- ...-  MaterialApp-  Navigator- ...- MaterialApp
复制代码

你猜这个 Widget 树里有多少个 Navigator? 看过源码你知道每个MaterialApp内部都包含一个Navigator,所以这棵树里有5个Navigator。 这么多Navigator的问题在哪呢?

看下Navigatorpush方法:

static Future<T> push<T extends Object>(BuildContext context, Route<T> route) {return Navigator.of(context).push(route);}
复制代码

默认调用的是单个参数的Navigator.of(context),在看下of内部:

static NavigatorState of(BuildContext context, {bool rootNavigator = false,bool nullOk = false,}) {final NavigatorState navigator = rootNavigator? context.rootAncestorStateOfType(const TypeMatcher<NavigatorState>()): context.ancestorStateOfType(const TypeMatcher<NavigatorState>());return navigator;
}
复制代码

默认情况下,向上查找的不是根节点的NavigatorState,而是最近的一个。这将导致你在树中任意位置pushpop操作的可能不是同一个NavigatorState对象,他们维护的也不是同一个 route栈,这将导致很多问题。

所以合适的做法是:

  • 1.尽可能保证你的代码中,MaterialApp在项目中有且只有一个,且在Widget 树的顶层。

  • 2.你不能保证代码中只有一个Navigator, 所以对于全局的Page管理,建议将pushpop封装,使用Navigator.of(context, rootNavigator:true)代码去保证你拿的是根部的Navigator

而对于真的有需要去获取树中的某个Navigator而不是根Navigator,你要严格 check Navigator.of(context) 中你所使用的 BuildContext,要保证它是在你要获取的 Navigator 之下的。

一个 badcase:

class MyWidget extends StatelessWidget {@overrideWidget build(BuildContext context) {return Stack(children: <Widget>[MyNavigator(), GestureDetector(onTap: (){Navigator.of(context);},child: Text("ClickMe"),)],);}
}
复制代码

MyNavigator是我们自定义的Navigator,我们需要点击“ClickMe”来在树中查找到MyNavigator的引用,那么,你觉得能查的到吗?

答案是不能!因为我们是基于MyWidgetBuildContextBuildContext就是Element的抽象)去在Element树中向上查找的,但很明显MyWidgetMyNavigator上层,当然不会得到你想要的结果啦~

福利1 免费直播课程

《腾讯课堂Android高级开发工程师系列直播》

适听人群:Android初、中、高级开发工程师

3.17-3.23 连续7天每晚8点准时直播,持续进行

3月17日:实现安全可靠的Android网络连接

3月18日:设计模式应该如何运用到Android项目开发中

3月19日:组件化架构演进之路—路由框架原理与实现

3月20日:图片加载框架如何选型及原理分析

3月21日:基于Android一个小时实现人脸追踪

3月22日:架构师教你选择一个适合自己的app的架构

3月23日:Hook源码实现阿里无闪烁换肤

福利2 Android开发资料包

该资料包中主要包括「Java语言进阶与Android相关技术核」、「2)App开发框架知识体系(app亦对象)」、「360° Android app全方位性能调优」、「Android前沿技术」、「NDK 模块开发」等内容,全方位扩充你的知识体系。

进阶视频

Android高级技术大纲导图

想要参与Android进阶免费系列直播课

以及获取Android开发工程师资料包的同学,

点击加入:加入

免费课程,名额有限,先到先得~~

Flutter 路由源码解析相关推荐

  1. ThinkPHP路由源码解析(三)

    本文接着上文继续来解读路由源码,如果你看到本文可以先看一下之前写的路由文章,共计俩篇. ThinkPHP路由源码解析 前言 一.检测路由-合并分组参数.检查分组路由 二.检测URL变量和规则路由是否匹 ...

  2. 如何理解 Flutter 路由源码设计?| 开发者说·DTalk

    本文原作者: Nayuta,原文发布于: 进击的 Flutter   本期看点: 70 行代码实现一个丐版路由 路由源码细节解析 导语 某天在公众号看到这样一个问题 这问题我熟啊,刚好翻译 Overl ...

  3. ThinkPHP路由源码解析(一)

    路由是项目开发中比较重要的一个环节,每个项目都会使用路由进行管理接口,接下来本文会从源码方面带大家一起学习路由. 框架路由解析 前言 一.路由初识化简单分析 二.通过定义路由再谈门面 三.路由定义ru ...

  4. 路由框架ARouter最全源码解析

    ARouter是2017年阿里巴巴开源的一款Android路由框架,官方定义: ARouter是Android平台中对页面,服务提供路由功能的中间件,提倡简单且够用 有下面几个优势: 1.直接解析UR ...

  5. gateway 过滤器执行顺序_Gateway网关源码解析—路由(1.1)之RouteDefinitionLocator一览...

    一.概述 本文主要对 路由定义定位器 RouteDefinitionLocator 做整体的认识. 在 <Spring-Cloud-Gateway 源码解析 -- 网关初始化> 中,我们看 ...

  6. 前端单页路由《stateman》源码解析

    <stateman>是波神的一个超级轻量的单页路由,拜读之后写写自己的小总结. stateman的github地址 github.com/leeluolee/s- 简单使用 以下文章全部以 ...

  7. JVM SandBox源码解析(一):启动时初始化、启动时加载模块、ModuleHttpServlet进行Http路由

    前言 上篇JVM SandBox实现原理详解文章中,主要解析了JVM SandBox的核心实现原理,并且对SandBoxClassLoader和ModuleClassLoader做了源码解析,也解释了 ...

  8. Gin源码解析和例子——中间件(middleware)

    在<Gin源码解析和例子--路由>一文中,我们已经初识中间件.本文将继续探讨这个技术.(转载请指明出于breaksoftware的csdn博客) Gin的中间件,本质是一个匿名回调函数.这 ...

  9. python flask源码解析_用尽洪荒之力学习Flask源码

    [TOC] 一直想做源码阅读这件事,总感觉难度太高时间太少,可望不可见.最近正好时间充裕,决定试试做一下,并记录一下学习心得. 首先说明一下,本文研究的Flask版本是0.12. 首先做个小示例,在p ...

最新文章

  1. CVPR2020文章汇总 | 点云处理、三维重建、姿态估计、SLAM、3D数据集等(12篇)
  2. 使用maven下载依赖包及maven常见问题汇总
  3. Android NDK学习笔记1:基础
  4. Hello Blazor:(13)查找HTML元素对应.razor文件
  5. 455. 分发饼干001(贪心算法+详解)
  6. 反汇编基础-寄存器及内存
  7. php判断手机浏览器,php 获取 手机浏览器的信息 | 学步园
  8. [企业内部https证书配置]tomcat 7配置https的完整历程
  9. 关于项目中一些时间转换的问你题 -紫叶and妍
  10. 贺利坚老师汇编课程54笔记:OF溢出标志OVERFLOW FLAG
  11. IE8的样式兼容性适应方法【转】
  12. svn服务端可视化界面
  13. 平流干旱模型matlab,北半球干旱区降水转化和再循环特征及其在全球变暖背景下的变化...
  14. Google 因果推断的CausalImpact 贝叶斯结构时间序列模型(二十二)
  15. python怎么打希腊字母_Python--画图时希腊字母的显示
  16. matlab二项式分布,C++ binomial_distribution二项式分布随机数用法解析
  17. 联想笔记本PE启动热键
  18. Xshell,Xftp的官方网站
  19. 如何把数据思维应用到业务经营中
  20. 下载钉钉直播回放视频

热门文章

  1. Opcode 缓存介绍以及使用 Opcache
  2. Android Studio 微信登录
  3. Zookeeper + Centos7 详细安装教程
  4. js以excel为模板的打印
  5. java 文本文件加密 文本文件解密
  6. python输出字体的大小_Python之美——一只数据狗的笔记[长期更新]
  7. 大数据平台及数仓的通用架构和技术体系
  8. 前端面试题及答案(一)
  9. STM32F103C8T6的TIM1的CH1、CH2、CH3三路互补PWM实现四路PWM两两输出
  10. 读《Jonathan von Neumann and EDVAC》