官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对 pandas 的一个简单的介绍,详细的介绍请参考:秘籍 。习惯上,我们会按下面格式引入所需要的包:

In [1]: import pandas as pdIn [2]: import numpy as npIn [3]: import matplotlib.pyplot as plt

一、 创建对象

可以通过 数据结构入门 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Series,pandas 会默认创建整型索引:

In [4]: s = pd.Series([1,3,5,np.nan,6,8])In [5]: s
Out[5]:
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

2、通过传递一个 numpyarray,时间索引以及列标签来创建一个DataFrame

In [6]: dates = pd.date_range('20130101', periods=6)In [7]: dates
Out[7]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04','2013-01-05', '2013-01-06'],dtype='datetime64[ns]', freq='D')In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))In [9]: df
Out[9]: A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame

In [10]: df2 = pd.DataFrame({ 'A' : 1.,....:                      'B' : pd.Timestamp('20130102'),....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),....:                      'D' : np.array([3] * 4,dtype='int32'),....:                      'E' : pd.Categorical(["test","train","test","train"]),....:                      'F' : 'foo' })....: In [11]: df2
Out[11]: A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo

4、查看不同列的数据类型:

In [12]: df2.dtypes
Out[12]:
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

5、如果你使用的是 IPython,使用 Tab 自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:

In [13]: df2.<TAB>
df2.A                  df2.boxplot
df2.abs                df2.C
df2.add                df2.clip
df2.add_prefix         df2.clip_lower
df2.add_suffix         df2.clip_upper
df2.align              df2.columns
df2.all                df2.combine
df2.any                df2.combineAdd
df2.append             df2.combine_first
df2.apply              df2.combineMult
df2.applymap           df2.compound
df2.as_blocks          df2.consolidate
df2.asfreq             df2.convert_objects
df2.as_matrix          df2.copy
df2.astype             df2.corr
df2.at                 df2.corrwith
df2.at_time            df2.count
df2.axes               df2.cov
df2.B                  df2.cummax
df2.between_time       df2.cummin
df2.bfill              df2.cumprod
df2.blocks             df2.cumsum
df2.bool               df2.D

二、 查看数据

详情请参阅:基础。

1、 查看DataFrame中头部和尾部的行:

In [14]: df.head()
Out[14]: A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401In [15]: df.tail(3)
Out[15]: A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

2、 显示索引、列和底层的 numpy 数据:

In [16]: df.index
Out[16]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04','2013-01-05', '2013-01-06'],dtype='datetime64[ns]', freq='D')In [17]: df.columns
Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object')In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],[ 1.2121, -0.1732,  0.1192, -1.0442],[-0.8618, -2.1046, -0.4949,  1.0718],[ 0.7216, -0.7068, -1.0396,  0.2719],[-0.425 ,  0.567 ,  0.2762, -1.0874],[-0.6737,  0.1136, -1.4784,  0.525 ]])

3、 describe()函数对于数据的快速统计汇总:

In [19]: df.describe()
Out[19]: A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804

4、 对数据的转置:

In [20]: df.T
Out[20]: 2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

5、 按轴进行排序

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: D         C         B         A
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690

6、 按值进行排序

In [22]: df.sort_values(by='B')
Out[22]: A         B         C         D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

三、 选择

虽然标准的 Python/Numpy 的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的 pandas 数据访问方式: .at.iat.loc.iloc 和 .ix。详情请参阅索引和选取数据 和 多重索引/高级索引。

获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A

In [23]: df['A']
Out[23]:
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D, Name: A, dtype: float64

2、 通过[]进行选择,这将会对行进行切片

In [24]: df[0:3]
Out[24]: A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804In [25]: df['20130102':'20130104']
Out[25]: A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

通过标签选择

1、 使用标签来获取一个交叉的区域

In [26]: df.loc[dates[0]]
Out[26]:
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

2、 通过标签来在多个轴上进行选择

In [27]: df.loc[:,['A','B']]
Out[27]: A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

3、 标签切片

In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]: A         B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771

4、 对于返回的对象进行维度缩减

In [29]: df.loc['20130102',['A','B']]
Out[29]:
A    1.212112
B   -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

5、 获取一个标量

In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

6、 快速访问一个标量(与上一个方法等价)

In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

通过位置选择

1、 通过传递数值进行位置选择(选择的是行)

In [32]: df.iloc[3]
Out[32]:
A    0.721555
B   -0.706771
C   -1.039575
D    0.271860
Name: 2013-01-04 00:00:00, dtype: float64

2、 通过数值进行切片,与 numpy/python 中的情况类似

In [33]: df.iloc[3:5,0:2]
Out[33]: A         B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020

3、 通过指定一个位置的列表,与 numpy/python 中的情况类似

In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]: A         C
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232

4、 对行进行切片

In [35]: df.iloc[1:3,:]
Out[35]: A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

5、 对列进行切片

In [36]: df.iloc[:,1:3]
Out[36]: B         C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427

6、 获取特定的值

In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858

快速访问标量(等同于前一个方法):

In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858

布尔索引

1、 使用一个单独列的值来选择数据:

In [39]: df[df.A > 0]
Out[39]: A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2、 使用where操作来选择数据:

In [40]: df[df > 0]
Out[40]: A         B         C         D
2013-01-01  0.469112       NaN       NaN       NaN
2013-01-02  1.212112       NaN  0.119209       NaN
2013-01-03       NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05       NaN  0.567020  0.276232       NaN
2013-01-06       NaN  0.113648       NaN  0.524988

3、 使用isin()方法来过滤:

In [41]: df2 = df.copy()In [42]: df2['E'] = ['one', 'one','two','three','four','three']In [43]: df2
Out[43]: A         B         C         D      E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  threeIn [44]: df2[df2['E'].isin(['two','four'])]
Out[44]: A         B         C         D     E
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

设置

1、 设置一个新的列:

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))In [46]: s1
Out[46]:
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64In [47]: df['F'] = s1

2、 通过标签设置新的值:

In [48]: df.at[dates[0],'A'] = 0

3、 通过位置设置新的值:

In [49]: df.iat[0,1] = 0

4、 通过一个numpy数组设置一组新值:

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

上述操作结果如下:

In [51]: df
Out[51]: A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059  5  NaN
2013-01-02  1.212112 -0.173215  0.119209  5  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0
2013-01-05 -0.424972  0.567020  0.276232  5  4.0
2013-01-06 -0.673690  0.113648 -1.478427  5  5.0

5、 通过where操作来设置新的值:

In [52]: df2 = df.copy()In [53]: df2[df2 > 0] = -df2In [54]: df2
Out[54]: A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059 -5  NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

四、 缺失值处理

在 pandas 中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:缺失的数据。

1、 reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])In [56]: df1.loc[dates[0]:dates[1],'E'] = 1In [57]: df1
Out[57]: A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

2、 去掉包含缺失值的行:

In [58]: df1.dropna(how='any')
Out[58]: A         B         C  D    F    E
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

3、 对缺失值进行填充:

In [59]: df1.fillna(value=5)
Out[59]: A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0

4、 对数据进行布尔填充:

n [60]: pd.isnull(df1)
Out[60]: A      B      C      D      F      E
2013-01-01  False  False  False  False   True  False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True

五、 相关操作

详情请参与 基本的二进制操作

统计(相关操作通常情况下不包括缺失值)

1、 执行描述性统计:

In [61]: df.mean()
Out[61]:
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64

2、 在其他轴上进行相同的操作:

In [62]: df.mean(1)
Out[62]:
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D, dtype: float64

3、 对于拥有不同维度,需要对齐的对象进行操作。Pandas 会自动的沿着指定的维度进行广播:

In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)In [64]: s
Out[64]:
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64In [65]: df.sub(s, axis='index')
Out[65]: A         B         C    D    F
2013-01-01       NaN       NaN       NaN  NaN  NaN
2013-01-02       NaN       NaN       NaN  NaN  NaN
2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0
2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0
2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0
2013-01-06       NaN       NaN       NaN  NaN  NaN

Apply

1、 对数据应用函数:

In [66]: df.apply(np.cumsum)
Out[66]: A         B         C   D     F
2013-01-01  0.000000  0.000000 -1.509059   5   NaN
2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A    2.073961
B    2.671590
C    1.785291
D    0.000000
F    4.000000
dtype: float64

直方图

具体请参照:直方图和离散化。

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))In [69]: s
Out[69]:
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int64In [70]: s.value_counts()
Out[70]:
4    5
6    2
2    2
1    1
dtype: int64

字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:字符串向量化方法。

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])In [72]: s.str.lower()
Out[72]:
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

六、 合并

Pandas 提供了大量的方法能够轻松的对SeriesDataFramePanel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:合并。

Concat

In [73]: df = pd.DataFrame(np.random.randn(10, 4))In [74]: df
Out[74]: 0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]In [76]: pd.concat(pieces)
Out[76]: 0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

Join

类似于 SQL 类型的合并,具体请参阅:数据库风格的连接

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})In [79]: left
Out[79]: key  lval
0  foo     1
1  foo     2In [80]: right
Out[80]: key  rval
0  foo     4
1  foo     5In [81]: pd.merge(left, right, on='key')
Out[81]: key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

另一个例子:

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})In [84]: left
Out[84]: key  lval
0  foo     1
1  bar     2In [85]: right
Out[85]: key  rval
0  foo     4
1  bar     5In [86]: pd.merge(left, right, on='key')
Out[86]: key  lval  rval
0  foo     1     4
1  bar     2     5

Append

将一行连接到一个DataFrame上,具体请参阅附加:

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])In [88]: df
Out[88]: A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758In [89]: s = df.iloc[3]In [90]: df.append(s, ignore_index=True)
Out[90]: A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
8  1.453749  1.208843 -0.080952 -0.264610

七、 分组

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

  • (Splitting)按照一些规则将数据分为不同的组;

  • (Applying)对于每组数据分别执行一个函数;

  • (Combining)将结果组合到一个数据结构中;

详情请参阅:Grouping section

In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',....:                           'foo', 'bar', 'foo', 'foo'],....:                    'B' : ['one', 'one', 'two', 'three',....:                           'two', 'two', 'one', 'three'],....:                    'C' : np.random.randn(8),....:                    'D' : np.random.randn(8)})....: In [92]: df
Out[92]: A      B         C         D
0  foo    one -1.202872 -0.055224
1  bar    one -1.814470  2.395985
2  foo    two  1.018601  1.552825
3  bar  three -0.595447  0.166599
4  foo    two  1.395433  0.047609
5  bar    two -0.392670 -0.136473
6  foo    one  0.007207 -0.561757
7  foo  three  1.928123 -1.623033

1、 分组并对每个分组执行sum函数:

In [93]: df.groupby('A').sum()
Out[93]: C        D
A
bar -2.802588  2.42611
foo  3.146492 -0.63958

2、 通过多个列进行分组形成一个层次索引,然后执行函数:

In [94]: df.groupby(['A','B']).sum()
Out[94]: C         D
A   B
bar one   -1.814470  2.395985three -0.595447  0.166599two   -0.392670 -0.136473
foo one   -1.195665 -0.616981three  1.928123 -1.623033two    2.414034  1.600434

八、 改变形状

详情请参阅 层次索引 和 改变形状。

Stack

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',....:                      'foo', 'foo', 'qux', 'qux'],....:                     ['one', 'two', 'one', 'two',....:                      'one', 'two', 'one', 'two']]))....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])In [98]: df2 = df[:4]In [99]: df2
Out[99]: A         B
first second
bar   one     0.029399 -0.542108two     0.282696 -0.087302
baz   one    -1.575170  1.771208two     0.816482  1.100230
In [100]: stacked = df2.stack()In [101]: stacked
Out[101]:
first  second
bar    one     A    0.029399B   -0.542108two     A    0.282696B   -0.087302
baz    one     A   -1.575170B    1.771208two     A    0.816482B    1.100230
dtype: float64
In [102]: stacked.unstack()
Out[102]: A         B
first second
bar   one     0.029399 -0.542108two     0.282696 -0.087302
baz   one    -1.575170  1.771208two     0.816482  1.100230In [103]: stacked.unstack(1)
Out[103]:
second        one       two
first
bar   A  0.029399  0.282696B -0.542108 -0.087302
baz   A -1.575170  0.816482B  1.771208  1.100230In [104]: stacked.unstack(0)
Out[104]:
first          bar       baz
second
one    A  0.029399 -1.575170B -0.542108  1.771208
two    A  0.282696  0.816482B -0.087302  1.100230

数据透视表

详情请参阅:数据透视表.

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,.....:                    'B' : ['A', 'B', 'C'] * 4,.....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,.....:                    'D' : np.random.randn(12),.....:                    'E' : np.random.randn(12)}).....: In [106]: df
Out[106]: A  B    C         D         E
0     one  A  foo  1.418757 -0.179666
1     one  B  foo -1.879024  1.291836
2     two  C  foo  0.536826 -0.009614
3   three  A  bar  1.006160  0.392149
4     one  B  bar -0.029716  0.264599
5     one  C  bar -1.146178 -0.057409
6     two  A  foo  0.100900 -1.425638
7   three  B  foo -1.035018  1.024098
8     one  C  foo  0.314665 -0.106062
9     one  A  bar -0.773723  1.824375
10    two  B  bar -1.170653  0.595974
11  three  C  bar  0.648740  1.167115

可以从这个数据中轻松的生成数据透视表:

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
C             bar       foo
A     B
one   A -0.773723  1.418757B -0.029716 -1.879024C -1.146178  0.314665
three A  1.006160       NaNB       NaN -1.035018C  0.648740       NaN
two   A       NaN  0.100900B -1.170653       NaNC       NaN  0.536826

九、 时间序列

Pandas 在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:时间序列。

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)In [110]: ts.resample('5Min').sum()
Out[110]:
2012-01-01    25083
Freq: 5T, dtype: int64

1、 时区表示:

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)In [113]: ts
Out[113]:
2012-03-06    0.464000
2012-03-07    0.227371
2012-03-08   -0.496922
2012-03-09    0.306389
2012-03-10   -2.290613
Freq: D, dtype: float64In [114]: ts_utc = ts.tz_localize('UTC')In [115]: ts_utc
Out[115]:
2012-03-06 00:00:00+00:00    0.464000
2012-03-07 00:00:00+00:00    0.227371
2012-03-08 00:00:00+00:00   -0.496922
2012-03-09 00:00:00+00:00    0.306389
2012-03-10 00:00:00+00:00   -2.290613
Freq: D, dtype: float64

2、 时区转换:

In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]:
2012-03-05 19:00:00-05:00    0.464000
2012-03-06 19:00:00-05:00    0.227371
2012-03-07 19:00:00-05:00   -0.496922
2012-03-08 19:00:00-05:00    0.306389
2012-03-09 19:00:00-05:00   -2.290613
Freq: D, dtype: float64

3、 时间跨度转换:

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)In [119]: ts
Out[119]:
2012-01-31   -1.134623
2012-02-29   -1.561819
2012-03-31   -0.260838
2012-04-30    0.281957
2012-05-31    1.523962
Freq: M, dtype: float64In [120]: ps = ts.to_period()In [121]: ps
Out[121]:
2012-01   -1.134623
2012-02   -1.561819
2012-03   -0.260838
2012-04    0.281957
2012-05    1.523962
Freq: M, dtype: float64In [122]: ps.to_timestamp()
Out[122]:
2012-01-01   -1.134623
2012-02-01   -1.561819
2012-03-01   -0.260838
2012-04-01    0.281957
2012-05-01    1.523962
Freq: MS, dtype: float64

4、 时期和时间戳之间的转换使得可以使用一些方便的算术函数。

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9In [126]: ts.head()
Out[126]:
1990-03-01 09:00   -0.902937
1990-06-01 09:00    0.068159
1990-09-01 09:00   -0.057873
1990-12-01 09:00   -0.368204
1991-03-01 09:00   -1.144073
Freq: H, dtype: float64

十、 Categorical

从 0.15 版本开始,pandas 可以在DataFrame中支持 Categorical 类型的数据,详细 介绍参看:Categorical 简介和API documentation

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

1、 将原始的grade转换为 Categorical 数据类型:

In [128]: df["grade"] = df["raw_grade"].astype("category")In [129]: df["grade"]
Out[129]:
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

2、 将 Categorical 类型数据重命名为更有意义的名称:

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

3、 对类别进行重新排序,增加缺失的类别:

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])In [132]: df["grade"]
Out[132]:
0    very good
1         good
2         good
3    very good
4    very good
5     very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

4、 排序是按照 Categorical 的顺序进行的而不是按照字典顺序进行:

In [133]: df.sort_values(by="grade")
Out[133]: id raw_grade      grade
5   6         e   very bad
1   2         b       good
2   3         b       good
0   1         a  very good
3   4         a  very good
4   5         a  very good

5、 对 Categorical 列进行排序时存在空的类别:

In [134]: df.groupby("grade").size()
Out[134]:
grade
very bad     1
bad          0
medium       0
good         2
very good    3
dtype: int64

十一、 画图

具体文档参看:绘图文档。

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))In [136]: ts = ts.cumsum()In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2ab2af550>

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,.....:                   columns=['A', 'B', 'C', 'D']).....: In [139]: df = df.cumsum()In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[140]: <matplotlib.legend.Legend at 0x7ff29c8163d0>

十二、 导入和保存数据

CSV

参考:写入 CSV 文件。

1、 写入 csv 文件:

In [141]: df.to_csv('foo.csv')

2、 从 csv 文件中读取:

In [142]: pd.read_csv('foo.csv')
Out[142]: Unnamed: 0          A          B         C          D
0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
..          ...        ...        ...       ...        ...
993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368[1000 rows x 5 columns]

HDF5

参考:HDF5 存储

1、 写入 HDF5 存储:

In [143]: df.to_hdf('foo.h5','df')

2、 从 HDF5 存储中读取:

In [144]: pd.read_hdf('foo.h5','df')
Out[144]: A          B         C          D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               ...        ...       ...        ...
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368[1000 rows x 4 columns]

Excel

参考:MS Excel

1、 写入excel文件:

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

2、 从excel文件中读取:

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[146]: A          B         C          D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               ...        ...       ...        ...
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368[1000 rows x 4 columns]

十三、陷阱

如果你尝试某个操作并且看到如下异常:

>>> if pd.Series([False, True, False]):print("I was true")
Traceback...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

解释及处理方式请见比较。

同时请见陷阱。

十分钟搞定 pandas相关推荐

  1. 十分钟搞定pandas(官方学习文档的译文)

    python pandas的官方学习文档,学习pandas库必看 http://python.jobbole.com/84416/

  2. 十分钟搞定pandas+实战

    https://pyzh.readthedocs.io/en/latest/python-pandas.html#id42

  3. python使用教程pandas-十分钟搞定pandas(入门教程)

    本文是对pandas官方网站上<10Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯上 ...

  4. JeecgBoot 单体升级微服务快速方案(十分钟搞定)

    JeecgBoot 单体升级微服务方案(十分钟搞定) 当前系统分为system.demo 等模块,现有需求把每个模块单独启动作为微服务应用,故而推出新版boot[20200812beta],支持快速切 ...

  5. 逗号后面统一加空格_十分钟搞定字幕,教你做加字幕的“快手菜”

    平台上许多同学有疑问:做视频是否有加字幕的必要呢? 其实除了外语需要翻译.语速过快加字幕方便理解.普通话不标准等情况之外,还是建议有余力的同学可以加上字幕,提升用户的观看体验. 那么问题来了,存在以下 ...

  6. 全网最简单的C# json数据解析 无敌菜鸟教程 十分钟搞定json数据解析

    全网最简单的C# json数据解析 无敌菜鸟教程 十分钟搞定json数据解析 废话先说一点,算了.直接进入正题吧. 用例子说话: JSON数据: string json: " {" ...

  7. JAVA微信企业付款到零钱(十分钟搞定),附完整DEMO下载

    最近帮朋友做了一个简单的微分销系统,实现从企业付款到零钱分润的功能,简单记录一下微信提现功能开发的流程, 主要就是按规则封装好请求参数调用微信接口,涉及一些签名校验: A.接口流程 获取用户OPENI ...

  8. java 分组报表_【Java】分组报表怎么做,积木报表十分钟搞定!

    首页 专栏 java 文章详情 0 分组报表怎么做,积木报表十分钟搞定! scott发布于 今天 12:24 报表需求 某大型超市需要做一张年度区域销售统计报表 展示2019和2020年度各地区每月的 ...

  9. java零钱换整程序_JAVA微信企业付款到零钱(十分钟搞定),

    JAVA微信企业付款到零钱(十分钟搞定), 最近帮朋友做了一个简单的微分销系统,实现从企业付款到零钱分润的功能,简单记录一下微信企业付款到零钱的开发过程, 主要就是按规则封装好请求参数调用微信接口,涉 ...

最新文章

  1. WPF之坑——ICommandSource与RoutedUICommand
  2. Windows内核原理-同步IO与异步IO
  3. html写出五个文本标签,HTML的几个常用标签
  4. SQL中的函数 •Aggregate 函数 •Scalar 函数
  5. chrome扩展之4(终结篇):一步步跟我学开发一个表单填写扩展
  6. iphone开发常用代码
  7. python3访问map
  8. 决策树 结构_如何快速简单的理解决策树的概念?
  9. linux shell读取文件,shell脚本中读取文件的方法
  10. 微信小程序开发得会议扫码签到系统
  11. linux性能监控工具-nmon安装使用详细教程
  12. 百度刚刚晋升的29岁最年轻副总裁李明远
  13. Source Insight 4.0首次安装提示unable to open or create...解决方案
  14. Spotify网络钓鱼活动目标锁定音乐爱好者
  15. Pulsar 社区周报| 2020-12-05 ~ 2020-12-11
  16. MATLAB-实现太阳、地球、月亮三者之间运转关系的模拟
  17. 面试时,如何进行自我介绍
  18. medium_socnet靶场
  19. 深度 | 张正友:计算机视觉的三生三世 | CCF-GAIR 2019
  20. 计算机网络原理实验(三)——小型校园网络模拟搭建

热门文章

  1. rsync常用参数组合
  2. ubuntu 使用apt-get install安装特定版本
  3. 读取配置文件中的内容演练 20210412_221336.mp4
  4. css标签的三种显示模式
  5. 安装虚拟环境virtualenv与virtualenvwrapper在centos7系统上
  6. centos安装python3.7详细过程 2020
  7. 办公自动化-表格的读写操作-xlrd-xlwt
  8. jquery-ui-拖
  9. 网站登录JWT的实现
  10. 【教程】条形码组件Spire.Barcode 教程:如何在C#中创建DataMatrix条码