上一篇文章里《用规则做命名实体识别——NER系列(一)》,介绍了最简单的做命名实体识别的方法–规则。这一篇,我们循序渐进,继续介绍下一个模型——隐马尔可夫模型。

隐马尔可夫模型,看上去,和序列标注问题是天然适配的,所以自然而然的,早期很多做命名实体识别和词性标注的算法,都采用了这个模型。

这篇文章我将基于码农场的这篇文章《层叠HMM-Viterbi角色标注模型下的机构名识别》,来做解读。但原文中的这个算法实现是融入在HanLP里面的。不过他也有相应的训练词典,所以我在这篇文章里面也给出一个python实现,做一个简单的单层HMM模型,来识别机构名。

代码地址:https://github.com/lipengfei-558/hmm_ner_organization

1.隐马尔可夫模型(HMM)

隐马尔可夫模型(Hidden Markov Model,HMM),是一个统计模型。

关于这个模型,这里有一系列很好的介绍文章:http://www.52nlp.cn/category/hidden-markov-model

隐马尔可夫模型有三种应用场景,我们做命名实体识别只用到其中的一种——求观察序列的背后最可能的标注序列

即根据输入的一系列单词,去生成其背后的标注,从而得到实体。

2.在序列标注中应用隐马尔可夫模型

HMM中,有5个基本元素:{N,M,A,B,π},我结合序列标志任务对这5个基本元素做一个介绍:

  • N:状态的有限集合。在这里,是指每一个词语背后的标注。
  • M:观察值的有限集合。在这里,是指每一个词语本身。
  • A:状态转移概率矩阵。在这里,是指某一个标注转移到下一个标注的概率。
  • B:观测概率矩阵,也就是发射概率矩阵。在这里,是指在某个标注下,生成某个词的概率。
  • π:初始概率矩阵。在这里,是指每一个标注的初始化概率。

而以上的这些元素,都是可以从训练语料集中统计出来的。最后,我们根据这些统计值,应用维特比(viterbi)算法,就可以算出词语序列背后的标注序列了。

命名实体识别本质上就是序列标注,只需要自己定义好对应的标签以及模式串,就可以从标注序列中提取出实体块了。

3.实战:用HMM实现中文地名识别

3.1 参考论文以及网站

  • 张华平, 刘群. 基于角色标注的中国人名自动识别研究[J]. 计算机学报, 2004, 27(1):85-91.
  • 俞鸿魁, 张华平, 刘群. 基于角色标注的中文机构名识别[C]// Advances in Computation of Oriental Languages–Proceedings of the, International Conference on Computer Processing of Oriental Languages. 2003.
  • 俞鸿魁, 张华平, 刘群,等. 基于层叠隐马尔可夫模型的中文命名实体识别[J]. 通信学报, 2006, 27(2):87-94.
  • 码农场:层叠HMM-Viterbi角色标注模型下的机构名识别

3.2 任务

命名实体识别之中文机构名的识别。

3.3 语料

HanLP(https://github.com/hankcs/HanLP/releases)提供的语料:

我用的是data-for-1.3.3.zip,百度网盘下载地址:

https://pan.baidu.com/s/1o8Rri0y

下载后解压,我们要用的语料路径如下:

\data-for-1.3.3\data\dictionary\organization

其中,里面有两个我们要用到的语料文件,nt.txtnt.tr.txt。这两个文件的数据统计自人民日报语料库。

① nt.txt:

词语标注统计词典,比如里面有一行是这样的:

会议 B 163 C 107 A 10

意思是,会议这个词作为B标签出现了163次,作为C标签出现了107次,作为A标签出现了10次.

② nt.tr.txt:

标签转移矩阵。如下图:

即,每一个标签转移到另一个标签的次数。比如第二行第四列的19945,代表着【A标签后面接着是C标签】出现了19945次。

以上语料我都提取出来放到代码目录的./data下了。

3.4 代码实现

代码的思路很直观,只要按照上面第2部分所说的,准备好5元组数据,然后用viterbi算法解码即可。

3.4.1 N:状态的有限集合

在机构名识别的这个任务中,论文《基于角色标注的中文机构名识别》把状态(角色)定义为以下集合:

然而在HanLP的语料中,只有以下的标签,有多出来的,又不一样的:

A,B,C,D,F,G,I,J,K,L,M,P,S,W,X,Z

经过我的整理,完整的状态(角色)集合如下:

角色 意义 例子
A 上文 参与亚太经合组织的活动
B 下文 中央电视台报道
X 连接词 北京电视台天津电视台
C 特征词的一般性前缀 北京电影学院
F 特征词的人名前缀 何镜堂纪念馆
G 特征词的地名性前缀 交通银行北京分行
K 特征词的机构名、品牌名前缀 中共中央顾问委员会

美国摩托罗拉公司

I 特征词的特殊性前缀 中央电视台

中海油集团

J 特征词的简称性前缀 政府
D 机构名的特征词 国务院侨务办公室
Z 非机构成分  
L 方位词 上游

M 数量词 36
P 数量+单位(名词) 三维

两国

W 特殊符号,如括号,中括号 ()

【】

S 开始标志 始##始

本程序以上面我整理的这个表格的状态角色为准(因为HanLP的语料词典里面就是这样定义的)。

3.4.2 M:观察值的有限集合

在这里,观察值就是我们看到的每个词。

不过有一个地方要注意一下,在语料词典nt.txt中,除了所有词语之外,还有下面8个特殊词语:

  • 始##始
  • 末##末
  • 未##串
  • 未##人
  • 未##团
  • 未##地
  • 未##数
  • 未##时

这些词语可以在层叠HMM中发挥作用,加进去可以提高识别精度,因为很多机构名里面都有人名和地名。

在使用我的这份代码之前,你可以用分词工具先识别出相关的词性,然后将对应命中的词语替换为上面的8个特殊词语,再调用函数,精确率会大大提高。

3.4.3 A:状态转移概率矩阵

在这里,它是指某一个标注转移到下一个标注的概率。

generate_data.pygenerate_transition_probability()函数就是干这事的,它会生成一个transition_probability.txt,即转移概率矩阵。

3.4.4 B:观测概率矩阵(发射概率矩阵)

在这里,他是指在某个标注下,生成某个词的概率。

generate_data.pygenerate_emit_probability()函数就是干这事的,它会生成一个emit_probability.txt,即观测概率矩阵(发射概率矩阵)。

3.4.5 π:初始概率矩阵

在这里,它是指每一个标注的初始化概率。

generate_data.pygenertate_initial_vector()函数就是干这事的,它会生成一个initial_vector.txt,即初始概率矩阵。

3.4.6 维特比(viterbi)算法解码

这部分代码是参考《统计方法》里面的实现写的,做了些调整,使之可以适用于这个机构名识别的任务。函数为viterbi() ,位于OrgRecognize.py里面。

使用这个函数,就能获得最佳标注序列。

3.4.7 匹配标注序列,得到机构名

在3.4.6里面,我们可以得到一个标注序列,哪些标注代表着实体呢?

HanLP作者整理了一个nt.pattern.txt(我也放置在./data/nt.pattern.txt下了),里面是所有可能是机构名的序列模式串(有点粗暴,哈哈),然后用Aho-Corasick算法来进行匹配。

为了简单起见突出重点,我的代码实现里,用的是循环遍历匹配,具体的实现在OrgRecognize.py里面的get_organization,函数的作用是,输入原词语序列、识别出来的标注序列和序列模式串,输出识别出来的机构名实体。

3.4.8 使用程序

代码地址:https://github.com/lipengfei-558/hmm_ner_organization

环境以及依赖:

  • python2.7
  • jieba分词(可选)

首先,运行以下脚本,生成transition_probability.txtemit_probability.txt以及initial_vector.txt

1

python generate_data.py

然后,运行

1

python OrgRecognize.py

就可以了,不出意外,“中海油集团在哪里”这句话,会识别出“中海油集团”这个机构实体。

具体输入的句子逻辑,可以在main函数里面灵活修改,也可以结合jieba一起用。另外,python2.7的中文编码问题要注意了,如果你的输出序列很奇怪,很有可能是编码问题。

4.总结、待改进

用HMM来实现的命名实体识别算法,关键在于标签的自定义,你需要人工定义尽可能多的标签,然后在训练语料集里面自动标注这些标签,这也是最麻烦的地方。标注完语料集,生成HMM中的转移概率、初始概率、发射概率就很简单了,就是纯粹的统计。

整个模型也没什么参数,用这些统计的数字即可计算。

算法可能可以改进的点如下:

  1. 针对命名实体的维特比(viterbi)算法中,如果遇到未登录词,默认发射概率为0。我们可以额外引入相似度机制来解决这个问题,比如利用同义词表或者词向量相似度,我们找到和未登录词相似、同时也在观测概率矩阵里面出现的词语,用这个词语的发射概率(或者对其乘一个缩放系数),来代替未登录词的发射概率。
  2. 初始化概率对最终效果的影响有待考证。因为初始化概率影响着单词序列第一个词的标注,假如,仅仅用发射概率来决定第一个词的标注,效果会不会更好?

HMM算法默认只考虑前一个状态(词)的影响,忽略了更多上下文信息(特征)。后来的MEMM、CRF,都是循序渐进的改进方法。传统机器学习方法里面,CRF是主流,下一篇我会继续介绍CRF在命名实体识别任务上的应用。

代码和语料:
https://www.lookfor404.com/命名实体识别的语料和代码/

https://www.lookfor404.com/%e7%94%a8%e9%9a%90%e9%a9%ac%e5%b0%94%e5%8f%af%e5%a4%ab%e6%a8%a1%e5%9e%8bhmm%e5%81%9a%e5%91%bd%e5%90%8d%e5%ae%9e%e4%bd%93%e8%af%86%e5%88%ab-ner%e7%b3%bb%e5%88%97%e4%ba%8c/

用隐马尔可夫模型(HMM)做命名实体识别——NER系列(二)相关推荐

  1. 用隐马尔可夫模型(HMM)做命名实体识别——NER系列(一)

    原博python2写的,文末是我改的python3代码 隐马尔可夫模型,看上去,和序列标注问题是天然适配的,所以自然而然的,早期很多做命名实体识别和词性标注的算法,都采用了这个模型. 这篇文章我将基于 ...

  2. 隐马尔可夫模型(HMM)实现命名实体识别(NER)

    隐马尔可夫模型(HMM)实现命名实体识别(NER) 一.命名实体识别(Named Entity Recognition,NER) 识别文本中具有特定意义的实体,包括人名.地名.机构名.专有名词等等 在 ...

  3. viterbi维特比算法和隐马尔可夫模型(HMM)

    阅读目录 隐马尔可夫模型(HMM) 回到目录 隐马尔可夫模型(HMM) 原文地址:http://www.cnblogs.com/jacklu/p/7753471.html 本文结合了王晓刚老师的ENG ...

  4. 机器学习知识点(二十五)Java实现隐马尔科夫模型HMM之jahmm库

    1.隐马尔可夫模型HMM的应用场景,关乎于序列和状态变化的都可以.    发现java有可库,专为开发HMM,可惜只能在CSDN上有得下载.     2.jahmm是java开发隐马尔科夫模型的一个j ...

  5. 机器学习知识点(二十四)隐马尔可夫模型HMM维特比Viterbi算法Java实现

    1.隐马尔可夫模型HMM    学习算法,看中文不如看英文,中文喜欢描述的很高深.    http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/ht ...

  6. 隐马尔科夫模型HMM自学 (3)

    Viterbi Algorithm 本来想明天再把后面的部分写好,可是睡觉今天是节日呢?一时情不自禁就有打开电脑.......... 找到可能性最大的隐含状态序列 崔晓源 翻译 多数情况下,我们都希望 ...

  7. 隐马尔科夫模型HMM自学 (2)

    HMM 定义 崔晓源 翻译 HMM是一个三元组 (,A,B).  the vector of the initial state probabilities;  the state transitio ...

  8. 隐马尔科夫模型HMM自学(1)

    介绍 崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首 ...

  9. 【NLP】用于语音识别、分词的隐马尔科夫模型HMM

    大家好,今天介绍自然语言处理中经典的隐马尔科夫模型(HMM).HMM早期在语音识别.分词等序列标注问题中有着广泛的应用. 了解HMM的基础原理以及应用,对于了解NLP处理问题的基本思想和技术发展脉络有 ...

最新文章

  1. Windows之建立C++开发环境
  2. Java泛型三:通配符详解extends super
  3. erlang虚拟机精要(1)-运行时系统简介
  4. Nacos服务注册接口
  5. 看阿里云如何为直播用户营造临场沉浸感?
  6. 入门:HTML表单与Java 后台交互(复选框提交)
  7. mysql数据库学习汇总
  8. UVA11105 H-半素数 Semi-prime H-numbers(线性筛+前缀和+暴力)
  9. 生活大爆炸第四季 那些精妙的台词翻译
  10. 江苏东方四通科技股份有限公司参观学习有感
  11. 项目经历怎么写_工程监理简历范文,【工作经历+项目经验+自我评价】怎么写...
  12. S71200西门子PLC一个设计的接线图
  13. 【python】BeautifulSoup的应用
  14. Splinter入门(十一) Screenshot 截图
  15. DirectX考点归纳
  16. 喝汽水,1瓶汽水1元,2个空瓶可以换1瓶汽水,给20元可以喝多少汽水?
  17. 【微信小程序】实现广告轮播图
  18. 盘点一个网络爬虫中常见的一个错误
  19. 小鹏汽车吴新宙:要做全国第一 | 专访
  20. 是正经的区块链技术还是剑走偏锋搏一回?

热门文章

  1. mongodb实现对某列求和SUM
  2. memcache运行机制(转)
  3. bailian 2754八皇后
  4. 编程方法学21:监听器和迭代器回顾
  5. 编程方法学20:图形用户界面
  6. SCons命令 之 从入门到精通
  7. Linux sem_init函数用法
  8. u盘安装linux启动报错,U盘安装centos7,启动报错
  9. 嵌入式编程与c语言有何区别,有的嵌入式设备也提供C++编译器,那还有理由坚持使用C语言吗?...
  10. WinForm学习笔记(2)