1、概述

SDNE(Structural Deep Network Embedding)算法是发表在KDD-2016上的一篇文章,论文的下载地址为:

https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf

SDNE主要也是用来构建node embedding的,和之前介绍的node2vec发表在同年,但不过node2vec可以看作是deepwalk的扩展,而SDNE可以看作是LINE的扩展。

2、算法原理

SDNE和LINE中相似度的定义是一致的,同样是定义了一阶相似度和二阶相似度,一阶相似度衡量的是相邻的两个顶点对之间相似性,二阶相似度衡量的是,两个顶点他们的邻居集合的相似程度。

模型结构 如下:

SDNE模型结构

模型主要包括两个部分:无监督和有监督部分,其中:

  • 无监督部分是一个深度自编码器用来学习二阶相似度(上图中两侧部分)

  • 监督部分是一个拉普拉斯特征映射捕获一阶相似度(中间的橘黄色部分)

对于一阶相似度,损失函数定义如下:

该损失函数可以让图中的相邻的两个顶点对应的embedding vector在隐藏空间接近。

论文中还提到一阶相似度的损失函数还可以表示为:

其中:






  • 是图对应的拉普拉斯矩阵















  • 是图中顶点对应的度矩阵,




    是邻接矩阵,


























拉普拉斯矩阵是「图论」中重要的知识点,可以参考:

https://blog.csdn.net/qq_30159015/article/details/83271065

对于二阶相似度,损失函数定义如下:

















































这里使用图的邻接矩阵进行输入,对于第




个顶点,有












,每一个







都包含了顶点




的邻居结构信息,所以这样的重构过程能够使得结构相似的顶点具有相似的embedding表示向量。

但是现实中由于图都是稀疏的,邻接矩阵




中的非零元素是远远少于零元素的,那么对于神经网络来说只要全部输出0也能取得一个不错的效果,这不是我们想要的。为了解决这个问题,论文提出一种使用带权损失函数,对于非零元素具有更高的惩罚系数。修正后的损失函数为:

其中:






  • 为逐元素积
































  • ,若













    ,则













    ,否则















模型整体的优化目标为:

其中:













  • 为正则项,




    为控制一阶损失的参数,




    为控制正则化项的参数

3、实验

实验部分主要就是为了验证SDNE的效果要比其他的模型好,因此作者在5个数据集中进行了实验,分别为:

  • BLOGCATALOG

  • FLICKR

  • YOUTUBE

  • ARXIV GR-QC

  • 20-NEWSGROUP

这里选取的对比模型包括:

  • Deepwalk

  • LINE

  • GraRep

  • Laplacian Eigenmaps (LE)

  • Common Neighbor

实验评估的指标为:

  • precision@k:top k的精确度

  • Mean Average Precision (MAP):平均误差

  • Macro-F1:区分类别的F1-Score

  • Micro-F1 :不区分类别的F1-Score

Macro-F1和Micro-F1区别参考:https://zhuanlan.zhihu.com/p/64315175

4、代码实现

代码实现部分可以参考:https://github.com/xiaohan2012/sdne-keras

其中关于SDNE模型的定义部分为:

class SDNE():def __init__(self,graph,encode_dim,weight='weight',encoding_layer_dims=[],beta=2, alpha=2,l2_param=0.01):"""graph: nx.Graphencode_dim: int, length of inner most dimbeta: beta parameter under Equation 3alpha: weight of loss function on self.edges"""self.encode_dim = encode_dim#################### GRAPH STUFF###################self.graph = graphself.N = graph.number_of_nodes()self.adj_mat = nx.adjacency_matrix(self.graph).toarray()self.edges = np.array(list(self.graph.edges_iter()))# weights# default to 1weights = [graph[u][v].get(weight, 1.0)for u, v in self.graph.edges_iter()]self.weights = np.array(weights, dtype=np.float32)[:, None]if len(self.weights) == self.weights.sum():print('the graph is unweighted')##################### INPUT##################### one end of an edgeinput_a = Input(shape=(1,), name='input-a', dtype='int32')# the other end of an edgeinput_b = Input(shape=(1,), name='input-b', dtype='int32')edge_weight = Input(shape=(1,), name='edge_weight', dtype='float32')##################### network architecture####################encoding_layers = []decoding_layers = []embedding_layer = Embedding(output_dim=self.N, input_dim=self.N,trainable=False, input_length=1, name='nbr-table')# if you don't do this, the next step won't workembedding_layer.build((None,))embedding_layer.set_weights([self.adj_mat])encoding_layers.append(embedding_layer)encoding_layers.append(Reshape((self.N,)))# encodingencoding_layer_dims = [encode_dim]for i, dim in enumerate(encoding_layer_dims):layer = Dense(dim, activation='sigmoid',kernel_regularizer=regularizers.l2(l2_param),name='encoding-layer-{}'.format(i))encoding_layers.append(layer)# decodingdecoding_layer_dims = encoding_layer_dims[::-1][1:] + [self.N]for i, dim in enumerate(decoding_layer_dims):if i == len(decoding_layer_dims) - 1:activation = 'sigmoid'else:# activation = 'relu'activation = 'sigmoid'layer = Dense(dim, activation=activation,kernel_regularizer=regularizers.l2(l2_param),name='decoding-layer-{}'.format(i))decoding_layers.append(layer)all_layers = encoding_layers + decoding_layers##################### VARIABLES####################encoded_a = reduce(lambda arg, f: f(arg), encoding_layers, input_a)encoded_b = reduce(lambda arg, f: f(arg), encoding_layers, input_b)decoded_a = reduce(lambda arg, f: f(arg), all_layers, input_a)decoded_b = reduce(lambda arg, f: f(arg), all_layers, input_b)embedding_diff = Subtract()([encoded_a, encoded_b])# add weight to diffembedding_diff = Lambda(lambda x: x * edge_weight)(embedding_diff)##################### MODEL####################self.model = Model([input_a, input_b, edge_weight],[decoded_a, decoded_b, embedding_diff])reconstruction_loss = build_reconstruction_loss(beta)self.model.compile(optimizer='adadelta',loss=[reconstruction_loss, reconstruction_loss, edge_wise_loss],loss_weights=[1, 1, alpha])self.encoder = Model(input_a, encoded_a)# for pre-trainingself.decoder = Model(input_a, decoded_a)self.decoder.compile(optimizer='adadelta',loss=reconstruction_loss)def pretrain(self, **kwargs):"""pre-train the autoencoder without edges"""nodes = np.arange(self.graph.number_of_nodes())node_neighbors = self.adj_mat[nodes]self.decoder.fit(nodes[:, None],node_neighbors,shuffle=True,**kwargs)def train_data_generator(self, batch_size=32):# this can become quadratic if using densem = self.graph.number_of_edges()while True:for i in range(math.ceil(m / batch_size)):sel = slice(i*batch_size, (i+1)*batch_size)nodes_a = self.edges[sel, 0][:, None]nodes_b = self.edges[sel, 1][:, None]weights = self.weights[sel]neighbors_a = self.adj_mat[nodes_a.flatten()]neighbors_b = self.adj_mat[nodes_b.flatten()]# requires to have the same shape as embedding_diffdummy_output = np.zeros((nodes_a.shape[0], self.encode_dim))yield ([nodes_a, nodes_b, weights],[neighbors_a, neighbors_b, dummy_output])def fit(self, log=False, **kwargs):"""kwargs: keyword arguments passed to `model.fit`"""if log:callbacks = [keras.callbacks.TensorBoard(log_dir='./log', histogram_freq=0,write_graph=True, write_images=False)]else:callbacks = []callbacks += kwargs.get('callbacks', [])if 'callbacks' in kwargs:del kwargs['callbacks']if 'batch_size' in kwargs:batch_size = kwargs['batch_size']del kwargs['batch_size']gen = self.train_data_generator(batch_size=batch_size)else:gen = self.train_data_generator()self.model.fit_generator(gen,shuffle=True,callbacks=callbacks,pickle_safe=True,**kwargs)def get_node_embedding(self):"""return the node embeddings as 2D array, #nodes x dimension"""nodes = np.array(self.graph.nodes())[:, None]return self.encoder.predict(nodes)def save(self, path):self.model.save(path)

5、应用

以下内容参考:

https://developer.aliyun.com/article/419706

SDNE算法主要应用是电商场景的「凑单」,比如在618、双十一这样的场景中会有满200-30这样的场景,当用户加购的商品不足200时,会进行提示凑单。

其主要流程为:

  • 基于用户购买行为构建graph,节点:商品,边:商品间同时购买的行为,权重:同时购买的比重,可以是购买次数、购买时间、金额等feature

  • 基于权重Sampling(weighted walk)作为正样本的候选,负样本从用户非购买行为中随机抽样

  • embedding部分将无监督模型升级成有监督模型,将基于weighted walk采出来的序,构造成item-item的pair对,送给有监督模型(DNN)训练

  • 依据产出的embedding,计算item之间的相似度,生成item 的相似 item list

5.1、算法流程

整体算法的架构图为:

算法流程

5.1.1、构建Graph

上文提到,我们要挖掘商品间共同购买的关系(bundle mining),类似买了又买的问题,所以,我们构建的graph是带权重的商品网络,节点:商品,边:商品间共同购买的关系,权重:共同购买次数、购买时间。

构建Graph

5.1.2、Sampling

传统的方法,比如deep walk,它的Sampling本质上是有两部分,首先,通过random walk的方式进行游走截断,其次,在仍给word2vec中Skip-Gram模型进行embedding之前,用negative sampling的方式去构造样本;这种随机采样的方法会大概率的将热门节点采集为负样本,这种方式适用于语言模型,因为在自然语言中,热门的单词均为无用单词(比如he、she、it、is、the)。对于我们的商品网络,刚好相反,热门商品往往是最重要的样本,如果采用negative sampling的方式去构造样本,模型肯定是学不出来。因此,我们基于边的权重去采样(weighted walk),使采样尽量往热门节点方向游走,以下图为例:

Sample

举个例子来说,假设游走2步,从节点A出发,随机取下一个邻居节点时,如果是random walk算法,它会等概率的游走到B或C节点,但是我们的算法会以7/8的概率取节点C,再会以8/12的概率游走到节点D,最终很大概率上会采出来一条序walk=(A,C,D),对于原始graph,A和D是没有关联的,但是通过weighted walk,能够有效的挖掘出A和D的关系,算法详见:

算法流程

5.1.3、Embedding

上一部分介绍了如何构建了带权重的概率图,基于带权重的采样(weighted walk)作为正样本的候选,负样本从用户非购买行为中随机抽样;这一部分主要介绍embedding的部分,将基于weighted walk采出来的序,构造成item-item的pair对,送给embedding模型,我们构造了一个有监督embedding模型(DNN),规避无监督模型无法离线评估模型效果的问题。模型结构如下图。

Embedding产生

5.2、实现

5.2.1、离线

a)训练:离线模型在PAI平台上用tensorflow框架实现,抽取了历史50天的全网成交数据,大概抽取3000万节点,构建的graph,在odps graph平台做完weighted walk,产出2亿条样本,也就是item-item的pair对,训练至收敛需要2小时的时间

b)预测:从全网所有行为中,随机抽取几十亿条pair对,去做预测,给每对item pair预测一个score

c)上线:对每个种子商品取topN的bundle商品,打到搜索引擎的倒排和正排字段,从qp中取出每个用户的种子商品,基于倒排字段召回bundle商品,基于正排字段做bundle排序

5.2.2、实时

用户购买行为,日常和大促差异很大,为了能够实时的捕获用户实时行为,我们在porsche上建了一套实时计算bundle mining的流程:

a)数据预处理:在porsche上对用户实时日志进行收集,按离线的数据格式处理成实时的数据流

b)Sampling:发送给odps graph实时计算平台,构建graph,做weighted walk,生成序,再通过swift消息发出

c)Embedding:在porsche上做DNN模型训练和实时预测

d)数据后处理:计算item的topN的bundle item list,实时写到dump和引擎

更多干货请点击:

如何利用NLP与知识图谱处理长句理解?【免费下载】2021年6月热门报告盘点&下载【干货】电商知识图谱构建及搜索推荐场景下的应用DTC模式如何引领消费品牌企业实现创新.pdf(附下载链接)【干货】营销拓客思维导图24式.pdf比电影刺激多了,警匪大战,记录仪真实镜头!某视频APP推荐策略详细拆解(万字长文)

华为到底在研发怎样的核心技术?

2020年轻人性和爱调查报告.pdf(附下载链接)

【86年高清视频】西游记剧组春节晚会

【视频】未来10年,普通人的赚钱机会在哪里?

关注我们

省时查报告

专业、及时、全面的行研资料库

长按并识别关注

您的「在看」,我的动力????

论文|SDNE的算法原理、代码实现和在阿里凑单场景中的应用说明(附代码)相关推荐

  1. 论文|SDNE的算法原理、代码实现和在阿里凑单场景中的应用说明

    1.概述 SDNE(Structural Deep Network Embedding)算法是发表在KDD-2016上的一篇文章,论文的下载地址为:https://www.kdd.org/kdd201 ...

  2. 【机器学习】总结了九种机器学习集成分类算法(原理+代码)

    大家好,我是云朵君! 导读: 本文是分类分析(基于Python实现五大常用分类算法(原理+代码))第二部分,继续沿用第一部分的数据.会总结性介绍集成分类算法原理及应用,模型调参数将不在本次讨论范围内. ...

  3. 总结了九种机器学习集成分类算法(原理+代码)

    公众号后台回复"图书",了解更多号主新书内容作者:云朵君来源: 数据STUDIO 导读: 本文是分类分析(基于Python实现五大常用分类算法(原理+代码))第二部分,继续沿用第一 ...

  4. 阿里凑单算法首次公开!打包购商品挖掘系统解析

    阿里妹导读:你是否也曾遇到类似的情况--差5块钱就能包邮,跨店满400减50就少20怎么办?凑单作为购物券导购链路的一个重要环节,旨在帮助你找到合适的商品.如何在凑单场景突破找相似.发现惊喜的同时做到 ...

  5. 论文|LINE算法原理、代码实战和应用

    1 概述 LINE是2015年微软发表的一篇论文,其全称为: Large-scale Information Network Embedding.论文下载地址:https://arxiv.org/pd ...

  6. 论文|Node2vec算法原理、代码实战和在微信朋友圈的应用

    1 概述 Node2vec是2016年斯坦福教授 Jure Leskovec.Aditya Grover提出的论文,论文的下载链接为:https://arxiv.org/pdf/1607.00653. ...

  7. KNN 分类算法原理代码解析

    作者 | Charmve 来源 | 迈微AI研习社 k-最近邻算法是基于实例的学习方法中最基本的,先介绍基x`于实例学习的相关概念. 基于实例的学习 已知一系列的训练样例,很多学习方法为目标函数建立起 ...

  8. [SIGIR‘22]图对比推荐论文SimGCL/XSimGCL算法和代码简介

    Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation [SIGIR'22] 论 ...

  9. 基于Python实现五大常用分类算法(原理+代码)

    读: 在机器学习和统计中,分类算法通过对已知类别训练集的计算和分析,从中发现类别规则并预测新数据的类别.分类被认为是监督学习的一个实例,即学习可以获得正确识别的观察的训练集的情况. 实现分类的算法,特 ...

最新文章

  1. stylelint初体验
  2. 清华张学工团队入选“人类细胞图谱计划”首批项目
  3. 蓝桥杯_算法训练_ALGO10_集合运算
  4. CSS 选择器优先级与效率优化
  5. AspNetCore 启动地址配置详解
  6. 2.6 multimap
  7. 想赚钱,你对钱敏感么?
  8. 最适合人工智能开发的5种编程语言首选Python的原因
  9. mysql中如何批量删除冗余数据库_WordPress清理数据库中的冗余数据加速网站运行速度...
  10. 计算机怎么听音乐,电脑怎样听啪啪音乐圈?啪啪音乐圈电脑版怎么用?
  11. java unrar.jar下载_unrar.jar解压缩rar文件
  12. python画圣诞树代码解读_使用Python画了一棵圣诞树的实例代码
  13. python自动登录并提交表单_用python模拟登录(解析cookie + 解析html + 表单提交 + 验证码识别 + excel读写 + 发送邮件)...
  14. java(jdk 1.8 64位)连接中控考勤机
  15. mysql对时间范围的查询
  16. 如何设计IIR滤波器
  17. spring boot test 异常之 could not initialize proxy [*Money#31] - no Session
  18. 程序员别再迷茫,赚钱,方法比你想的更多
  19. matlab 梯度图像,快速计算matlab中图像的梯度
  20. ”真相是否只有一个?”麻省理工学院带你数据可视化分析假新闻

热门文章

  1. Python自动化测试-正则表达式解析
  2. python 身体BMI指数判断
  3. 近24小时以太坊上的DEX交易量超过150亿美元
  4. Uniswap 24小时交易量9.7亿美元,占以太坊上Dex总量的54%
  5. Filecoin网络目前总质押量约为2294万枚FIL
  6. SAP License:新总账的表结构
  7. SAP License:SAP 期初数据导入
  8. MySQL高级知识(一)——基础
  9. 保险后台管理系统/订单管理/保单管理/客户管理/咨询管理/保险原型/保单详情/客户详情/权限管理/部门管理/账号管理/保险系统原型/汽车保险后台管理系统/角色管理/咨询详情/axure原型/需求文档
  10. Hadoop前期准备--centos6.4