与许多专有的大数据处理平台不同,Spark建立在统一抽象的RDD之上,使得它可以以基本一致的方式应对不同的大数据处理场景,包括MapReduce,Streaming,SQL,Machine Learning以及Graph等。这即Matei Zaharia所谓的“设计一个通用的编程抽象(Unified Programming Abstraction)。这正是Spark这朵小火花让人着迷的地方。

要理解Spark,就需得理解RDD。

RDD是什么?

RDD,全称为Resilient Distributed Datasets,是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。同时,RDD还提供了一组丰富的操作来操作这些数据。在这些操作中,诸如map、flatMap、filter等转换操作实现了monad模式,很好地契合了Scala的集合操作。除此之外,RDD还提供了诸如join、groupBy、reduceByKey等更为方便的操作(注意,reduceByKey是action,而非transformation),以支持常见的数据运算。

通常来讲,针对数据处理有几种常见模型,包括:Iterative Algorithms,Relational Queries,MapReduce,Stream Processing。例如Hadoop MapReduce采用了MapReduces模型,Storm则采用了Stream Processing模型。RDD混合了这四种模型,使得Spark可以应用于各种大数据处理场景。

RDD作为数据结构,本质上是一个只读的分区记录集合。一个RDD可以包含多个分区,每个分区就是一个dataset片段。RDD可以相互依赖。如果RDD的每个分区最多只能被一个Child RDD的一个分区使用,则称之为narrow dependency;若多个Child RDD分区都可以依赖,则称之为wide dependency。不同的操作依据其特性,可能会产生不同的依赖。例如map操作会产生narrow dependency,而join操作则产生wide dependency。

Spark之所以将依赖分为narrow与wide,基于两点原因。

首先,narrow dependencies可以支持在同一个cluster node上以管道形式执行多条命令,例如在执行了map后,紧接着执行filter。相反,wide dependencies需要所有的父分区都是可用的,可能还需要调用类似MapReduce之类的操作进行跨节点传递。

其次,则是从失败恢复的角度考虑。narrow dependencies的失败恢复更有效,因为它只需要重新计算丢失的parent partition即可,而且可以并行地在不同节点进行重计算。而wide dependencies牵涉到RDD各级的多个Parent Partitions。下图说明了narrow dependencies与wide dependencies之间的区别:

本图来自Matei Zaharia撰写的论文An Architecture for Fast and General Data Processing on Large Clusters。图中,一个box代表一个RDD,一个带阴影的矩形框代表一个partition。

RDD如何保障数据处理效率?

RDD提供了两方面的特性persistence和patitioning,用户可以通过persist与patitionBy函数来控制RDD的这两个方面。RDD的分区特性与并行计算能力(RDD定义了parallerize函数),使得Spark可以更好地利用可伸缩的硬件资源。若将分区与持久化二者结合起来,就能更加高效地处理海量数据。例如:

input.map(parseArticle _).partitionBy(partitioner).cache()

partitionBy函数需要接受一个Partitioner对象,如:

val partitioner = new HashPartitioner(sc.defaultParallelism)

RDD本质上是一个内存数据集,在访问RDD时,指针只会指向与操作相关的部分。例如存在一个面向列的数据结构,其中一个实现为Int的数组,另一个实现为Float的数组。如果只需要访问Int字段,RDD的指针可以只访问Int数组,避免了对整个数据结构的扫描。

RDD将操作分为两类:transformation与action。无论执行了多少次transformation操作,RDD都不会真正执行运算,只有当action操作被执行时,运算才会触发。而在RDD的内部实现机制中,底层接口则是基于迭代器的,从而使得数据访问变得更高效,也避免了大量中间结果对内存的消耗。

在实现时,RDD针对transformation操作,都提供了对应的继承自RDD的类型,例如map操作会返回MappedRDD,而flatMap则返回FlatMappedRDD。当我们执行map或flatMap操作时,不过是将当前RDD对象传递给对应的RDD对象而已。例如:

def map[U: ClassTag](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f))

这些继承自RDD的类都定义了compute函数。该函数会在action操作被调用时触发,在函数内部是通过迭代器进行对应的转换操作:

private[spark]
class MappedRDD[U: ClassTag, T: ClassTag](prev: RDD[T], f: T => U)extends RDD[U](prev) {override def getPartitions: Array[Partition] = firstParent[T].partitionsoverride def compute(split: Partition, context: TaskContext) =firstParent[T].iterator(split, context).map(f)
}

RDD对容错的支持

支持容错通常采用两种方式:数据复制或日志记录。对于以数据为中心的系统而言,这两种方式都非常昂贵,因为它需要跨集群网络拷贝大量数据,毕竟带宽的数据远远低于内存。

RDD天生是支持容错的。首先,它自身是一个不变的(immutable)数据集,其次,它能够记住构建它的操作图(Graph of Operation),因此当执行任务的Worker失败时,完全可以通过操作图获得之前执行的操作,进行重新计算。由于无需采用replication方式支持容错,很好地降低了跨网络的数据传输成本。

不过,在某些场景下,Spark也需要利用记录日志的方式来支持容错。例如,在Spark Streaming中,针对数据进行update操作,或者调用Streaming提供的window操作时,就需要恢复执行过程的中间状态。此时,需要通过Spark提供的checkpoint机制,以支持操作能够从checkpoint得到恢复。

针对RDD的wide dependency,最有效的容错方式同样还是采用checkpoint机制。不过,似乎Spark的最新版本仍然没有引入auto checkpointing机制。

总结

RDD是Spark的核心,也是整个Spark的架构基础。它的特性可以总结如下:

  • 它是不变的数据结构存储
  • 它是支持跨集群的分布式数据结构
  • 可以根据数据记录的key对结构进行分区
  • 提供了粗粒度的操作,且这些操作都支持分区
  • 它将数据存储在内存中,从而提供了低延迟性

出处:http://www.infoq.com/cn/articles/spark-core-rdd/

理解Spark的核心RDD相关推荐

  1. Spark的核心RDD(Resilient Distributed Datasets弹性分布式数据集)

    Spark的核心RDD(Resilient Distributed Datasets弹性分布式数据集) 铺垫 在hadoop中一个独立的计算,例如在一个迭代过程中,除可复制的文件系统(HDFS)外没有 ...

  2. 深入理解Spark:核心思想与源码分析

    大数据技术丛书 深入理解Spark:核心思想与源码分析 耿嘉安 著 图书在版编目(CIP)数据 深入理解Spark:核心思想与源码分析/耿嘉安著. -北京:机械工业出版社,2015.12 (大数据技术 ...

  3. 《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(叔篇)——TaskScheduler的启动...

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  4. 《深入理解SPARK:核心思想与源码分析》(第1章)

    自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...

  5. Spark 的核心 RDD 以及 Stage 划分细节,运行模式总结

    精选30+云产品,助力企业轻松上云!>>> 阅读文本大概需要 5 分钟. 以下内容,部分参考网络资料,也有自己的理解, 图片 99% 为自己制作.如有错误,欢迎留言指出,一起交流. ...

  6. 深入理解Spark:核心思想与源码分析. 3.9 启动测量系统MetricsSystem

    3.9 启动测量系统MetricsSystem MetricsSystem使用codahale提供的第三方测量仓库Metrics,有关Metrics的具体信息可以参考附录D.MetricsSystem ...

  7. 《深入理解Spark:核心思想与源码分析》——1.2节Spark初体验

    本节书摘来自华章社区<深入理解Spark:核心思想与源码分析>一书中的第1章,第1.2节Spark初体验,作者耿嘉安,更多章节内容可以访问云栖社区"华章社区"公众号查看 ...

  8. 《深入理解Spark:核心思想与源码分析》——第1章环境准备

    本节书摘来自华章社区<深入理解Spark:核心思想与源码分析>一书中的第1章环境准备,作者耿嘉安,更多章节内容可以访问云栖社区"华章社区"公众号查看 第1章 环 境 准 ...

  9. 《深入理解Spark:核心思想与源码分析》——3.10节创建和启动ExecutorAllocationManager...

    本节书摘来自华章社区<深入理解Spark:核心思想与源码分析>一书中的第3章,第3.10节创建和启动ExecutorAllocationManager,作者耿嘉安,更多章节内容可以访问云栖 ...

最新文章

  1. 诺顿360“偷偷”挖矿被怒喷,杀毒软件手伸向GPU,官方:都是为了用户好
  2. 异常检测概览——孤立森林 效果是最好的
  3. 2018 Wannafly summer camp Day3--Knight
  4. Python初学者选择集成开发环境的原则!可以从以下几个方面着手
  5. redis和mysql实现原理_redis和mysql结合数据一致性方案
  6. 文献学习(part29)
  7. php 垂直搜死哦,垂直搜索(Vertical Search)的详细介绍
  8. ANDROID:SHOWASACTION="NEVER"是做什么用的?
  9. ad导出元件清单_【原创分享】 Altium Designer 一键导出坐标和BOM脚本,V0.6
  10. 算法四:回溯和分支界定
  11. Windows 2000虚拟机安装全过程(VMware)
  12. 4.3.2 信道编码 ——卷积码
  13. 化学元素周期表外层电子排列规律
  14. 字符数组与字符串 统计空格个数
  15. 32.项目总结--技术点部分
  16. ubuntu好用的截图软件flameshot和设置快捷方式截图
  17. 博客备份工具:Blog_Backup
  18. 有些东西,你学不来的
  19. php好趣网抓取_PHP抓取卫视直播源
  20. 【javascript】设计模式

热门文章

  1. Linux 磁盘I/O读写速度检测
  2. Linux中yum和apt-get
  3. java邮箱设置密送_修改后可以发送附件、抄送、密送的javabean,吐血推荐~(javamail范例)...
  4. 学习笔记(四)——JavaScript(一)
  5. pyqt5知识:如何接受密码输入?
  6. JavaScript单行代码
  7. 基于Smith预估器的PID控制在房间湿度控制
  8. 面向特定专业领域的计算机,大学计算机文化基础考试题(本科)基础知识部分
  9. CSS学习16之层级
  10. Caffe学习记录:Cifar-10 自定义网络训练记录