cs231n课程资料Python Numpy Tutorial的Python3版本

cs231n课程提供了一个python numpy tutorial的教程,非常不错。之前看过,这些天又想爬虫和数据分析这一块,有拿出来看了看。官方给的原版的ipython notebook cs228-python-tutorial.ipynb是python 2.7版本的,学习的过程中我顺便改成了python3版本的Tutorials for Stanford cs228 and cs231n,并且把其保存为markdown版本贴在了下面,如果需要的也可以去github上下载。

————————————————————————————————————————————

Adapted by Volodymyr Kuleshov and Isaac Caswell from the CS231n Python tutorial by Justin Johnson (http://cs231n.github.io/python-numpy-tutorial/).

Introduction

Python is a great general-purpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

Some of you may have previous knowledge in Matlab, in which case we also recommend the numpy for Matlab users page (https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html).

In this tutorial, we will cover:

  • Basic Python: Basic data types (Containers, Lists, Dictionaries, Sets, Tuples), Functions, Classes
  • Numpy: Arrays, Array indexing, Datatypes, Array math, Broadcasting
  • Matplotlib: Plotting, Subplots, Images
  • IPython: Creating notebooks, Typical workflows

Basics of Python

Python is a high-level, dynamically typed multiparadigm programming language. Python code is often said to be almost like pseudocode, since it allows you to express very powerful ideas in very few lines of code while being very readable. As an example, here is an implementation of the classic quicksort algorithm in Python:

添加了print,查看整个计算的过程

def quicksort(arr):if len(arr) <= 1:return arrpivot = arr[int(len(arr) / 2)]left = [x for x in arr if x < pivot]  middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot]print("pivot:", pivot)print("left:", left)print("midele:", middle)print("right:", right)return quicksort(left) + middle + quicksort(right)print(quicksort([3,6,8,10,1,2,1]))
pivot: 10
left: [3, 6, 8, 1, 2, 1]
midele: [10]
right: []
pivot: 1
left: []
midele: [1, 1]
right: [3, 6, 8, 2]
pivot: 8
left: [3, 6, 2]
midele: [8]
right: []
pivot: 6
left: [3, 2]
midele: [6]
right: []
pivot: 2
left: []
midele: [2]
right: [3]
[1, 1, 2, 3, 6, 8, 10]

Python versions

There are currently two different supported versions of Python, 2.7 and 3.4. Somewhat confusingly, Python 3.0 introduced many backwards-incompatible changes to the language, so code written for 2.7 may not work under 3.4 and vice versa. For this class all code will use Python 2.7.(NY改写为使用3)

You can check your Python version at the command line by running python --version.

Basic data types

Numbers

Integers and floats work as you would expect from other languages:

x = 3
print(x, type(x))
3 <class 'int'>
print(x + 1)   # Addition;
print(x - 1)   # Subtraction;
print(x * 2)   # Multiplication;
print(x ** 2)  # Exponentiation;
4
2
6
9
x += 1
print(x)  # Prints "4"
x *= 2
print(x)  # Prints "8"
4
8
y = 2.5
print(type(y)) # Prints "<type 'float'>"
print(y, y + 1, y * 2, y ** 2) # Prints "2.5 3.5 5.0 6.25"
<class 'float'>
2.5 3.5 5.0 6.25

Note that unlike many languages, Python does not have unary increment (x++) or decrement (x–) operators.

Python also has built-in types for long integers and complex numbers; you can find all of the details in the documentation.

Booleans

Python implements all of the usual operators for Boolean logic, but uses English words rather than symbols (&&, ||, etc.):

t, f = True, False
print(type(t)) # Prints "<type 'bool'>"
<class 'bool'>

Now we let’s look at the operations:

print(t and f) # Logical AND;
print(t or f)  # Logical OR;
print(not t)   # Logical NOT;
print(t != f)  # Logical XOR;
False
True
False
True

Strings

hello = 'hello'   # String literals can use single quotes
world = "world"   # or double quotes; it does not matter.
print (hello, len(hello))
hello 5
hw = hello + ' ' + world  # String concatenation
print(hw)  # prints "hello world"
hello world
hw12 = '%s %s %d' % (hello, world, 12)  # sprintf style string formatting
print(hw12)  # prints "hello world 12"
hello world 12

String objects have a bunch of useful methods; for example:

s = "hello"
print(s.capitalize())  # Capitalize a string; prints "Hello"
print(s.upper())       # Convert a string to uppercase; prints "HELLO"
print(s.rjust(7))      # Right-justify a string, padding with spaces; prints "  hello"
print(s.center(7))     # Center a string, padding with spaces; prints " hello "
print(s.replace('l', '(ell)'))  # Replace all instances of one substring with another;# prints "he(ell)(ell)o"
print('  world '.strip())  # Strip leading and trailing whitespace; prints "world"
Hello
HELLOhellohello
he(ell)(ell)o
world

获取对象s的所有属性和方法

dir(s)
['__add__','__class__','__contains__','__delattr__','__dir__','__doc__','__eq__','__format__','__ge__','__getattribute__','__getitem__','__getnewargs__','__gt__','__hash__','__init__','__iter__','__le__','__len__','__lt__','__mod__','__mul__','__ne__','__new__','__reduce__','__reduce_ex__','__repr__','__rmod__','__rmul__','__setattr__','__sizeof__','__str__','__subclasshook__','capitalize','casefold','center','count','encode','endswith','expandtabs','find','format','format_map','index','isalnum','isalpha','isdecimal','isdigit','isidentifier','islower','isnumeric','isprintable','isspace','istitle','isupper','join','ljust','lower','lstrip','maketrans','partition','replace','rfind','rindex','rjust','rpartition','rsplit','rstrip','split','splitlines','startswith','strip','swapcase','title','translate','upper','zfill']

You can find a list of all string methods in the documentation.

Containers

Python includes several built-in container types: lists, dictionaries, sets, and tuples.

Lists

A list is the Python equivalent of an array, but is resizeable and can contain elements of different types:

xs = [3, 1, 2]   # Create a list
print(xs, xs[2])
print(xs[-1])     # Negative indices count from the end of the list; prints "2"
[3, 1, 2] 2
2
xs[2] = 'foo'    # Lists can contain elements of different types
print(xs)
[3, 1, 'foo']
xs.append('bar') # Add a new element to the end of the list
print(xs)  
[3, 1, 'foo', 'bar']
x = xs.pop()     # Remove and return the last element of the list
print(x, xs) 
bar [3, 1, 'foo']

As usual, you can find all the gory details about lists in the documentation.

Slicing

In addition to accessing list elements one at a time, Python provides concise syntax to access sublists; this is known as slicing:

nums = list(range(5))    # range is a built-in function that creates a list of integers
print(nums)         # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4])    # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print(nums[2:])     # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print(nums[:2])     # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print(nums[:])      # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"
print (nums[:-1])    # Slice indices can be negative; prints ["0, 1, 2, 3]"
nums[2:4] = [8, 9] # Assign a new sublist to a slice
print(nums)         # Prints "[0, 1, 8, 8, 4]"
[0, 1, 2, 3, 4]
[2, 3]
[2, 3, 4]
[0, 1]
[0, 1, 2, 3, 4]
[0, 1, 2, 3]
[0, 1, 8, 9, 4]

Loops

You can loop over the elements of a list like this:

animals = ['cat', 'dog', 'monkey']
for animal in animals:print(animal)
cat
dog
monkey

If you want access to the index of each element within the body of a loop, use the built-in enumerate function:

animals = ['cat', 'dog', 'monkey']
for idx, animal in enumerate(animals):print('#%d: %s' % (idx + 1, animal))
#1: cat
#2: dog
#3: monkey

List comprehensions:

When programming, frequently we want to transform one type of data into another. As a simple example, consider the following code that computes square numbers:

nums = [0, 1, 2, 3, 4]
squares = []
for x in nums:squares.append(x ** 2)
print(squares)
[0, 1, 4, 9, 16]

You can make this code simpler using a list comprehension:

nums = [0, 1, 2, 3, 4]
squares = [x ** 2 for x in nums]
print(squares)
[0, 1, 4, 9, 16]

List comprehensions can also contain conditions:

nums = [0, 1, 2, 3, 4]
even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares)
[0, 4, 16]

Dictionaries

A dictionary stores (key, value) pairs, similar to a Map in Java or an object in Javascript. You can use it like this:

d = {'cat': 'cute', 'dog': 'furry'}  # Create a new dictionary with some data
print(d['cat'])       # Get an entry from a dictionary; prints "cute"
print('cat' in d)     # Check if a dictionary has a given key; prints "True"
cute
True
d['fish'] = 'wet'    # Set an entry in a dictionary
print(d['fish'])      # Prints "wet"
wet
print(d['monkey'])  # KeyError: 'monkey' not a key of d
---------------------------------------------------------------------------KeyError                                  Traceback (most recent call last)<ipython-input-34-e3ac4f3aa8c2> in <module>()
----> 1 print(d['monkey'])  # KeyError: 'monkey' not a key of dKeyError: 'monkey'
print(d.get('monkey', 'N/A'))  # Get an element with a default; prints "N/A"
print(d.get('fish', 'N/A'))    # Get an element with a default; prints "wet"
N/A
wet
del(d['fish'])        # Remove an element from a dictionary
print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"
N/A

You can find all you need to know about dictionaries in the documentation.

It is easy to iterate over the keys in a dictionary:

d = {'person': 2, 'cat': 4, 'spider': 8}
for animal in d:legs = d[animal]print('A %s has %d legs' % (animal, legs))
A spider has 8 legs
A person has 2 legs
A cat has 4 legs

If you want access to keys and their corresponding values, use the iteritems method:

As you are in python3 , use dict.items() instead of dict.iteritems()

d = {'person': 2, 'cat': 4, 'spider': 8}
for animal, legs in d.items():print('A %s has %d legs' % (animal, legs))
A spider has 8 legs
A person has 2 legs
A cat has 4 legs
dir(d)
['__class__','__contains__','__delattr__','__delitem__','__dir__','__doc__','__eq__','__format__','__ge__','__getattribute__','__getitem__','__gt__','__hash__','__init__','__iter__','__le__','__len__','__lt__','__ne__','__new__','__reduce__','__reduce_ex__','__repr__','__setattr__','__setitem__','__sizeof__','__str__','__subclasshook__','clear','copy','fromkeys','get','items','keys','pop','popitem','setdefault','update','values']

Dictionary comprehensions: These are similar to list comprehensions, but allow you to easily construct dictionaries. For example:

nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)
{0: 0, 2: 4, 4: 16}

Sets

A set is an unordered collection of distinct elements. As a simple example, consider the following:

animals = {'cat', 'dog'}
print('cat' in animals)   # Check if an element is in a set; prints "True"
print('fish' in animals)  # prints "False"
True
False
animals.add('fish')      # Add an element to a set
print('fish' in animals)
print(len(animals))       # Number of elements in a set;
True
3
animals.add('cat')       # Adding an element that is already in the set does nothing
print(len(animals))
animals.remove('cat')    # Remove an element from a set
print(len(animals))       
3
2

Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are unordered, you cannot make assumptions about the order in which you visit the elements of the set:

animals = {'cat', 'dog', 'fish'}
for idx, animal in enumerate(animals):print('#%d: %s' % (idx + 1, animal))
print(animals)
# Prints "#1: fish", "#2: dog", "#3: cat"
#1: dog
#2: cat
#3: fish
{'dog', 'cat', 'fish'}

Set comprehensions: Like lists and dictionaries, we can easily construct sets using set comprehensions:

from math import sqrt
print({int(sqrt(x)) for x in range(30)})
{0, 1, 2, 3, 4, 5}

Tuples

A tuple is an (immutable) ordered list of values. A tuple is in many ways similar to a list;* one of the most important differences is that tuples can be used as keys in dictionaries and as elements of sets,* while lists cannot. Here is a trivial example:

d = {(x, x + 1): x for x in range(10)}  # Create a dictionary with tuple keys
print(d)
t = (5, 6)       # Create a tuple
print(type(t))
print(d[t])
print(d[(1, 2)])
{(0, 1): 0, (1, 2): 1, (5, 6): 5, (2, 3): 2, (4, 5): 4, (6, 7): 6, (8, 9): 8, (9, 10): 9, (3, 4): 3, (7, 8): 7}
<class 'tuple'>
5
1
t[0] = 1
---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)<ipython-input-51-0a69537257d5> in <module>()
----> 1 t[0] = 1TypeError: 'tuple' object does not support item assignment

Functions

Python functions are defined using the def keyword. For example:

def sign(x):if x > 0:return 'positive'elif x < 0:return 'negative'else:return 'zero'for x in [-1, 0, 1]:print(sign(x))
negative
zero
positive

We will often define functions to take optional keyword arguments, like this:

def hello(name, loud=False):if loud:print('HELLO, %s' % name.upper())else:print('Hello, %s!' % name)hello('Bob')
hello('Fred', loud=True)
Hello, Bob!
HELLO, FRED

Classes

The syntax for defining classes in Python is straightforward:

class Greeter:# Constructordef __init__(self, name):self.name = name  # Create an instance variable# Instance methoddef greet(self, loud=False):if loud:print('HELLO, %s!' % self.name.upper())else:print('Hello, %s' % self.name)g = Greeter('Fred')  # Construct an instance of the Greeter class
g.greet()            # Call an instance method; prints "Hello, Fred"
g.greet(loud=True)   # Call an instance method; prints "HELLO, FRED!"
Hello, Fred
HELLO, FRED!

Numpy

Numpy is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. If you are already familiar with MATLAB, you might find this tutorial useful to get started with Numpy.

To use Numpy, we first need to import the numpy package:

import numpy as np

Arrays

A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnegative integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of integers giving the size of the array along each dimension.

We can initialize numpy arrays from nested Python lists, and access elements using square brackets:

a = np.array([1, 2, 3])  # Create a rank 1 array
print(type(a), a.shape, a[0], a[1], a[2])
a[0] = 5                 # Change an element of the array
print(a)                  
<class 'numpy.ndarray'> (3,) 1 2 3
[5 2 3]
b = np.array([[1,2,3],[4,5,6]])   # Create a rank 2 array
print(b)
print(b.shape)
print(b[0, 0], b[0, 1], b[1, 0])
[[1 2 3][4 5 6]]
(2, 3)
1 2 4

Numpy also provides many functions to create arrays:

a = np.zeros((2,2))  # Create an array of all zeros
print(a)
b = np.ones((2,2))   # Create an array of all ones
print(b)
c = np.full((2,2), 7, dtype=int) # Create a constant array
print(c)
d = np.eye(2)        # Create a 2x2 identity matrix
print(d)
e = np.random.random((2,2)) # Create an array filled with random values
print(e)
[[ 0.  0.][ 0.  0.]]
[[ 1.  1.][ 1.  1.]]
[[7 7][7 7]]
[[ 1.  0.][ 0.  1.]]
[[ 0.92224366  0.84958801][ 0.10896701  0.05746813]]

Array indexing

Numpy offers several ways to index into arrays.

Slicing: Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimensional, you must specify a slice for each dimension of the array:

import numpy as np# Create the following rank 2 array with shape (3, 4)
# [[ 1  2  3  4]
#  [ 5  6  7  8]
#  [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
#  [6 7]]
b = a[:2, 1:3]
print(b)
[[2 3][6 7]]

A slice of an array is a view into the same data, so modifying it will modify the original array.

print(a[0, 1])
b[0, 0] = 77    # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1]) 
2
77

You can also mix integer indexing with slice indexing. However, doing so will yield an array of lower rank than the original array. Note that this is quite different from the way that MATLAB handles array slicing:

# Create the following rank 2 array with shape (3, 4)
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(a)
[[ 1  2  3  4][ 5  6  7  8][ 9 10 11 12]]

Two ways of accessing the data in the middle row of the array.
Mixing integer indexing with slices yields an array of lower rank,
while using only slices yields an array of the same rank as the
original array:

row_r1 = a[1, :]    # Rank 1 view of the second row of a
row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
row_r3 = a[[1], :]  # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)
print(row_r2, row_r2.shape)
print(row_r3, row_r3.shape)
[5 6 7 8] (4,)
[[5 6 7 8]] (1, 4)
[[5 6 7 8]] (1, 4)
# We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)
print(col_r2, col_r2.shape)
[ 2  6 10] (3,)
[[ 2][ 6][10]] (3, 1)

Integer array indexing: When you index into numpy arrays using slicing, the resulting array view will always be a subarray of the original array. In contrast, integer array indexing allows you to construct arbitrary arrays using the data from another array. Here is an example:

a = np.array([[1,2], [3, 4], [5, 6]])# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]])# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))
[1 4 5]
[1 4 5]
# When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]])# Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]]))
[2 2]
[2 2]

One useful trick with integer array indexing is selecting or mutating one element from each row of a matrix:

# Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
print(a)
[[ 1  2  3][ 4  5  6][ 7  8  9][10 11 12]]
# Create an array of indices
b = np.array([0, 2, 0, 1])# Select one element from each row of a using the indices in b
print(a[np.arange(4), b])  # Prints "[ 1  6  7 11]"
[ 1  6  7 11]
# Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10
print(a)
[[11  2  3][ 4  5 16][17  8  9][10 21 12]]

Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an array. Frequently this type of indexing is used to select the elements of an array that satisfy some condition. Here is an example:

import numpy as npa = np.array([[1,2], [3, 4], [5, 6]])bool_idx = (a > 2)  # Find the elements of a that are bigger than 2;# this returns a numpy array of Booleans of the same# shape as a, where each slot of bool_idx tells# whether that element of a is > 2.print(bool_idx)
[[False False][ True  True][ True  True]]
# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])# We can do all of the above in a single concise statement:
print(a[a > 2])
[3 4 5 6]
[3 4 5 6]

For brevity we have left out a lot of details about numpy array indexing; if you want to know more you should read the documentation.

Datatypes

Every numpy array is a grid of elements of the same type. Numpy provides a large set of numeric datatypes that you can use to construct arrays. Numpy tries to guess a datatype when you create an array, but functions that construct arrays usually also include an optional argument to explicitly specify the datatype. Here is an example:

x = np.array([1, 2])  # Let numpy choose the datatype
y = np.array([1.0, 2.0])  # Let numpy choose the datatype
z = np.array([1, 2], dtype=np.int64)  # Force a particular datatypeprint(x.dtype, y.dtype, z.dtype)
int32 float64 int64

You can read all about numpy datatypes in the documentation.

Array math

Basic mathematical functions operate elementwise on arrays, and are available both as operator overloads and as functions in the numpy module:

x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)# Elementwise sum; both produce the array
print(x + y)
print(np.add(x, y))
[[  6.   8.][ 10.  12.]]
[[  6.   8.][ 10.  12.]]
# Elementwise difference; both produce the array
print(x - y)
print(np.subtract(x, y))
[[-4. -4.][-4. -4.]]
[[-4. -4.][-4. -4.]]
# Elementwise product; both produce the array
print(x * y)
print(np.multiply(x, y))
[[  5.  12.][ 21.  32.]]
[[  5.  12.][ 21.  32.]]
# Elementwise division; both produce the array
# [[ 0.2         0.33333333]
#  [ 0.42857143  0.5       ]]
print(x / y)
print(np.divide(x, y))
[[ 0.2         0.33333333][ 0.42857143  0.5       ]]
[[ 0.2         0.33333333][ 0.42857143  0.5       ]]
# Elementwise square root; produces the array
# [[ 1.          1.41421356]
#  [ 1.73205081  2.        ]]
print(np.sqrt(x))
[[ 1.          1.41421356][ 1.73205081  2.        ]]

Note that unlike MATLAB, * is elementwise multiplication, not matrix multiplication. We instead use the dot function to compute inner products of vectors, to multiply a vector by a matrix, and to multiply matrices. dot is available both as a function in the numpy module and as an instance method of array objects:

np.dot(v,w)=[910]∗[1112]

np.dot(v, w) =\left[\begin{matrix}9 & 10\end{matrix}\right] * \left[\begin{matrix}11 \\12 \end{matrix}\right]

x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])v = np.array([9,10])
w = np.array([11, 12])# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))
219
219
np.dot(x,v)=[1324]∗[910]

np.dot(x, v) =\left[\begin{matrix}1 & 2 \\3 & 4 \\\end{matrix}\right] * \left[\begin{matrix}9 \\10 \end{matrix}\right]

# Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))
[29 67]
[29 67]
np.dot(x,y)=[1324]∗[5768]

np.dot(x, y) =\left[\begin{matrix}1 & 2 \\3 & 4 \\\end{matrix}\right] * \left[\begin{matrix}5 & 6 \\7 & 8 \\\end{matrix}\right]

# Matrix / matrix product; both produce the rank 2 array
# [[19 22]
#  [43 50]]
print(x.dot(y))
print(np.dot(x, y))
[[19 22][43 50]]
[[19 22][43 50]]

Numpy provides many useful functions for performing computations on arrays; one of the most useful is sum:

x = np.array([[1,2],[3,4]])print(np.sum(x))  # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0))  # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1))  # Compute sum of each row; prints "[3 7]"
10
[4 6]
[3 7]

You can find the full list of mathematical functions provided by numpy in the documentation.

Apart from computing mathematical functions using arrays, we frequently need to reshape or otherwise manipulate data in arrays. The simplest example of this type of operation is transposing a matrix; to transpose a matrix, simply use the T attribute of an array object:

print(x)
print(x.T)
[[1 2][3 4]]
[[1 3][2 4]]
v = np.array([1,2,3])
print(v)
print(v.T)
[1 2 3]
[1 2 3]

Broadcasting

Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes when performing arithmetic operations. Frequently we have a smaller array and a larger array, and we want to use the smaller array multiple times to perform some operation on the larger array.

For example, suppose that we want to add a constant vector to each row of a matrix. We could do it like this:

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x)   # Create an empty matrix with the same shape as x# Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):y[i, :] = x[i, :] + vprint(y)
[[ 2  2  4][ 5  5  7][ 8  8 10][11 11 13]]

This works; however when the matrix x is very large, computing an explicit loop in Python could be slow. Note that adding the vector v to each row of the matrix x is equivalent to forming a matrix vv by stacking multiple copies of v vertically, then performing elementwise summation of x and vv. We could implement this approach like this:

vv = np.tile(v, (4, 1))  # Stack 4 copies of v on top of each other
print(vv)                 # Prints "[[1 0 1]#          [1 0 1]#          [1 0 1]#          [1 0 1]]"
[[1 0 1][1 0 1][1 0 1][1 0 1]]
y = x + vv  # Add x and vv elementwise
print(y)
[[ 2  2  4][ 5  5  7][ 8  8 10][11 11 13]]

Numpy broadcasting allows us to perform this computation without actually creating multiple copies of v. Consider this version, using broadcasting:

import numpy as np# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v  # Add v to each row of x using broadcasting
print(y)
[[ 2  2  4][ 5  5  7][ 8  8 10][11 11 13]]

The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to broadcasting; this line works as if v actually had shape (4, 3), where each row was a copy of v, and the sum was performed elementwise.

Broadcasting two arrays together follows these rules:

  1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s until both shapes have the same length.
  2. The two arrays are said to be compatible in a dimension if they have the same size in the dimension, or if one of the arrays has size 1 in that dimension.
  3. The arrays can be broadcast together if they are compatible in all dimensions.
  4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum of shapes of the two input arrays.
  5. In any dimension where one array had size 1 and the other array had size greater than 1, the first array behaves as if it were copied along that dimension

If this explanation does not make sense, try reading the explanation from the documentation or this explanation.

Functions that support broadcasting are known as universal functions. You can find the list of all universal functions in the documentation.

Here are some applications of broadcasting:

# Compute outer product of vectors
v = np.array([1,2,3])  # v has shape (3,)
w = np.array([4,5])    # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:print(np.reshape(v, (3, 1)) * w)
[[ 4  5][ 8 10][12 15]]
# Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:print(x + v)
[[2 4 6][5 7 9]]
# Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:print((x.T + w).T)
[[ 5  6  7][ 9 10 11]]
# Another solution is to reshape w to be a row vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
print(x + np.reshape(w, (2, 1)))
[[ 5  6  7][ 9 10 11]]
# Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
print(x * 2)
[[ 2  4  6][ 8 10 12]]

Broadcasting typically makes your code more concise and faster, so you should strive to use it where possible.

This brief overview has touched on many of the important things that you need to know about numpy, but is far from complete. Check out the numpy reference to find out much more about numpy.

Matplotlib

Matplotlib is a plotting library. In this section give a brief introduction to the matplotlib.pyplot module, which provides a plotting system similar to that of MATLAB.

import matplotlib.pyplot as plt

By running this special iPython command, we will be displaying plots inline:

%matplotlib inline

Plotting

The most important function in matplotlib is plot, which allows you to plot 2D data. Here is a simple example:

# Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)# Plot the points using matplotlib
plt.plot(x, y)
[<matplotlib.lines.Line2D at 0x1b104708da0>]

With just a little bit of extra work we can easily plot multiple lines at once, and add a title, legend, and axis labels:

y_sin = np.sin(x)
y_cos = np.cos(x)# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
<matplotlib.legend.Legend at 0x1b104298e48>

Subplots

You can plot different things in the same figure using the subplot function. Here is an example:

# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)# Make the first plot
plt.plot(x, y_sin)
plt.title('Sine')# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')# Show the figure.
plt.show()

You can read much more about the subplot function in the documentation.

cs231n课程资料Python Numpy Tutorial的Python3版本相关推荐

  1. mac 安装python并切换到python3版本

    背景 一般情况下mac系统自带python2版本,但我们学习工作时用的都是python3,因此需要安装python3并且切换到python3版本. 一.安装python3 如果已安装过homebrew ...

  2. Python NumPy教程

    Welcome to Python NumPy tutorial. In our previous tutorial, we learned about Python switch case. In ...

  3. 【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)

    [CS231n]斯坦福大学李飞飞视觉识别课程笔记 由官方授权的CS231n课程笔记翻译知乎专栏--智能单元,比较详细地翻译了课程笔记,我这里就是参考和总结. [CS231n]斯坦福大学李飞飞视觉识别课 ...

  4. 【CS231n】斯坦福大学李飞飞视觉识别课程笔记(一):Python Numpy教程(1)

    最近开了一个新坑--[CS231n]斯坦福大学李飞飞视觉识别课程,准备认真学习并记录自己的学习历程. [CS231n]斯坦福大学李飞飞视觉识别课程笔记 由官方授权的CS231n课程笔记翻译知乎专栏-- ...

  5. python基础知识资料-Python基础知识快速学习系列视频课程

    Python 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年. Python是纯粹的自由软件, 源代码和解释器C ...

  6. imooc的疯狂的蚂蚁的课程《Python操作MySQL数据库》 python3+pymysql模块来操作mysql数据库

    以下代码为imooc的疯狂的蚂蚁的课程<Python操作MySQL数据库>的python3版本的代码,使用的是pymysql模块来操作mysql数据库,代码与原课程有所改动,注意运行时需要 ...

  7. python3 nonzero_浅谈python numpy中nonzero()的用法

    nonzero函数返回非零元素的目录. 返回值为元组, 两个值分别为两个维度, 包含了相应维度上非零元素的目录值. import numpy as np A = np.mat([[0,1,2,3,4, ...

  8. Python学习入门2:Python学习路线(课程大纲+Python视频教程+下载地址)

    Python学习路线(课程大纲+Python视频教程+下载地址) 目前Python已经成为最受欢迎的程序设计语言之一.Python的设计哲学是"优雅"."明确" ...

  9. ROS2网络课程资料分享2019.10.26

    目前,网络上主要的ROS2课程主要有: Constructsim:https://www.theconstructsim.com/robotigniteacademy_learnros/ros-cou ...

最新文章

  1. SRTP是如何工作的
  2. CloudCC:为企业业绩而生的CRM系统
  3. 点击定位到指定位置_以三菱PLC来举例说明相对定位与绝对定位指令
  4. mysql增删改查 dao_MYSQL 之 JDBC(七):增删改查(五) DAO设计模式
  5. Web三个域对象的区别
  6. sap.dfa.help.utils.adapters.hm.myadapter
  7. 安装mysql数据库要注意的
  8. (10.1)Python学习笔记二
  9. TensorflowSharp 简单使用与KNN识别MNIST流程
  10. python sanic_Sanic框架安装与简单入门示例
  11. 怎么把文件上传云服务器上,如何把文件上传到云服务器上
  12. NiFi-面向流程的大数据处理框架
  13. Codeforces Round 258(Div. 2)
  14. python成语接龙代码_Python实现成语接龙
  15. python如何制作exe文件_Python制作exe文件简单流程
  16. 事件修饰符(2) .prevent 阻止默认事件
  17. 汽车模具翼子板丨门轴侧棱线不顺的原因?附解决方案
  18. 数字化底层逻辑揭秘!探寻地产工程行业发展新范式
  19. ASP.NET MVC Liu_Cabbage 个人博客
  20. 示例-Luat示例-MQTT

热门文章

  1. 接耦与单元测试可测性
  2. 中国松针油市场趋势报告、技术动态创新及市场预测
  3. 如何直观理解AUC评价指标?
  4. Chrome 火焰图
  5. SAP SM30隐藏部分字段以及自动带出某些值
  6. Java 金额信息存储、精度运算及显示的处理
  7. 开源美狐美颜SDK功能代码分析
  8. ruby-下载图片,根据图片URL下载到本地
  9. 关于EI计算机视觉投稿
  10. Packet Tracer – 配置OSPF