推荐b站视频:https://www.bilibili.com/video/BV1Ht411m7UP?p=5

回归分析(Regression toward mediocrity)-趋中回归

有人可能会好奇,为什么叫“回归”这个名称,它有什么具体含义?实际上,回归这种现象最早由英国生物统计学家高尔顿在研究父母亲和子女的遗传特性时所发现的一种有趣的现象:

身高这种遗传特性表现出“高个子父母,其子代身高也高于平均身高;但不见得比其父母更高,到一定程度后会往平均身高方向发生‘回归’”。 这种效应被称为“趋中回归”。

回归分析最早是19世纪末期高尔顿(Sir Francis Galton)所发展。高尔顿是生物统计学派的奠基人,他的表哥达尔文的巨著《物种起源》问世以后,触动他用统计方法研究智力进化问题,统计学上的“相关”和“回归”的概念也是高尔顿第一次使用的。

1855年,他发表了一篇“遗传的身高向平均数方向的回归”文章,分析儿童身高与父母身高之间的关系,发现父母的身高可以预测子女的身高,当父母越高或越矮时,子女的身高会比一般儿童高或矮,他将儿子与父母身高的这种现象拟合出一种线形关系。但是有趣的是:通过观察他注意到,尽管这是一种拟合较好的线形关系,但仍然存在例外现象:矮个的人的儿子比其父要高,身材较高的父母所生子女的身高将回降到人的平均身高。换句话说,当父母身高走向极端(或者非常高,或者非常矮)的人的子女,子女的身高不会象父母身高那样极端化,其身高要比父母们的身高更接近平均身高。高尔顿选用“回归”一词,把这一现象叫做“向平均数方向的 回归”(regression toward mediocrity)。

而关于父辈身高与子代身高的具体关系是如何的,高尔顿和他的学生K·Pearson观察了1078对夫妇,以每对夫妇的平均身高作为自变量,取他们的一个成年儿子的身高作为因变量,结果发现两者近乎一条直线,其回归 直线方程为:y^=33.73+0.516x ,这种趋势及回归方程表明父母身高每增加一个单位时,其成年儿子的身高平均增加0.516个单位。这样当然极端值就会向中心靠拢。

根据换算公式1英寸=0.0254米进行单位换算后可得:
y=0.8567 + 0.516x

import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
Test = pd.DataFrame({'父亲身高':[1.51, 1.64, 1.6, 1.73, 1.82, 1.87],'孩子身高':[1.63, 1.7, 1.71, 1.72, 1.76, 1.86]})Test = Test.sort_values('父亲身高')

通过观察我们发现随着父亲身高上涨孩子身高也随着上涨

plt.scatter(Test['父亲身高'], Test['孩子身高'])

我们可以通过公式构建一个身高的回归方程 y=ax+by=ax+by=ax+b

from sklearn.linear_model import LinearRegression
ans = []
Y = Test['孩子身高']
X = Test['父亲身高'].values.reshape(-1,1)
model = LinearRegression()
model.fit(X, Y)
#模型预测
test_pred = model.predict(X)
ans.append(model.intercept_)
ans.append(model.coef_[0])
print('使得经验误差函数 RD(h) 取最小值的参数为:{}'.format(ans))
plt.scatter(Test['父亲身高'], Test['孩子身高'],label='真实值')
plt.plot(Test['父亲身高'], Test['孩子身高'])
plt.scatter(Test['父亲身高'], test_pred,label='预测值')
plt.plot(Test['父亲身高'], test_pred)
plt.legend()
使得经验误差函数 RD(h) 取最小值的参数为:[0.8585439999999991, 0.5141333333333337]<matplotlib.legend.Legend at 0x11b04270588>


线性回归的数学推导主要涉及到以下几个知识点。

  • 利用矩阵的知识对线性公式进行整合
  • 误差项的分析
  • 似然函数的理解
  • 矩阵求偏导
  • 线性回归的最终求解

利用矩阵的知识对线性公式进行整合

当只有一个变量是一元线性函数,但是日常生活中不止有一个变量,可能是多个变量起作用,所以我们需要将多个变量组合在一起θ1x1+θ2x2+......+θnxn+b\theta _{1}x _{1}+\theta _{2}x _{2}+......+\theta _{n}x _{n}+bθ1​x1​+θ2​x2​+......+θn​xn​+b,其中b为截距,为了方便计算可以去掉,也可以进行转化,将b转化为θ0x0\theta _{0}x _{0}θ0​x0​,其中x0x _{0}x0​为1,将多项求和的式子,转换成矩阵的乘法的表达式,因为矩阵计算快且方便。

注:行列式计算
[θ1θ2...θn]⋅[x1,x2,...,xn]=∑θnxn=θTxn\begin{bmatrix}\theta _{1}\\ \theta _{2}\\ ...\\ \theta _{n}\end{bmatrix}\cdot \begin{bmatrix} x _{1},x _{2},...,x_{n}\end{bmatrix}=\sum\theta _{n}x _{n} = \theta ^{T}x _{n}⎣⎢⎢⎡​θ1​θ2​...θn​​⎦⎥⎥⎤​⋅[x1​,x2​,...,xn​​]=∑θn​xn​=θTxn​

∑\sum∑ 为求和符号

θT\theta ^{T}θT为转置

二:误差项的分析

简单线性回归模型定义: y=ax+b+εy=ax+b+\varepsilony=ax+b+ε

ε\varepsilonε实际得到的可贷款金额和预估的可贷款金额之间是有一定误差的,这个就是误差项

思考: 当d1+d2+d3+d4+d5+d6d_{1}+d_{2}+d_{3}+d_{4}+d_{5}+d_{6}d1​+d2​+d3​+d4​+d5​+d6​最小时是不是函数模拟效果最好?

所以我们构造目标函数:y=1n∑(yn−y^)y = \frac{1}{n} \sum(y_{n}-\widehat{y})y=n1​∑(yn​−y​),并且需要取绝对值,不然当数据正负为0时,也是最小值,
所以转变为y=1n∑(yn−y^)2y = \frac{1}{n} \sum(y_{n}-\widehat{y})^2y=n1​∑(yn​−y​)2 也就是y=1n∑(yn−θTxn)2y = \frac{1}{n} \sum(y_{n}-\theta ^{T}x _{n})^2y=n1​∑(yn​−θTxn​)2

我们只需要将y与x带入,就可以得到θ0\theta _{0}θ0​ 与θ1\theta _{1}θ1​ 的函数,如同所示

θ0\theta _{0}θ0​ 为截距

θ1\theta _{1}θ1​ 为斜率

凸函数意味着画出来看上去像山谷。且具有最小值,通过求偏导

from sympy import symbols, diff, solve
import numpy as np# 数据集 D
X = np.array([1.51, 1.64, 1.6, 1.73, 1.82, 1.87])
y = np.array([1.63, 1.7, 1.71, 1.72, 1.76, 1.86])# 构造经验误差函数
w, b = symbols('w b', real=True)
RDh = 0
for (xi, yi) in zip(X, y):RDh += (yi - (xi*w + b))**2
RDh *= 1/len(X)# 对 w 和 b 求偏导
eRDhw = diff(RDh, w)
eRDhb = diff(RDh, b)# 求解方程组
ans = solve((eRDhw, eRDhb), (w, b))
print('使得经验误差函数 RD(h) 取最小值的参数为:{}'.format(ans))
使得经验误差函数 RD(h) 取最小值的参数为:{w: 0.514133333333440, b: 0.858543999999819}

注:
w为 θ1\theta _{1}θ1​ b为 θ0\theta _{0}θ0​

Y = Test['孩子身高']
X = Test['父亲身高'].values.reshape(-1,1)
#模型预测
test_pred_jingyan = X*0.514133333333440 + 0.858543999999819plt.scatter(Test['父亲身高'], Test['孩子身高'],label='真实值')
plt.plot(Test['父亲身高'], Test['孩子身高'])
plt.scatter(Test['父亲身高'], test_pred,label='预测值')
plt.plot(Test['父亲身高'], test_pred)
plt.scatter(Test['父亲身高'], test_pred_jingyan,label='预测值_经验')
plt.plot(Test['父亲身高'], test_pred)
plt.legend()
<matplotlib.legend.Legend at 0x11b043716d8>


因为线性回归的经验误差函数是平方之和,所以本节介绍的求解该经验误差函数的最小值的方法被称为 最小平方法 国内各种教材中也常称为 最小二乘法 。

三 :似然函数的理解

补充:以概率的角度去解决问题

我们对勒让德的猜测,即最小二乘法,仍然抱有怀疑,万一这个猜测是错误的怎么办?

数学王子高斯(1777-1855)也像我们一样心存怀疑。 高斯换了一个思考框架,通过概率统计那一套来思考
每次的预测值与真实值x之间存在一个误差:
ε=y−y^\varepsilon = y -\widehat{y}ε=y−y​

这些误差最终会形成一个概率分布,只是现在不知道误差的概率分布是什么。假设概率密度函数为:p(ε)p(\varepsilon)p(ε)

再假设一个联合概率密度函数,这样方便把所有的所有数据利用起来

L(x)=p(ε1)p(ε2)...p(εn)L(x) = p(\varepsilon_{1})p(\varepsilon_{2})...p(\varepsilon_{n})L(x)=p(ε1​)p(ε2​)...p(εn​)

现在是不是需要将L(x)=p(ε1)p(ε2)...p(εn)L(x) = p(\varepsilon_{1})p(\varepsilon_{2})...p(\varepsilon_{n})L(x)=p(ε1​)p(ε2​)...p(εn​)最大就是最优结果,就会想到最大似然估计。

最大似然估计

我们假设硬币有两面,一面是“花”,一面是“字”。
一般来说,我们都觉得硬币是公平的,也就是“花”和“字”出现的概率是差不多的。
如果我扔了100次硬币,100次出现的都是“花”。
在这样的事实下,我觉得似乎硬币的参数不是公平的。你硬要说是公平的,那就是侮辱我的智商。
这种通过事实,反过来猜测硬币的情况,就是似然。

通过事实,推断出最有可能的硬币情况,就是最大似然估计。

因为L(x)L(x)L(x)是关于xxx的函数,并且也是一个概率密度函数,根据极大似然估计的思想,概率最大的最应该出现

当下面这个式子成立时,取得最大值:

ddxL(x)=0\frac{d}{dx}L(x)=0dxd​L(x)=0

然后高斯想,最小二乘法给出的答案是:

x=x‾=x1+x2+x3+x4+x55x=\overline{x}=\frac{x_1+x_2+x_3+x_4+x_5}{5}x=x=5x1​+x2​+x3​+x4​+x5​​
如果最小二乘法是对的,那么x=x‾x=\overline{x}x=x时应该取得最大值,即:

ddxL(x)∣x=x‾=0\frac{d}{dx}L(x)|_{x=\overline{x}}=0dxd​L(x)∣x=x​=0
好,现在可以来解这个微分方程了。最终得到:

p(ϵ)=1σ2πe−ϵ22σ2p(\epsilon)={1 \over \sigma\sqrt{2\pi} }\,e^{- {{\epsilon^2 \over 2\sigma^2}}}p(ϵ)=σ2π​1​e−2σ2ϵ2​
这是什么?这就是正态分布啊。
并且这还是一个充要条件:

x=x‾⟺p(ϵ)=1σ2πe−ϵ22σ2x=\overline{x}\iff p(\epsilon)={1 \over \sigma\sqrt{2\pi} }\,e^{- {{\epsilon^2 \over 2\sigma^2}}}x=x⟺p(ϵ)=σ2π​1​e−2σ2ϵ2​
也就是说,如果误差的分布是正态分布,那么最小二乘法得到的就是最有可能的值。

高斯分布的条件是独立且具有相同的分布,并且服从均值为0方差为θ2\theta ^{2}θ2的高斯分布

  • 独立:张三的父亲是张三的父亲,李四的父亲是李四的父亲
  • 同分布:衡量单位一样
  • 高斯分布 绝大多数的情况下,在一个的空间内浮动不大 ,身高有一个范围

    第二步,已经知道误差项是符合高斯分布的,所以误差项的概率值就是下面的式子。
    p(ϵ)=1σ2πe−ϵ22σ2p(\epsilon)={1 \over \sigma\sqrt{2\pi} }\,e^{- {{\epsilon^2 \over 2\sigma^2}}}p(ϵ)=σ2π​1​e−2σ2ϵ2​

其中ϵ=yn−θTxn\epsilon = y_{n}-\theta ^{T}x _{n}ϵ=yn​−θTxn​

这只是一个误差,需要将所有误差结合起来,组成联合概率,联合概率等于各个概率乘L(ε)=p(ε1)p(ε2)...p(εn)L(\varepsilon) = p(\varepsilon_{1})p(\varepsilon_{2})...p(\varepsilon_{n})L(ε)=p(ε1​)p(ε2​)...p(εn​),但是乘积的最大值无法获取,我们直接使用多个数相乘,转化成多个数相加的形式。取对数

注:
log(AB)=logA+logBlog(AB) = log^{A}+log^{B}log(AB)=logA+logB

因为似然函数是越大越好,似然函数的值和对数似然函数的值是成正比的,对值求对数,并不会影响到最后求极限的值。所以才敢进行对数处理。

logL(ϵ)=log∑1σ2πe−ϵ22σ2logL(\epsilon) = log\sum {1 \over \sigma\sqrt{2\pi} }\,e^{- {{\epsilon^2 \over 2\sigma^2}}}logL(ϵ)=log∑σ2π​1​e−2σ2ϵ2​

对上面的式子进行整合,得到



通过上面一系列推导,就把式子转化为最小二乘法的相关知识了

之后可以进行求偏导也可以使用梯度下降算法,寻找最优值

梯度下降算法

场景假设

个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低;因此,下山的路径就无法确定,必须利用自己周围的信息一步一步地找到下山的路。这个时候,便可利用梯度下降算法来帮助自己下山。怎么做呢,首先以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着下降方向走一步,然后又继续以当前位置为基准,再找最陡峭的地方,再走直到最后到达最低处;同理上山也是如此,只是这时候就变成梯度上升算法了

首先,我们有一个可微分的函数。这个函数就代表着一座山。我们的目标就是找到这个函数的最小值,也就是山底。根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!因为梯度的方向就是函数之变化最快的方向

当在最小值左边时,斜率为负数,向正方向移动,靠近最小值

当在最小值右边时,斜率为正数,向负方向移动,靠近最小值

注:

η\etaη

  • 学习率η\etaη 过大时,找不到最小值
  • 学习率η\etaη 过小时,速度太慢

θ\thetaθ

  • 当初始值θ\thetaθ 选取不合适时会陷入局部最优解

梯度下降法

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
二维问题的梯度下降法示例
"""
import math
import numpy as npdef func_2d(x):"""目标函数:param x: 自变量,二维向量:return: 因变量,标量"""return - math.exp(-(x[0] ** 2 + x[1] ** 2))def grad_2d(x):"""目标函数的梯度:param x: 自变量,二维向量:return: 因变量,二维向量"""deriv0 = 2 * x[0] * math.exp(-(x[0] ** 2 + x[1] ** 2))deriv1 = 2 * x[1] * math.exp(-(x[0] ** 2 + x[1] ** 2))return np.array([deriv0, deriv1])def gradient_descent_2d(grad, cur_x=np.array([0.1, 0.1]), learning_rate=0.01, precision=0.0001, max_iters=10000):"""二维问题的梯度下降法:param grad: 目标函数的梯度:param cur_x: 当前 x 值,通过参数可以提供初始值:param learning_rate: 学习率,也相当于设置的步长:param precision: 设置收敛精度:param max_iters: 最大迭代次数:return: 局部最小值 x*"""print(f"{cur_x} 作为初始值开始迭代...")for i in range(max_iters):grad_cur = grad(cur_x)if np.linalg.norm(grad_cur, ord=2) < precision:break  # 当梯度趋近为 0 时,视为收敛cur_x = cur_x - grad_cur * learning_rateprint("第", i, "次迭代:x 值为 ", cur_x)print("局部最小值 x =", cur_x)return cur_xif __name__ == '__main__':gradient_descent_2d(grad_2d, cur_x=np.array([1, -1]), learning_rate=0.2, precision=0.000001, max_iters=10000)
[ 1 -1] 作为初始值开始迭代...
第 0 次迭代:x 值为  [ 0.94586589 -0.94586589]
第 1 次迭代:x 值为  [ 0.88265443 -0.88265443]
第 2 次迭代:x 值为  [ 0.80832661 -0.80832661]
第 3 次迭代:x 值为  [ 0.72080448 -0.72080448]
第 4 次迭代:x 值为  [ 0.61880589 -0.61880589]
第 5 次迭代:x 值为  [ 0.50372222 -0.50372222]
第 6 次迭代:x 值为  [ 0.3824228 -0.3824228]
第 7 次迭代:x 值为  [ 0.26824673 -0.26824673]
第 8 次迭代:x 值为  [ 0.17532999 -0.17532999]
第 9 次迭代:x 值为  [ 0.10937992 -0.10937992]
第 10 次迭代:x 值为  [ 0.06666242 -0.06666242]
第 11 次迭代:x 值为  [ 0.04023339 -0.04023339]
第 12 次迭代:x 值为  [ 0.02419205 -0.02419205]
第 13 次迭代:x 值为  [ 0.01452655 -0.01452655]
第 14 次迭代:x 值为  [ 0.00871838 -0.00871838]
第 15 次迭代:x 值为  [ 0.00523156 -0.00523156]
第 16 次迭代:x 值为  [ 0.00313905 -0.00313905]
第 17 次迭代:x 值为  [ 0.00188346 -0.00188346]
第 18 次迭代:x 值为  [ 0.00113008 -0.00113008]
第 19 次迭代:x 值为  [ 0.00067805 -0.00067805]
第 20 次迭代:x 值为  [ 0.00040683 -0.00040683]
第 21 次迭代:x 值为  [ 0.0002441 -0.0002441]
第 22 次迭代:x 值为  [ 0.00014646 -0.00014646]
第 23 次迭代:x 值为  [ 8.78751305e-05 -8.78751305e-05]
第 24 次迭代:x 值为  [ 5.27250788e-05 -5.27250788e-05]
第 25 次迭代:x 值为  [ 3.16350474e-05 -3.16350474e-05]
第 26 次迭代:x 值为  [ 1.89810285e-05 -1.89810285e-05]
第 27 次迭代:x 值为  [ 1.13886171e-05 -1.13886171e-05]
第 28 次迭代:x 值为  [ 6.83317026e-06 -6.83317026e-06]
第 29 次迭代:x 值为  [ 4.09990215e-06 -4.09990215e-06]
第 30 次迭代:x 值为  [ 2.45994129e-06 -2.45994129e-06]
第 31 次迭代:x 值为  [ 1.47596478e-06 -1.47596478e-06]
第 32 次迭代:x 值为  [ 8.85578865e-07 -8.85578865e-07]
第 33 次迭代:x 值为  [ 5.31347319e-07 -5.31347319e-07]
第 34 次迭代:x 值为  [ 3.18808392e-07 -3.18808392e-07]
局部最小值 x = [ 3.18808392e-07 -3.18808392e-07]

线性回归代码实现

import sys
import os
import numpy as np
import pandas as pdfrom sklearn.model_selection import train_test_split#对数据集中的样本属性进行分割,制作X和Y矩阵
def feature_label_split(pd_data):#行数、列数row_cnt, column_cnt = pd_data.shape#生成新的X、Y矩阵X = np.empty([row_cnt, column_cnt-1])       #生成两个随机未初始化的矩阵Y = np.empty([row_cnt, 1])for i in range(0, row_cnt):row_array = redwine_data.iloc[i, ]X[i] = np.array(row_array[0:-1])Y[i] = np.array(row_array[-1])return X, Y#把特征数据进行标准化为均匀分布
def uniform_norm(X_in):X_max = X_in.max(axis=0)X_min = X_in.min(axis=0)X = (X_in-X_min)/(X_max-X_min)return X#线性回归模型
class linear_regression():def fit(self, train_X_in, train_Y, learning_rate=0.03, lamda=0.03, regularization="l2"):#样本个数、样本的属性个数case_cnt, feature_cnt = train_X_in.shape #X矩阵添加X0向量train_X = np.c_[train_X_in, np.ones(case_cnt, )]#初始化待调参数thetaself.theta = np.zeros([feature_cnt+1, 1])max_iter_num = sys.maxsize      #最多迭代次数 step = 0                        #当前已经迭代的次数pre_step = 0                    #上一次得到较好学习误差的迭代学习次数last_error_J = sys.maxsize      #上一次得到较好学习误差的误差函数值threshold_value = 1e-6          #定义在得到较好学习误差之后截止学习的阈值stay_threshold_times = 10       #定义在得到较好学习误差之后截止学习之前的学习次数for step in range(0, max_iter_num):#预测值pred = train_X.dot(self.theta)#损失函数J_theta = sum((pred-train_Y)**2) / (2*case_cnt)#更新参数thetaself.theta -= learning_rate*(lamda*self.theta + (train_X.T.dot(pred-train_Y))/case_cnt)          #检测损失函数的变化值,提前结束迭代if J_theta < last_error_J - threshold_value:last_error_J = J_thetapre_step = stepelif step - pre_step > stay_threshold_times:break#定期打印,方便用户观察变化 if step % 100 == 0:print("step %s: %.6f" % (step, J_theta))def predict(self, X_in):case_cnt = X_in.shape[0]X = np.c_[X_in, np.ones(case_cnt, )]pred = X.dot(self.theta)return pred#主函数
if __name__ == "__main__":#读取样本数据redwine_data = pd.read_csv("winequality-red.csv", sep=";")#样本数据进行X、Y矩阵分离X, Y = feature_label_split(redwine_data)#对X矩阵进行归一化unif_X = uniform_norm(X)#对样本数据进行训练集和测试集的划分unif_trainX, unif_testX, train_Y, test_Y = train_test_split(unif_X, Y, test_size=0.3, random_state=0)#模型训练model = linear_regression()model.fit(unif_trainX, train_Y, learning_rate=0.1)#模型预测test_pred = model.predict(unif_testX)test_pred_error = sum((test_pred-test_Y)**2) / (2*unif_testX.shape[0])print("Test error is %.6f" % (test_pred_error))
step 0: 16.308311
step 100: 0.330867
step 200: 0.306297
step 300: 0.295023
step 400: 0.289310
step 500: 0.286208
step 600: 0.284439
step 700: 0.283390
step 800: 0.282748
step 900: 0.282346
step 1000: 0.282087
step 1100: 0.281918
step 1200: 0.281806
step 1300: 0.281730
step 1400: 0.281679
step 1500: 0.281645
step 1600: 0.281621
step 1700: 0.281604
step 1800: 0.281593
Test error is 0.239596

官方文档解释

sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None, positive=False)

fit_intercept

默认为True,当为True时计算截距,Flase为不计算,一般不修改

normalize

当FIT_CHECTECTITS设置为False时,忽略此参数。如果为True,则在回归之前,通过减去均值并用L2-范数除以回归变量X将被规范化。如果您希望标准化,请在调用FIT之前使用StandardScaler,并使用Normalize=false。一般不修改

copy_X

如果为True,将复制X;否则为X。 否则,它可能会被覆盖。一般不修改

n_jobs

None表示1,-1表示使用所有处理器 一般不修改

positive

设置为True时,强制系数为正

案例

from sklearn.linear_model import LinearRegression
from sklearn.metrics import explained_variance_score
redwine_data = pd.read_csv("winequality-red.csv", sep=";")
redwine_data.head()
fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality
0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5
1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 5
2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 5
3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 6
4 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5
Y = redwine_data['quality']
del redwine_data['quality']
unif_X = redwine_data
## 训练集划分
unif_trainX, unif_testX, train_Y, test_Y = train_test_split(unif_X, Y, test_size=0.3, random_state=0)
## 模型校验
model = LinearRegression()
model.fit(unif_trainX, train_Y)
#模型预测
test_pred = model.predict(unif_testX)

均误差方(MSE)

指标解释:所有样本的样本误差的平方的均值

指标解读:均误差方越接近0,模型越准确

平均绝对误差(MAE)

指标解释:所有样本的样本误差的绝对值的均值

指标解读:平均绝对误差的单位与因变量单位一致,越接近0,模型越准确

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
print(f'mean squared error is: {mean_squared_error(test_Y,test_pred)}')
print(f'mean absolute error is: {mean_absolute_error(test_Y,test_pred)}')
mean squared error is: 0.4007803663750049
mean absolute error is: 0.4871262164592796

补充



机器学习十大经典算法——线性回归相关推荐

  1. 机器学习十大经典算法之岭回归和LASSO回归

    机器学习十大经典算法之岭回归和LASSO回归(学习笔记整理:https://blog.csdn.net/weixin_43374551/article/details/83688913

  2. 机器学习十大经典算法:深入浅出聊贝叶斯决策(贝叶斯公式,最小风险贝叶斯,最小错误贝叶斯)

    前言    常听人说,在学习一个东西时,如果能够深入浅出的讲给别人听,才算是真的懂了.最近正好在学模式识别,于是就用它来练笔了.贝叶斯决策(Bayes Decision) 是十大经典机器学习算法之一, ...

  3. pagerank数据集_机器学习十大经典算法-PageRank(附实践代码)

    Yo, yo, check it out. 保证看完不晕倒... 如果公式让你脑瓜疼,请忽略公式,或者忽略脑瓜. Kagging咖金:推荐系统之关联规则(附实践代码)​zhuanlan.zhihu.c ...

  4. 机器学习十大经典算法之决策树

    机器学习经典十大算法 机器学习/人工智能的子领域在过去几年越来越受欢迎.目前大数据在科技行业已经炙手可热,而基于大量数据来进行预测或者得出建议的机器学习无疑是非常强大的.一些最常见的机器学习例子,比如 ...

  5. 机器学习十大经典算法之KNN最近邻算法

    KNN简介 KNN(K-NearestNeighbor)是机器学习入门级的分类算法,非常简单.它实现将距离近的样本点划为同一类别:KNN中的K指的是近邻个数,也就是最近的K个点 :根据它距离最近的K个 ...

  6. 机器学习十大经典算法之K-Means聚类算法

    聚类介绍 聚类在机器学习,数据挖掘,模式识别,图像分析以及生物信息等领域有广泛的应用.聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都 ...

  7. 机器学习十大经典算法之逻辑回归

    逻辑回归简介 逻辑回归虽然名称有回归两字,但是用来做分类算法的,大家都熟悉线性回归,一般形式是Y=aX+bY=aX+bY=aX+b,y的取值范围是[-∞, +∞].因其简单而受到工业界的关注. Y的取 ...

  8. 机器学习十大经典算法

    本文介绍了机器学习新手需要了解的 10 大算法,包括线性回归.Logistic 回归.朴素贝叶斯.K 近邻算法等. 在机器学习中,有一种叫做「没有免费的午餐」的定理.简而言之,它指出没有任何一种算法对 ...

  9. 机器学习十大经典算法之随机森林

    随机森林简介 随机森林是机器学习一种常用的方法.它是以决策树为基础,用随机的方式排列建立的,森林里每个决策树之间都是没有关联的. 在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策 ...

  10. 机器学习十大经典算法之K-近邻算法(学习笔记整理)

    一.算法概述 K-近邻算法(k-Nearest Neighbor,KNN)是机器学习算法中最简单最容易理解的算法.该算法的思路是:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的 ...

最新文章

  1. DB2 V8,V9并存在同一 server 的处理
  2. selenium WebDriverException: Message: unknown error: DevToolsActivePort file doesnt exist
  3. mysql decode encode 乱码问题
  4. Django 序列化三种方式 对象 列表 元组
  5. hadoop学习01 网址收集
  6. c++的string转char*遇到的指针问题
  7. 使用Struts2,Hibernate和MySQL创建个人MusicManager Web应用程序的研讨会
  8. windbg命令集合
  9. 利用curl去hack他人博客
  10. cad菜单栏快捷键_教你如何用富怡服装CAD画男衬衫的结构设计
  11. WPS按Tab键无效果
  12. 运维工作的OKR愿景、战略和目标设计示例
  13. 《当幸福来敲门》观后感
  14. 无损检测行业市场发展机遇分析及市场规模竞争战略可行性研究预测
  15. pip清华源(清华大学国内镜像)安装地址
  16. 非微信官方网页解决方法
  17. 计算机无法ping打印机,打印机故障:测试页打印失败是否参阅打印疑难解答已或得帮助...
  18. 投影仪硬件边缘融合服务器,带你了解投影融合的边缘融合显示技术
  19. 阿里云盘内测申请_阿里云网盘强势来袭,内测资格速速申请
  20. wps 根据单元格值 设置单元格所在行 颜色(大于0 行红色 小于0 行xx色)

热门文章

  1. PostgreSQL数据库的安装与配置
  2. 实现简单的Console
  3. 美国称微软在华雇佣数百童工 中方调查否认
  4. 【react】XXX项目创建这个过程
  5. Ubuntu命令整理
  6. 查看windows电脑CPU核心数,线程数
  7. freemarker数值格式化
  8. day 69 orm操作之表关系,多对多,多对一(wusir总结官网的API)
  9. 如何安装 罗技“优联技术”无线鼠标、无线键盘?
  10. tomcat中server.xml文件解析