STM32实现基于I2C的AHT20温湿度采集

  • I2C通信协议
  • 软件I2C与 硬件I2C
  • 代码实现
  • 烧录
    • 硬件连接
    • 烧录并运行
  • 参考

I2C通信协议

  1. I2C协议简介
    IC( Inter-- Integrated Circuit)总线是一种由 PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。它是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。
    在CPU与被控I2C之间、I2C与I2C之间进行双向传送,高速IC总线一般可达400kbps以上。 I2C总线在传送数据过程中共有三种类型信号,它们分别是:开始信号、结束信号和应答信号。
    开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。
    结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结東传送数据。
    应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接
    收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为 受控单元出现故障。
    这些信号中,起始信号是必需的,结束信号和应答信号,都可以不要。
  2. I2C通信过程写数据
    若配置的方向传输位为“写数据”方向,即第一幅图的情况,主机广播完地址并且接收到应答信号后,就正式向从机传输一个字节的数据,主机每发送完一个字节数据,都要等待从机的应答信号(ACK)。当数据传输结束时,主机向从机发送一个停止传输信号§,表示不再传输数据。
    读数据
    若配置的方向传输位为“读数据”方向,即第二幅图的情况,主机广播完地址并且接收到应答信号后,就开始向主机返回一个字节的数据,从机每发送完一个数据,都会等待主机的应答信号(ACK)。当主机希望停止接收数据时,就向从机返回一个非应答信号(NACK),则从机自动停止数据传输。
    读和写数据
    除了基本的数据读写,I2C 通信更常用的是复合格式,即第三幅图的情况,该传输过程有两次起始信号(S)。一般在第一次传输中,主机通过SLAVE_ADDRESS寻找到从机设备后,发送一段表示从机设备内部的寄存器或存储器地址(注意区分它与SLAVE_ADDRESS的区别);在第二次的传输中,对该地址的内容进行读或写。
    I2C通信时序开始信号:SCL 为高电平时,SDA 由高电平向低电平跳变,开始传送数据。
    结束信号:SCL 为高电平时,SDA 由低电平向高电平跳变,结束传送数据。
    应答信号:接收数据的 IC 在接收到一个字节的数据后,向发送数据的 IC 发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,则判断为受控单元出现故障。

软件I2C与 硬件I2C

所谓硬件I2C对应芯片上的I2C外设,有相应I2C驱动电路,其所使用的I2C管脚也是专用的;软件I2C一般是用GPIO管脚,用软件控制管脚状态以模拟I2C通信波形。

硬件I2C的效率要远高于软件的,而软件I2C由于不受管脚限制,接口比较灵活。

模拟I2C 是通过GPIO,软件模拟寄存器的工作方式,而硬件(固件)I2C是直接调用内部寄存器进行配置。如果要从具体硬件上来看,可以去看下芯片手册。因为固件I2C的端口是固定的,所以会有所区别。

至于如何区分它们

可以看底层配置,比如IO口配置,如果配置了IO口的功能(IIC功能)那就是固件IIC,否则就是模拟
可以看IIC写函数,看里面有木有调用现成的函数或者给某个寄存器赋值,如果有,则肯定是固件IIC功能,没有的话肯定是数据一个bit一个bit模拟发生送的,肯定用到了循环,则为模拟。
根据代码量判断,模拟的代码量肯定比固件的要大。

  1. 硬件IIC用法比较复杂,模拟IIC的流程更清楚一些。

  2. 硬件IIC速度比模拟快,并且可以用DMA

  3. 模拟IIC可以在任何管脚上,而硬件只能在固定管脚上。

软件i2c是程序员使用程序控制SCL,SDA线输出高低电平,模拟i2c协议的时序。一般较硬件i2c稳定,但是程序较为繁琐,但不难。

硬件i2c程序员只要调用i2c的控制函数即可,不用直接的去控制SCL,SDA高低电平的输出。但是有些单片机的硬件i2c不太稳定,调试问题较多。

参考链接

代码实现

首先需要一个固件库版本的新建STM32工程,博主使用的是野火指南者开发板,因此直接从野火官网下载的工程模板。

将以下代码添加到USER目录下
main.c

#include "delay.h"
#include "usart.h"
#include "bsp_i2c.h"
int main(void)
{   delay_init();       uart_init(115200);   IIC_Init();while(1){printf("¿ªÊ¼²âÁ¿£¬ÇëÉԵȣº");read_AHT20_once();delay_ms(1500);}
}

usart.c

#include "sys.h"
#include "usart.h"//STM32F103ºËÐÄ°åÀý³Ì
//¿âº¯Êý°æ±¾Àý³Ì
/********** mcudev.taobao.com ³öÆ·  ********///
//Èç¹ûʹÓÃucos,Ôò°üÀ¨ÏÂÃæµÄÍ·Îļþ¼´¿É.
#if SYSTEM_SUPPORT_UCOS
#include "includes.h"                 //ucos ʹÓÃ
#endif
//
//STM32¿ª·¢°å
//´®¿Ú1³õʼ»¯          //     //
//¼ÓÈëÒÔÏ´úÂë,Ö§³Öprintfº¯Êý,¶ø²»ÐèҪѡÔñuse MicroLIB
#if 1
#pragma import(__use_no_semihosting)
//±ê×¼¿âÐèÒªµÄÖ§³Öº¯Êý
struct __FILE
{ int handle; }; FILE __stdout;
//¶¨Òå_sys_exit()ÒÔ±ÜÃâʹÓðëÖ÷»úģʽ
void _sys_exit(int x)
{ x = x;
}
//Öض¨Òåfputcº¯Êý
int fputc(int ch, FILE *f)
{      while((USART1->SR&0X40)==0);//Ñ­»··¢ËÍ,Ö±µ½·¢ËÍÍê±Ï   USART1->DR = (u8) ch;      return ch;
}
#endif /*ʹÓÃmicroLibµÄ·½·¨*//*
int fputc(int ch, FILE *f)
{USART_SendData(USART1, (uint8_t) ch);while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) {}  return ch;
}
int GetKey (void)  { while (!(USART1->SR & USART_FLAG_RXNE));return ((int)(USART1->DR & 0x1FF));
}
*/#if EN_USART1_RX   //Èç¹ûʹÄÜÁ˽ÓÊÕ
//´®¿Ú1ÖжϷþÎñ³ÌÐò
//×¢Òâ,¶ÁÈ¡USARTx->SRÄܱÜÃâĪÃûÆäÃîµÄ´íÎó
u8 USART_RX_BUF[USART_REC_LEN];     //½ÓÊÕ»º³å,×î´óUSART_REC_LEN¸ö×Ö½Ú.
//½ÓÊÕ״̬
//bit15£¬   ½ÓÊÕÍê³É±êÖ¾
//bit14£¬   ½ÓÊÕµ½0x0d
//bit13~0£¬ ½ÓÊÕµ½µÄÓÐЧ×Ö½ÚÊýÄ¿
u16 USART_RX_STA=0;       //½ÓÊÕ״̬±ê¼Ç     void uart_init(u32 bound){//GPIO¶Ë¿ÚÉèÖÃGPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //ʹÄÜUSART1£¬GPIOAʱÖÓ//USART1_TX   PA.9GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;    //¸´ÓÃÍÆÍìÊä³öGPIO_Init(GPIOA, &GPIO_InitStructure);//USART1_RX   PA.10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//¸¡¿ÕÊäÈëGPIO_Init(GPIOA, &GPIO_InitStructure);  //Usart1 NVIC ÅäÖÃNVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//ÇÀÕ¼ÓÅÏȼ¶3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;     //×ÓÓÅÏȼ¶3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;         //IRQͨµÀʹÄÜNVIC_Init(&NVIC_InitStructure);    //¸ù¾ÝÖ¸¶¨µÄ²ÎÊý³õʼ»¯VIC¼Ä´æÆ÷//USART ³õʼ»¯ÉèÖÃUSART_InitStructure.USART_BaudRate = bound;//Ò»°ãÉèÖÃΪ9600;USART_InitStructure.USART_WordLength = USART_WordLength_8b;//×Ö³¤Îª8λÊý¾Ý¸ñʽUSART_InitStructure.USART_StopBits = USART_StopBits_1;//Ò»¸öֹͣλUSART_InitStructure.USART_Parity = USART_Parity_No;//ÎÞÆæżУÑéλUSART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//ÎÞÓ²¼þÊý¾ÝÁ÷¿ØÖÆUSART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;    //ÊÕ·¢Ä£Ê½USART_Init(USART1, &USART_InitStructure); //³õʼ»¯´®¿ÚUSART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//¿ªÆôÖжÏUSART_Cmd(USART1, ENABLE);                    //ʹÄÜ´®¿Ú }void USART1_IRQHandler(void)                  //´®¿Ú1ÖжϷþÎñ³ÌÐò{u8 Res;
#ifdef OS_TICKS_PER_SEC     //Èç¹ûʱÖÓ½ÚÅÄÊý¶¨ÒåÁË,˵Ã÷ҪʹÓÃucosIIÁË.OSIntEnter();
#endifif(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)  //½ÓÊÕÖжÏ(½ÓÊÕµ½µÄÊý¾Ý±ØÐëÊÇ0x0d 0x0a½áβ){Res =USART_ReceiveData(USART1);//(USART1->DR);    //¶ÁÈ¡½ÓÊÕµ½µÄÊý¾Ýif((USART_RX_STA&0x8000)==0)//½ÓÊÕδÍê³É{if(USART_RX_STA&0x4000)//½ÓÊÕµ½ÁË0x0d{if(Res!=0x0a)USART_RX_STA=0;//½ÓÊÕ´íÎó,ÖØпªÊ¼else USART_RX_STA|=0x8000; //½ÓÊÕÍê³ÉÁË }else //»¹Ã»ÊÕµ½0X0D{  if(Res==0x0d)USART_RX_STA|=0x4000;else{USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;USART_RX_STA++;if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//½ÓÊÕÊý¾Ý´íÎó,ÖØпªÊ¼½ÓÊÕ   }      }}          }
#ifdef OS_TICKS_PER_SEC     //Èç¹ûʱÖÓ½ÚÅÄÊý¶¨ÒåÁË,˵Ã÷ҪʹÓÃucosIIÁË.OSIntExit();
#endif
}
#endif  

usart.h

#ifndef __USART_H
#define __USART_H
#include "stdio.h"
#include "sys.h" //STM32F103ºËÐÄ°åÀý³Ì
//¿âº¯Êý°æ±¾Àý³Ì
/********** mcudev.taobao.com ³öÆ·  ********///
//STM32¿ª·¢°å
//´®¿Ú1³õʼ»¯          #define USART_REC_LEN            200     //¶¨Òå×î´ó½ÓÊÕ×Ö½ÚÊý 200
#define EN_USART1_RX            1           //ʹÄÜ£¨1£©/½ûÖ¹£¨0£©´®¿Ú1½ÓÊÕextern u8  USART_RX_BUF[USART_REC_LEN]; //½ÓÊÕ»º³å,×î´óUSART_REC_LEN¸ö×Ö½Ú.Ä©×Ö½ÚΪ»»Ðзû
extern u16 USART_RX_STA;                //½ÓÊÕ״̬±ê¼Ç
//Èç¹ûÏë´®¿ÚÖжϽÓÊÕ£¬Ç벻ҪעÊÍÒÔϺ궨Òå
void uart_init(u32 bound);
#endif

bsp_i2c.c

#include "bsp_i2c.h"
#include "delay.h"uint8_t   ack_status=0;
uint8_t   readByte[6];
uint8_t   AHT20_status=0;uint32_t  H1=0;  //Humility
uint32_t  T1=0;  //Temperatureuint8_t  AHT20_OutData[4];
uint8_t  AHT20sendOutData[10] = {0xFA, 0x06, 0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF};void IIC_Init(void)
{                        GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd(    RCC_APB2Periph_GPIOB, ENABLE ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ;   //ÍÆÍìÊä³öGPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);IIC_SCL=1;IIC_SDA=1;}
//²úÉúIICÆðʼÐźÅ
void IIC_Start(void)
{SDA_OUT();     //sdaÏßÊä³öIIC_SDA=1;        IIC_SCL=1;delay_us(4);IIC_SDA=0;//START:when CLK is high,DATA change form high to low delay_us(4);IIC_SCL=0;//ǯסI2C×ÜÏߣ¬×¼±¸·¢ËÍ»ò½ÓÊÕÊý¾Ý
}
//²úÉúIICÍ£Ö¹ÐźÅ
void IIC_Stop(void)
{SDA_OUT();//sdaÏßÊä³öIIC_SCL=0;IIC_SDA=0;//STOP:when CLK is high DATA change form low to highdelay_us(4);IIC_SCL=1; IIC_SDA=1;//·¢ËÍI2C×ÜÏß½áÊøÐźÅdelay_us(4);
}
//µÈ´ýÓ¦´ðÐźŵ½À´
//·µ»ØÖµ£º1£¬½ÓÊÕÓ¦´ðʧ°Ü
//        0£¬½ÓÊÕÓ¦´ð³É¹¦
u8 IIC_Wait_Ack(void)
{u8 ucErrTime=0;SDA_IN();      //SDAÉèÖÃΪÊäÈë  IIC_SDA=1;delay_us(1);       IIC_SCL=1;delay_us(1);   while(READ_SDA){ucErrTime++;if(ucErrTime>250){IIC_Stop();return 1;}}IIC_SCL=0;//ʱÖÓÊä³ö0       return 0;
}
//²úÉúACKÓ¦´ð
void IIC_Ack(void)
{IIC_SCL=0;SDA_OUT();IIC_SDA=0;delay_us(2);IIC_SCL=1;delay_us(2);IIC_SCL=0;
}
//²»²úÉúACKÓ¦´ð
void IIC_NAck(void)
{IIC_SCL=0;SDA_OUT();IIC_SDA=1;delay_us(2);IIC_SCL=1;delay_us(2);IIC_SCL=0;
}
//IIC·¢ËÍÒ»¸ö×Ö½Ú
//·µ»Ø´Ó»úÓÐÎÞÓ¦´ð
//1£¬ÓÐÓ¦´ð
//0£¬ÎÞÓ¦´ð
void IIC_Send_Byte(u8 txd)
{                        u8 t;   SDA_OUT();         IIC_SCL=0;//À­µÍʱÖÓ¿ªÊ¼Êý¾Ý´«Êäfor(t=0;t<8;t++){              IIC_SDA=(txd&0x80)>>7;txd<<=1;    delay_us(2);   //¶ÔTEA5767ÕâÈý¸öÑÓʱ¶¼ÊDZØÐëµÄIIC_SCL=1;delay_us(2); IIC_SCL=0; delay_us(2);}
}
//¶Á1¸ö×Ö½Ú£¬ack=1ʱ£¬·¢ËÍACK£¬ack=0£¬·¢ËÍnACK
u8 IIC_Read_Byte(unsigned char ack)
{unsigned char i,receive=0;SDA_IN();//SDAÉèÖÃΪÊäÈëfor(i=0;i<8;i++ ){IIC_SCL=0; delay_us(2);IIC_SCL=1;receive<<=1;if(READ_SDA)receive++;   delay_us(1); }                  if (!ack)IIC_NAck();//·¢ËÍnACKelseIIC_Ack(); //·¢ËÍACK   return receive;
}void IIC_WriteByte(uint16_t addr,uint8_t data,uint8_t device_addr)
{IIC_Start();  if(device_addr==0xA0) //eepromµØÖ·´óÓÚ1×Ö½ÚIIC_Send_Byte(0xA0 + ((addr/256)<<1));//·¢Ë͸ߵØÖ·elseIIC_Send_Byte(device_addr);        //·¢Æ÷¼þµØÖ·IIC_Wait_Ack(); IIC_Send_Byte(addr&0xFF);   //·¢Ë͵͵ØÖ·IIC_Wait_Ack(); IIC_Send_Byte(data);     //·¢ËÍ×Ö½Ú                            IIC_Wait_Ack();                     IIC_Stop();//²úÉúÒ»¸öÍ£Ö¹Ìõ¼þ if(device_addr==0xA0) //delay_ms(10);elsedelay_us(2);
}uint16_t IIC_ReadByte(uint16_t addr,uint8_t device_addr,uint8_t ByteNumToRead)  //¶Á¼Ä´æÆ÷»ò¶ÁÊý¾Ý
{   uint16_t data;IIC_Start();  if(device_addr==0xA0)IIC_Send_Byte(0xA0 + ((addr/256)<<1));elseIIC_Send_Byte(device_addr); IIC_Wait_Ack();IIC_Send_Byte(addr&0xFF);   //·¢Ë͵͵ØÖ·IIC_Wait_Ack(); IIC_Start();     IIC_Send_Byte(device_addr+1);      //·¢Æ÷¼þµØÖ·IIC_Wait_Ack();if(ByteNumToRead == 1)//LM75ζÈÊý¾ÝΪ11bit{data=IIC_Read_Byte(0);}else{data=IIC_Read_Byte(1);data=(data<<8)+IIC_Read_Byte(0);}IIC_Stop();//²úÉúÒ»¸öÍ£Ö¹Ìõ¼þ     return data;
}/**********
*ÉÏÃ沿·ÖΪIO¿ÚÄ£¿éI2CÅäÖÃ
*
*´ÓÕâÒÔÏ¿ªÊ¼ÎªAHT20µÄÅäÖÃI2C
*º¯ÊýÃûÓÐIICºÍI2CµÄÇø±ð£¬Çë×¢Ò⣡£¡£¡£¡£¡
*
*2020/2/23×îºóÐÞ¸ÄÈÕÆÚ
*
***********/
void  read_AHT20_once(void)
{delay_ms(10);reset_AHT20();delay_ms(10);init_AHT20();delay_ms(10);startMeasure_AHT20();delay_ms(80);read_AHT20();delay_ms(5);
}void  reset_AHT20(void)
{I2C_Start();I2C_WriteByte(0x70);ack_status = Receive_ACK();if(ack_status) printf("1");else printf("1-n-");I2C_WriteByte(0xBA);ack_status = Receive_ACK();if(ack_status) printf("2");else printf("2-n-");I2C_Stop();/*AHT20_OutData[0] = 0;AHT20_OutData[1] = 0;AHT20_OutData[2] = 0;AHT20_OutData[3] = 0;*/
}void  init_AHT20(void)
{I2C_Start();I2C_WriteByte(0x70);ack_status = Receive_ACK();if(ack_status) printf("3");else printf("3-n-");    I2C_WriteByte(0xE1);ack_status = Receive_ACK();if(ack_status) printf("4");else printf("4-n-");I2C_WriteByte(0x08);ack_status = Receive_ACK();if(ack_status) printf("5");else printf("5-n-");I2C_WriteByte(0x00);ack_status = Receive_ACK();if(ack_status) printf("6");else printf("6-n-");I2C_Stop();
}void  startMeasure_AHT20(void)
{//------------I2C_Start();I2C_WriteByte(0x70);ack_status = Receive_ACK();if(ack_status) printf("7");else printf("7-n-");I2C_WriteByte(0xAC);ack_status = Receive_ACK();if(ack_status) printf("8");else printf("8-n-");I2C_WriteByte(0x33);ack_status = Receive_ACK();if(ack_status) printf("9");else printf("9-n-");I2C_WriteByte(0x00);ack_status = Receive_ACK();if(ack_status) printf("10");else printf("10-n-");I2C_Stop();
}void read_AHT20(void)
{uint8_t   i;for(i=0; i<6; i++){readByte[i]=0;}//-------------I2C_Start();I2C_WriteByte(0x71);ack_status = Receive_ACK();readByte[0]= I2C_ReadByte();Send_ACK();readByte[1]= I2C_ReadByte();Send_ACK();readByte[2]= I2C_ReadByte();Send_ACK();readByte[3]= I2C_ReadByte();Send_ACK();readByte[4]= I2C_ReadByte();Send_ACK();readByte[5]= I2C_ReadByte();SendNot_Ack();//Send_ACK();I2C_Stop();//--------------if( (readByte[0] & 0x68) == 0x08 ){H1 = readByte[1];H1 = (H1<<8) | readByte[2];H1 = (H1<<8) | readByte[3];H1 = H1>>4;H1 = (H1*1000)/1024/1024;T1 = readByte[3];T1 = T1 & 0x0000000F;T1 = (T1<<8) | readByte[4];T1 = (T1<<8) | readByte[5];T1 = (T1*2000)/1024/1024 - 500;AHT20_OutData[0] = (H1>>8) & 0x000000FF;AHT20_OutData[1] = H1 & 0x000000FF;AHT20_OutData[2] = (T1>>8) & 0x000000FF;AHT20_OutData[3] = T1 & 0x000000FF;}else{AHT20_OutData[0] = 0xFF;AHT20_OutData[1] = 0xFF;AHT20_OutData[2] = 0xFF;AHT20_OutData[3] = 0xFF;printf("ʧ°ÜÁË");}printf("\r\n");printf("ζÈ:%d%d.%d",T1/100,(T1/10)%10,T1%10);printf("ʪ¶È:%d%d.%d",H1/100,(H1/10)%10,H1%10);printf("\r\n");
}uint8_t  Receive_ACK(void)
{uint8_t result=0;uint8_t cnt=0;IIC_SCL = 0;SDA_IN(); delay_us(4);IIC_SCL = 1;delay_us(4);while(READ_SDA && (cnt<100)){cnt++;}IIC_SCL = 0;delay_us(4);if(cnt<100){result=1;}return result;
}void  Send_ACK(void)
{SDA_OUT();IIC_SCL = 0;delay_us(4);IIC_SDA = 0;delay_us(4);IIC_SCL = 1;delay_us(4);IIC_SCL = 0;delay_us(4);SDA_IN();
}void  SendNot_Ack(void)
{SDA_OUT();IIC_SCL = 0;delay_us(4);IIC_SDA = 1;delay_us(4);IIC_SCL = 1;delay_us(4);IIC_SCL = 0;delay_us(4);IIC_SDA = 0;delay_us(4);
}void I2C_WriteByte(uint8_t  input)
{uint8_t  i;SDA_OUT();for(i=0; i<8; i++){IIC_SCL = 0;delay_ms(5);if(input & 0x80){IIC_SDA = 1;//delaymm(10);}else{IIC_SDA = 0;//delaymm(10);}IIC_SCL = 1;delay_ms(5);input = (input<<1);}IIC_SCL = 0;delay_us(4);SDA_IN();delay_us(4);
}   uint8_t I2C_ReadByte(void)
{uint8_t  resultByte=0;uint8_t  i=0, a=0;IIC_SCL = 0;SDA_IN();delay_ms(4);for(i=0; i<8; i++){IIC_SCL = 1;delay_ms(3);a=0;if(READ_SDA){a=1;}else{a=0;}//resultByte = resultByte | a;resultByte = (resultByte << 1) | a;IIC_SCL = 0;delay_ms(3);}SDA_IN();delay_ms(10);return   resultByte;
}void  set_AHT20sendOutData(void)
{/* --------------------------* 0xFA 0x06 0x0A temperature(2 Bytes) humility(2Bytes) short Address(2 Bytes)* And Check (1 byte)* -------------------------*/AHT20sendOutData[3] = AHT20_OutData[0];AHT20sendOutData[4] = AHT20_OutData[1];AHT20sendOutData[5] = AHT20_OutData[2];AHT20sendOutData[6] = AHT20_OutData[3];//  AHT20sendOutData[7] = (drf1609.shortAddress >> 8) & 0x00FF;
//  AHT20sendOutData[8] = drf1609.shortAddress  & 0x00FF;//    AHT20sendOutData[9] = getXY(AHT20sendOutData,10);
}void  I2C_Start(void)
{SDA_OUT();IIC_SCL = 1;delay_ms(4);IIC_SDA = 1;delay_ms(4);IIC_SDA = 0;delay_ms(4);IIC_SCL = 0;delay_ms(4);
}void  I2C_Stop(void)
{SDA_OUT();IIC_SDA = 0;delay_ms(4);IIC_SCL = 1;delay_ms(4);IIC_SDA = 1;delay_ms(4);
}

bsp_i2c.h

#ifndef __BSP_I2C_H
#define __BSP_I2C_H#include "sys.h"
#include "delay.h"
#include "usart.h"
//ʹÓÃIIC1 ¹ÒÔØM24C02,OLED,LM75AD,HT1382    PB6,PB7#define SDA_IN()  {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=(u32)8<<28;}
#define SDA_OUT() {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=(u32)3<<28;}//IO²Ù×÷º¯Êý
#define IIC_SCL    PBout(6) //SCL
#define IIC_SDA    PBout(7) //SDA
#define READ_SDA   PBin(7)  //ÊäÈëSDA //IICËùÓвÙ×÷º¯Êý
void IIC_Init(void);                //³õʼ»¯IICµÄIO¿Ú
void IIC_Start(void);               //·¢ËÍIIC¿ªÊ¼ÐźÅ
void IIC_Stop(void);                //·¢ËÍIICÍ£Ö¹ÐźÅ
void IIC_Send_Byte(u8 txd);         //IIC·¢ËÍÒ»¸ö×Ö½Ú
u8 IIC_Read_Byte(unsigned char ack);//IIC¶ÁÈ¡Ò»¸ö×Ö½Ú
u8 IIC_Wait_Ack(void);              //IICµÈ´ýACKÐźÅ
void IIC_Ack(void);                 //IIC·¢ËÍACKÐźÅ
void IIC_NAck(void);                //IIC²»·¢ËÍACKÐźÅvoid IIC_WriteByte(uint16_t addr,uint8_t data,uint8_t device_addr);
uint16_t IIC_ReadByte(uint16_t addr,uint8_t device_addr,uint8_t ByteNumToRead);//¼Ä´æÆ÷µØÖ·£¬Æ÷¼þµØÖ·£¬Òª¶ÁµÄ×Ö½ÚÊý  void  read_AHT20_once(void);
void  reset_AHT20(void);
void  init_AHT20(void);
void  startMeasure_AHT20(void);
void  read_AHT20(void);
uint8_t  Receive_ACK(void);
void  Send_ACK(void);
void  SendNot_Ack(void);
void I2C_WriteByte(uint8_t  input);
uint8_t I2C_ReadByte(void);
void  set_AHT20sendOutData(void);
void  I2C_Start(void);
void  I2C_Stop(void);
#endif

delay.c

#include "delay.h"
#include "sys.h"//STM32F103ºËÐÄ°åÀý³Ì
//¿âº¯Êý°æ±¾Àý³Ì
/********** mcudev.taobao.com ³öÆ·  ********///
//Èç¹ûʹÓÃucos,Ôò°üÀ¨ÏÂÃæµÄÍ·Îļþ¼´¿É.
#if SYSTEM_SUPPORT_UCOS
#include "includes.h"                 //ucos ʹÓÃ
#endif
//   //STM32¿ª·¢°å
//ʹÓÃSysTickµÄÆÕͨ¼ÆÊýģʽ¶ÔÑÓ³Ù½øÐйÜÀí
//°üÀ¨delay_us,delay_ms//
static u8  fac_us=0;//usÑÓʱ±¶³ËÊý
static u16 fac_ms=0;//msÑÓʱ±¶³ËÊý
#ifdef OS_CRITICAL_METHOD   //Èç¹ûOS_CRITICAL_METHOD¶¨ÒåÁË,˵Ã÷ʹÓÃucosIIÁË.
//systickÖжϷþÎñº¯Êý,ʹÓÃucosʱÓõ½
void SysTick_Handler(void)
{                  OSIntEnter();        //½øÈëÖжÏOSTimeTick();       //µ÷ÓÃucosµÄʱÖÓ·þÎñ³ÌÐò               OSIntExit();        //´¥·¢ÈÎÎñÇл»ÈíÖжÏ
}
#endif//³õʼ»¯ÑÓ³Ùº¯Êý
//µ±Ê¹ÓÃucosµÄʱºò,´Ëº¯Êý»á³õʼ»¯ucosµÄʱÖÓ½ÚÅÄ
//SYSTICKµÄʱÖӹ̶¨ÎªHCLKʱÖÓµÄ1/8
//SYSCLK:ϵͳʱÖÓ
void delay_init()
{#ifdef OS_CRITICAL_METHOD  //Èç¹ûOS_CRITICAL_METHOD¶¨ÒåÁË,˵Ã÷ʹÓÃucosIIÁË.u32 reload;
#endifSysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //Ñ¡ÔñÍⲿʱÖÓ  HCLK/8fac_us=SystemCoreClock/8000000;  //ΪϵͳʱÖÓµÄ1/8  #ifdef OS_CRITICAL_METHOD    //Èç¹ûOS_CRITICAL_METHOD¶¨ÒåÁË,˵Ã÷ʹÓÃucosIIÁË.reload=SystemCoreClock/8000000;        //ÿÃëÖӵļÆÊý´ÎÊý µ¥Î»ÎªK     reload*=1000000/OS_TICKS_PER_SEC;//¸ù¾ÝOS_TICKS_PER_SECÉ趨Òç³öʱ¼ä//reloadΪ24λ¼Ä´æÆ÷,×î´óÖµ:16777216,ÔÚ72MÏÂ,Ô¼ºÏ1.86s×óÓÒ   fac_ms=1000/OS_TICKS_PER_SEC;//´ú±íucos¿ÉÒÔÑÓʱµÄ×îÉÙµ¥Î»     SysTick->CTRL|=SysTick_CTRL_TICKINT_Msk;     //¿ªÆôSYSTICKÖжÏSysTick->LOAD=reload;  //ÿ1/OS_TICKS_PER_SECÃëÖжÏÒ»´Î    SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk;     //¿ªÆôSYSTICK
#elsefac_ms=(u16)fac_us*1000;//·ÇucosÏÂ,´ú±íÿ¸ömsÐèÒªµÄsystickʱÖÓÊý
#endif
}                                   #ifdef OS_CRITICAL_METHOD   //ʹÓÃÁËucos
//ÑÓʱnus
//nusΪҪÑÓʱµÄusÊý.
void delay_us(u32 nus)
{       u32 ticks;u32 told,tnow,tcnt=0;u32 reload=SysTick->LOAD;   //LOADµÄÖµ           ticks=nus*fac_us;             //ÐèÒªµÄ½ÚÅÄÊý           tcnt=0;told=SysTick->VAL;         //¸Õ½øÈëʱµÄ¼ÆÊýÆ÷Öµwhile(1){tnow=SysTick->VAL; if(tnow!=told){        if(tnow<told)tcnt+=told-tnow;//ÕâÀï×¢ÒâÒ»ÏÂSYSTICKÊÇÒ»¸öµÝ¼õµÄ¼ÆÊýÆ÷¾Í¿ÉÒÔÁË.else tcnt+=reload-tnow+told;       told=tnow;if(tcnt>=ticks)break;//ʱ¼ä³¬¹ý/µÈÓÚÒªÑÓ³ÙµÄʱ¼ä,ÔòÍ˳ö.}  };
}
//ÑÓʱnms
//nms:ÒªÑÓʱµÄmsÊý
void delay_ms(u16 nms)
{   if(OSRunning==TRUE)//Èç¹ûosÒѾ­ÔÚÅÜÁË     {         if(nms>=fac_ms)//ÑÓʱµÄʱ¼ä´óÓÚucosµÄ×îÉÙʱ¼äÖÜÆÚ {OSTimeDly(nms/fac_ms);//ucosÑÓʱ}nms%=fac_ms;             //ucosÒѾ­ÎÞ·¨ÌṩÕâôСµÄÑÓʱÁË,²ÉÓÃÆÕͨ·½Ê½ÑÓʱ    }delay_us((u32)(nms*1000));    //ÆÕͨ·½Ê½ÑÓʱ,´ËʱucosÎÞ·¨Æô¶¯µ÷¶È.
}
#else//²»ÓÃucosʱ
//ÑÓʱnus
//nusΪҪÑÓʱµÄusÊý.
void delay_us(u32 nus)
{       u32 temp;            SysTick->LOAD=nus*fac_us; //ʱ¼ä¼ÓÔØ            SysTick->VAL=0x00;        //Çå¿Õ¼ÆÊýÆ÷SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ;          //¿ªÊ¼µ¹Êý  do{temp=SysTick->CTRL;}while(temp&0x01&&!(temp&(1<<16)));//µÈ´ýʱ¼äµ½´ï   SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk;       //¹Ø±Õ¼ÆÊýÆ÷SysTick->VAL =0X00;       //Çå¿Õ¼ÆÊýÆ÷
}
//ÑÓʱnms
//×¢ÒânmsµÄ·¶Î§
//SysTick->LOADΪ24λ¼Ä´æÆ÷,ËùÒÔ,×î´óÑÓʱΪ:
//nms<=0xffffff*8*1000/SYSCLK
//SYSCLKµ¥Î»ÎªHz,nmsµ¥Î»Îªms
//¶Ô72MÌõ¼þÏÂ,nms<=1864
void delay_ms(u16 nms)
{                 u32 temp;        SysTick->LOAD=(u32)nms*fac_ms;//ʱ¼ä¼ÓÔØ(SysTick->LOADΪ24bit)SysTick->VAL =0x00;           //Çå¿Õ¼ÆÊýÆ÷SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ;          //¿ªÊ¼µ¹Êý  do{temp=SysTick->CTRL;}while(temp&0x01&&!(temp&(1<<16)));//µÈ´ýʱ¼äµ½´ï   SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk;       //¹Ø±Õ¼ÆÊýÆ÷SysTick->VAL =0X00;       //Çå¿Õ¼ÆÊýÆ÷
}
#endif

delay.h

#ifndef __DELAY_H
#define __DELAY_H
#include "sys.h"
//   //STM32F103ºËÐÄ°åÀý³Ì
//¿âº¯Êý°æ±¾Àý³Ì
/********** mcudev.taobao.com ³öÆ·  ********///ʹÓÃSysTickµÄÆÕͨ¼ÆÊýģʽ¶ÔÑÓ³Ù½øÐйÜÀí
//°üÀ¨delay_us,delay_ms//
void delay_init(void);
void delay_ms(u16 nms);
void delay_us(u32 nus);
#endif

sys.c

#include "sys.h"//STM32F103ºËÐÄ°åÀý³Ì
//¿âº¯Êý°æ±¾Àý³Ì
/********** mcudev.taobao.com ³öÆ·  ********///  //STM32¿ª·¢°å
//ϵͳÖжϷÖ×éÉèÖû¯           //********************************************************************************
void NVIC_Configuration(void)
{NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);    //ÉèÖÃNVICÖжϷÖ×é2:2λÇÀÕ¼ÓÅÏȼ¶£¬2λÏìÓ¦ÓÅÏȼ¶}

sys.h

#ifndef __SYS_H
#define __SYS_H
#include "stm32f10x.h"
//   //STM32F103ºËÐÄ°åÀý³Ì
//¿âº¯Êý°æ±¾Àý³Ì
/********** mcudev.taobao.com ³öÆ·  ********///      //0,²»Ö§³Öucos
//1,Ö§³Öucos
#define SYSTEM_SUPPORT_UCOS     0       //¶¨ÒåϵͳÎļþ¼ÐÊÇ·ñÖ§³ÖUCOS//λ´ø²Ù×÷,ʵÏÖ51ÀàËƵÄGPIO¿ØÖƹ¦ÄÜ
//¾ßÌåʵÏÖ˼Ïë,²Î¿¼<<CM3ȨÍþÖ¸ÄÏ>>µÚÎåÕÂ(87Ò³~92Ò³).
//IO¿Ú²Ù×÷ºê¶¨Òå
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr))
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))
//IO¿ÚµØÖ·Ó³Éä
#define GPIOA_ODR_Addr    (GPIOA_BASE+12) //0x4001080C
#define GPIOB_ODR_Addr    (GPIOB_BASE+12) //0x40010C0C
#define GPIOC_ODR_Addr    (GPIOC_BASE+12) //0x4001100C
#define GPIOD_ODR_Addr    (GPIOD_BASE+12) //0x4001140C
#define GPIOE_ODR_Addr    (GPIOE_BASE+12) //0x4001180C
#define GPIOF_ODR_Addr    (GPIOF_BASE+12) //0x40011A0C
#define GPIOG_ODR_Addr    (GPIOG_BASE+12) //0x40011E0C    #define GPIOA_IDR_Addr    (GPIOA_BASE+8) //0x40010808
#define GPIOB_IDR_Addr    (GPIOB_BASE+8) //0x40010C08
#define GPIOC_IDR_Addr    (GPIOC_BASE+8) //0x40011008
#define GPIOD_IDR_Addr    (GPIOD_BASE+8) //0x40011408
#define GPIOE_IDR_Addr    (GPIOE_BASE+8) //0x40011808
#define GPIOF_IDR_Addr    (GPIOF_BASE+8) //0x40011A08
#define GPIOG_IDR_Addr    (GPIOG_BASE+8) //0x40011E08 //IO¿Ú²Ù×÷,Ö»¶Ôµ¥Ò»µÄIO¿Ú!
//È·±£nµÄֵСÓÚ16!
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //Êä³ö
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //ÊäÈë #define PBout(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  //Êä³ö
#define PBin(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  //ÊäÈë #define PCout(n)   BIT_ADDR(GPIOC_ODR_Addr,n)  //Êä³ö
#define PCin(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  //ÊäÈë #define PDout(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  //Êä³ö
#define PDin(n)    BIT_ADDR(GPIOD_IDR_Addr,n)  //ÊäÈë #define PEout(n)   BIT_ADDR(GPIOE_ODR_Addr,n)  //Êä³ö
#define PEin(n)    BIT_ADDR(GPIOE_IDR_Addr,n)  //ÊäÈë#define PFout(n)   BIT_ADDR(GPIOF_ODR_Addr,n)  //Êä³ö
#define PFin(n)    BIT_ADDR(GPIOF_IDR_Addr,n)  //ÊäÈë#define PGout(n)   BIT_ADDR(GPIOG_ODR_Addr,n)  //Êä³ö
#define PGin(n)    BIT_ADDR(GPIOG_IDR_Addr,n)  //ÊäÈëvoid NVIC_Configuration(void);#endif

最后工程目录如下

烧录

烧录过程与博主这篇博客中过程类似,此处不再赘述,只展示结果。

硬件连接

AHT20 对应 stm32f103指南者i2c模块
SCL ———— B6
GND ———— GND
SDA ———— B7
VCC ———— 5V
如下图

烧录并运行

参考

AHT20温度采集
基于I2C的AHT20温湿度传感器数据采集

STM32实现基于I2C的AHT20温湿度采集相关推荐

  1. 基于I2C下的温湿度采集实验

    目录 一.I2C相关了解及介绍 1.基本介绍 2.I2C 物理层 3.I2C 协议层 二.什么是"软件I2C"和"硬件I2C" 1.软件I2C 2.硬件I2C ...

  2. 基于I2C/SPI的温湿度采集与OLED显示

    目录 一.温湿度采集 1.了解I2C总线协议 2.实现AHT20采集程序 3.温湿度的OLED(4SPI)显示 二.OLED显示 1.了解SPI(串行外设接口) 2.使用0.96寸OLED显示屏显示数 ...

  3. 基于I2C的AHT20温湿度传感器的数据采集

    一.I2C简介 二.软件I2C和硬件I2C 三.AHT20简介 四.基于stm32的AHT20温湿度传感器的数据采集 五.总结 一.I2C简介 I2C(芯片间)总线接口连接微控制器和串行I2C总线.它 ...

  4. STM32单片机硬件I2C读取AHT10温湿度传感器数据

    STM32使用硬件IIC读取AHT10温湿度传感器的数据并显示在0.96寸OLED屏上. 我用的单片机是STM32F103C8T6,程序用的是ST标准库写的. STM32使用硬件I2C读取SHTC3温 ...

  5. 06_基于树莓派wiringPi的温湿度采集实验

    目的: 通过温湿度的代码编写,熟悉树莓派中的单总线操作流程. 目录 1.基础知识 1.1.DHT11数字温湿度传感器简介 1.2.DHT11单总线通信协议定义 2.功能实现 2.1.原理图 2.2.代 ...

  6. 基于I2C协议的AHT20温湿度传感器的数据采集

    文章目录 一.I2C相关 1.I2C总线简介 工作原理 总线特征 2.I2C协议简介 软件I2C 硬件I2C 二者比较 二.基于I2C的AHT20温湿度采集实验 AHT20简介 1.实验要求 2.实验 ...

  7. STM32基于软件模拟IIC进行AHT21B温湿度采集

    STM32基于软件模拟IIC进行AHT21B温湿度采集 一. IIC简介 1.1 IIC简介 1.2 实现方式 1.3 实现方式对比 二. AHT21B简介 2.1 简介 2.2 产品特点 2.3 外 ...

  8. AHT20温湿度传感器的数据采集

    目录 一.AHT20温度传感器数据采集 1.目的 2.准备条件 3.1实现代码 3.2连接器件 3.3编译烧录 3.4运行结果 二.OLED屏显和汉字点阵编码 1.目的 使用STM32F103的SPI ...

  9. stm32通过I2C实现温湿度(AHT20)采集

    目录 一.I2C总线通信协议 1.1 I2C介绍 1.2 I2C物理层 1.3.I2C协议层 1.4.软件IIC和硬件IIC 1.5 IIC数据传送 1.6 IIC发送数据 1.7 IIC读数据: 二 ...

最新文章

  1. .Net Core使用视图组件(ViewComponent)封装表单文本框控件
  2. 关于nginx反向代理产生大量连接问题解决。
  3. 关键字搜索 c语言,c语言-以关键字搜索程序
  4. 提高单片机设计的10个细节
  5. win7纯净版镜像系统安装教程
  6. 程序员年纪越大,工作被取代性越强
  7. debian6 kvm安装虚拟机
  8. kill-9导致weblogic无法启动
  9. Java中使用KCP协议
  10. code block下使用openMP
  11. 计算机算法设计与分析第三章答案,《计算机算法设计与分析》第三章动态规划法.ppt...
  12. 【Opencv】 于仕琪 人脸68个特征点分布情况
  13. 手机炒股软件测试自学,手机炒股用什么软件好 主流手机炒股软件评测
  14. Shopee平台有哪些电商大促活动?大促活动如何报名?
  15. 计算机单位 字节,字节是什么意思?字节是什么单位
  16. java 生成 rtf,JAVA实现BI报表中RTF模版转PDF
  17. 锐龙R3 4100 性能怎么样 相当于什么水平
  18. (附源码)springboot电影院售票与管理系统 毕业设计011449
  19. 使用Java在浏览器页面无法导出excel表格
  20. python中的数据过滤

热门文章

  1. 使用MySql计算两个日期的时间差函数:TIMESTAMPDIFF
  2. SQL Server中的聚集索引与堆
  3. wps在线浏览 java_java实现word转pdf在线预览(前端使用PDF.js;后端使用openoffice、aspose)...
  4. R语言案例分析:多元数据的基本统计分析
  5. 我们如何获取信息,组织知识
  6. mx250 计算能力_mx250显卡性能怎么样,mx250显卡性能相当于GTX多少
  7. STM32读取SM300D2七合一传感器模块数据在0.96寸OLED显示,通过DL-LN3X无线模块显示在上位机
  8. Golang后端开发学习之路
  9. 高职单招面试自我介绍稿子计算机专业,单招面试自我介绍稿子范文
  10. 设置Windows10系统下电脑屏幕自动关闭的时间(只关闭屏幕,电脑主机不关机)