目录

1. 什么是超参数

2. 超参数类型

3. 主流超参优化方法

(1)手动调参

缺点:

python代码:(例子)

手动调参 参数的重要性顺序

超参具体如何影响模型性能

超参合适的范围

(2)网格搜索

缺点:

python代码:

(3)随机搜索

缺点:

python代码:

(4)贝叶斯搜索

缺点:

python代码:

3. 新型超参优化方法--VeLO

如何打造AI优化器?

新型优化器评价


1. 什么是超参数

超参数是在建立模型时用来控制算法行为的参数。这些参数不能从正常的训练过程中学习。他们需要在训练模型之前被分配。

百度的超参数的定义:

在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,需要对超参数进行优化,给学习机选择一组最优超参数,以提高学习的性能和效果

Dr.Mukesh Rao的超参数样本清单

2. 超参数类型

神经网络的超参数主要分为2种:

1)网络结构相关:网络中间层数量、类型(全连接、丢弃层、归一化层、卷积层等)、每层神经元数量、激活函数等

2)模型训练相关:损失函数、优化方法、批次大小、迭代次数、学习率、正则方法和系数、初始化方法等

3. 主流超参优化方法

(1)手动调参

自己定义参数的范围,然后反复试验进行调整。

缺点:

  1. 不能保证得到最佳的参数组合。
  2. 耗时费力。

python代码:(例子)

#importing required libraries
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold , cross_val_score
from sklearn.datasets import load_winewine = load_wine()
X = wine.data
y = wine.target#splitting the data into train and test set
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3,random_state = 14)#declaring parameters grid
k_value = list(range(2,11))
algorithm = ['auto','ball_tree','kd_tree','brute']
scores = []
best_comb = []
kfold = KFold(n_splits=5)#hyperparameter tunning
for algo in algorithm:for k in k_value:knn = KNeighborsClassifier(n_neighbors=k,algorithm=algo)results = cross_val_score(knn,X_train,y_train,cv = kfold)print(f'Score:{round(results.mean(),4)} with algo = {algo} , K = {k}')scores.append(results.mean())best_comb.append((k,algo))best_param = best_comb[scores.index(max(scores))]
print(f'\nThe Best Score : {max(scores)}')
print(f"['algorithm': {best_param[1]} ,'n_neighbors': {best_param[0]}]")

手动调参 参数的重要性顺序

  •  学习率

在网络参数、优化参数、正则化参数中最重要的超参数可能就是学习率了。学习率直接控制着训练中网络梯度更新的量级,直接影响着模型的有效容限能力

  • 损失函数上的可调参数

损失函数上的可调参数,这些参数通常情况下需要结合实际的损失函数来调整,大部分情况下这些参数也能很直接的影响到模型的的有效容限能力。

这些损失一般可分成三类:

第一类,辅助损失结合常见的损失函数,起到辅助优化特征表达的作用。例如度量学习中的Center loss,通常结合交叉熵损失伴随一个权重完成一些特定的任务。这种情况下一般建议辅助损失值不高于或者不低于交叉熵损失值的两个数量级;

第二类,多任务模型的多个损失函数,每个损失函数之间或独立或相关,用于各自任务,这种情况取决于任务之间本身的相关性,目前笔者并没有一个普适的经验由于提供参考;

第三类,独立损失函数,这类损失通常会在特定的任务有显著性的效果。例如RetinaNet中的focal loss,其中的参数γ,α,对最终的效果会产生较大的影响。这类损失通常论文中会给出特定的建议值。

  • 批样本数量,动量优化器(Gradient Descent with Momentum)的动量参数β

批样本决定了数量梯度下降的方向。过小的批数量,极端情况下,例如batch size为1,即每个样本都去修正一次梯度方向,样本之间的差异越大越难以收敛。若网络中存在批归一化(batchnorm),batch size过小则更难以收敛,甚至垮掉。这是因为数据样本越少,统计量越不具有代表性,噪声也相应的增加。而过大的batch size,会使得梯度方向基本稳定,容易陷入局部最优解,降低精度。一般参考范围会取在[1:1024]之间,当然这个不是绝对的,需要结合具体场景和样本情况;

动量衰减参数β是计算梯度的指数加权平均数,并利用该值来更新参数,设置为 0.9 是一个常见且效果不错的选择;

  • Adam优化器的超参数、权重衰减系数、丢弃法比率(dropout)和网络参数

这些参数在大部分实践中不建议过多尝试,例如Adam优化器中的β1,β2,ϵ,常设为 0.9、0.999、10−8就会有不错的表现。

权重衰减系数通常会有个建议值,例如0.0005 ,使用建议值即可,不必过多尝试。

dropout通常会在全连接层之间使用防止过拟合,建议比率控制在[0.2,0.5]之间。

使用dropout时需要特别注意两点:

一、在RNN中,如果直接放在memory cell中,循环会放大噪声,扰乱学习。一般会建议放在输入和输出层;

二、不建议dropout后直接跟上batchnorm,dropout很可能影响batchnorm计算统计量,导致方差偏移,这种情况下会使得推理阶段出现模型完全垮掉的极端情况;

网络参数通常也属于超参数的范围内,通常情况下增加网络层数能增加模型的容限能力,但模型真正有效的容限能力还和样本数量和质量、层之间的关系等有关,所以一般情况下会选择先固定网络层数,调优到一定阶段或者有大量的硬件资源支持可以在网络深度上进行进一步调整。

超参具体如何影响模型性能

超参合适的范围

(2)网格搜索

网格搜索类似于手动调优,对所有超参值进行排列组合,然后创建模型,并评估和选择最佳模型。

考虑上面的例子,它有两个超参数 k_value =[2,3,4,5,6,7,8,9,10] 和 algorithm = [‘auto’ , ’ball_tree’ , ’kd_tree’ , ’brute’],在这种情况下,它总共构建了9 * 4 = 36个不同的模型。

缺点:

排列组合交叉验证,导致速度很慢。

python代码:

from sklearn.model_selection import GridSearchCVknn = KNeighborsClassifier()
grid_param = { 'n_neighbors' : list(range(2,11)) , 'algorithm' : ['auto','ball_tree','kd_tree','brute'] }grid = GridSearchCV(knn,grid_param,cv = 5)
grid.fit(X_train,y_train)#best parameter combination
grid.best_params_#Score achieved with best parameter combination
grid.best_score_#all combinations of hyperparameters
grid.cv_results_['params']#average scores of cross-validation
grid.cv_results_['mean_test_score']

(3)随机搜索

为什么考虑随机搜索?--在许多情况下,所有的超参数可能并非同等重要。

随机搜索从超参数空间中随机选择参数组合,参数按 n_iter 给定的迭代次数进行选择。随机搜索已经被实践证明比网格搜索得到的结果更好。

缺点:

不能保证给出最佳的参数组合。

python代码:

from sklearn.model_selection import RandomizedSearchCVknn = KNeighborsClassifier()grid_param = { 'n_neighbors' : list(range(2,11)) , 'algorithm' : ['auto','ball_tree','kd_tree','brute'] }rand_ser = RandomizedSearchCV(knn,grid_param,n_iter=10)
rand_ser.fit(X_train,y_train)#best parameter combination
rand_ser.best_params_#score achieved with best parameter combination
rand_ser.best_score_#all combinations of hyperparameters
rand_ser.cv_results_['params']#average scores of cross-validation
rand_ser.cv_results_['mean_test_score']

(4)贝叶斯搜索

贝叶斯优化属于一类被称为sequential model-based optimization(SMBO)的优化算法。这些算法使用先前对损失 f 的观测,来确定下一个(最佳)点来取样 f。该算法大致可以概括如下。

  1. 使用先前计算过的点 X1: n,计算损失 f 的后验期望值。
  2. 在一个新的点 Xnew取样损失 f ,它最大化了 f 的期望的某些效用函数。该函数指定 f 域的哪些区域是最适合采样的。

重复这些步骤,直到达到某种收敛准则。

缺点:

在2维或3维搜索空间中,需要十几个样本才能得到一个良好的替代曲面(surrogate surface); 增加搜索空间的维数需要更多的样本。

python代码:

from skopt import BayesSearchCVimport warnings
warnings.filterwarnings("ignore")# parameter ranges are specified by one of below
from skopt.space import Real, Categorical, Integerknn = KNeighborsClassifier()
#defining hyper-parameter grid
grid_param = { 'n_neighbors' : list(range(2,11)) , 'algorithm' : ['auto','ball_tree','kd_tree','brute'] }#initializing Bayesian Search
Bayes = BayesSearchCV(knn , grid_param , n_iter=30 , random_state=14)
Bayes.fit(X_train,y_train)#best parameter combination
Bayes.best_params_#score achieved with best parameter combination
Bayes.best_score_#all combinations of hyperparameters
Bayes.cv_results_['params']#average scores of cross-validation
Bayes.cv_results_['mean_test_score']

3. 新型超参优化方法--VeLO

让AI自己调整超参数,谷歌大脑新优化器火了,自适应不同任务,83个任务训练加速比经典Adam更快。

现在,谷歌大脑搞出了一个新的优化器VeLO,无需手动调整任何超参数,直接用就完事了

与其他人工设计的如Adam、AdaGrad等算法不同,VeLO完全基于AI构造,能够很好地适应各种不同的任务。

当然,效果也更好。论文作者之一Lucas Beyer将VeLO与其他“重度”调参的优化器进行了对比,性能不相上下。所以,这个基于AI的优化器是如何打造的?

如何打造AI优化器?

在训练神经网络的过程中,优化器(optimizer)是必不可少的一部分。

设计上,优化器的原理基于元学习的思路,即从相关任务上学习经验,来帮助学习目标任务。

相比迁移学习,元学习更强调获取元知识,它是一类任务上的通用知识,可以被泛化到更多任务上去。

基于这一思想,VeLO也会吸收梯度并自动输出参数更新,无需任何超参数调优,并自适应需要优化的各种任务。

架构上,AI优化器整体由LSTM(长短期记忆网络)和超网络MLP(多层感知机)构成。

其中每个LSTM负责设置多个MLP的参数,各个LSTM之间则通过全局上下文信息进行相互协作。

训练上,AI优化器采用元训练的方式,以参数值和梯度作为输入,输出需要更新的参数。

经过4000个TPU月(一块TPU运行4000个月的计算量)的训练,集各种优化任务之所长后,VeLO终于横空出世。

新型优化器评价

结果表明,VeLO在83个任务上的加速效果超过了一系列当前已有的优化器。

其中y轴是相比Adam加速的倍率,x轴是任务的比例。

结果显示,VeLO不仅比无需调整超参数的优化器效果更好,甚至比仔细调整过超参数的一些优化器效果还好:

与“经典老大哥”Adam相比,VeLO在所有任务上训练加速都更快,其中50%以上的任务比调整学习率的Adam快4倍以上,14%以上的任务中,VeLO学习率甚至快上16倍。

而在6类学习任务(数据集+对应模型)的优化效果上,VeLO在其中5类任务上表现效果都与Adam相当甚至更好:

值得一提的是,这次VeLO也被部署在JAX中,看来谷歌是真的很大力推广这个新框架了。

目前VeLO已经开源,感兴趣的小伙伴们可以去试试这个新的AI优化器。

GitHub地址:
https://github.com/google/learned_optimization/tree/main/learned_optimization/research/general_lopt

论文地址:
https://arxiv.org/abs/2211.09760


参考资料:

  1. https://thuijskens.github.io/2016/12/29/bayesian-optimisation/
  2. scikit-optimize Documentation
  3. bayesian-optimization Documentation
  4. PyVision公众号  Sivasai Yadav Mudugandla
  5. https://www.jianshu.com/p/6602c76cc801
  6. https://twitter.com/jmes_harrison/status/1593422054971174912

  7. https://medium.com/huggingface/from-zero-to-research-an-introduction-to-meta-learning-8e16e677f78a#afeb

  8. https://mp.weixin.qq.com/s/QLzdW6CMkcXWQbGjtOBNwg

【超全面】机器学习中的超参优化方法总结相关推荐

  1. 2、机器学习中的调参:随机搜索和网格搜索

    机器学习中的调参 前言 1.随机搜索 2. 网格搜索 前言 超参数调优是机器学习中的重要一环,拿随机森林算法而言,树的个数,数的深度,剪枝参数等等需要找到最优的参数组合,超参数较少时,我们可以采用fo ...

  2. 机器学习中的特征——特征选择的方法以及注意点

    机器学习中的特征--特征选择的方法以及注意点 https://blog.csdn.net/google19890102/article/details/40019271 关于机器学习中的特征我有话要说 ...

  3. python svm超参数_sklearn中的超参数调节

    进行参数的选择是一个重要的步骤.在机器学习当中需要我们手动输入的参数叫做超参数,其余的参数需要依靠数据来进行训练,不需要我们手动设定.进行超参数选择的过程叫做调参. 进行调参应该有一下准备条件: 一个 ...

  4. 一文介绍机器学习中的三种特征选择方法

    作者 | luanhz 来源 | 小数志 导读 机器学习中的一个经典理论是:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限.也正因如此,特征工程在机器学习流程中占有着重要地位.广义的特征 ...

  5. 机器学习中防止过拟合的方法总结

    来自机器学习成长之路公众号 在对模型进行训练时,有可能遇到训练数据不够,即训练数据无法对整个数据的分布进行估计的时候,或者在对模型进行过度训练(overtraining)时,常常会导致模型的过拟合(o ...

  6. 应用在机器学习中的聚类数据集产生方法

    简 介: 本文根据 机器学习中常用的聚类数据集生成方法 中的内容进行编辑实验和整理而得.并在之后对于聚类数据库生成进行不断的补充. 关键词: 机器学习,聚类算法,数据集合 §01 直接生成   这类方 ...

  7. 【力荐】Select查询语句中LIKE关键词的优化方法分析

    今天接到一个优化需求,跑个程序要12+个小时,周期是每天一次,所以时效性极差,不能响应快速的实际业务需求,下面我们看一段LIKE的优化方法. SELECT     bukrs werks lgort ...

  8. 机器学习中数据预处理——标准化/归一化方法(scaler)

    由于工作问题比较忙,有两周没有总结一下工作学习中遇到的问题. 这篇主要是关于机器学习中的数据预处理的scaler变化. 工作中遇到的问题是:流量预测问题,拿到的数据差距非常大,凌晨的通话流量很少几乎为 ...

  9. MySQL中常用的SQL优化方法

    SQL优化的方法有很多种,针对平时的情况总结一下几种: 以下用到的表和数据,可以通过这篇文章中的语句添加: MySQL执行计划explain的详解_蓝星部队的博客-CSDN博客一.如何查看SQL执行计 ...

最新文章

  1. 一步一步SharePoint 2007之三十七:在SharePoint中实现Workflow(3)——运行Workflow
  2. TCP客户机-服务器
  3. linux更换网卡不识别_详解Linux双网卡绑定脚本的方法示例
  4. 04:网络层协议介绍
  5. Chinese savior crepe
  6. iOS标准库中常用数据结构和算法之二叉排序树
  7. ADS1220 使用FPGA调试
  8. LeetCode 1406. 石子游戏 III(DP)
  9. 动态路由RIP的简易配置
  10. draw9patch做一个中心不变形的图片
  11. 概率模型中的 报童问题 matlab求解
  12. python新版个人所得税代码_个人所得税计算代码
  13. 高项47个过程及输入、输出、工具解释
  14. python 爬取有道词典翻译
  15. FortiClient VPN连接至98%时报错:Unable to establish the VPN connection.(E=98,T-981011001,M99,R10)
  16. vue01-前端知识体系(狂神)
  17. css 实现弹框滚动条
  18. 机械手标定旋转中心偏移公示推导
  19. 如何在Java中将GIF图像转换为PNG等图像格式?试试Aspose
  20. 【伪技术宅拯救世界】使用aria2gui完成百度云不限速下载

热门文章

  1. 第三章 SQL错误信息
  2. 3D美术人员Technical Artist(TA技术美术)的学习之旅(3)
  3. php 计算字数,实现word一样的字数计算
  4. 固定利率,会是下一个异军突起的DeFi热点吗?
  5. SpringBoot_liquibase使用
  6. iOS OC语言(二) 类
  7. android glide圆形图片,Glide原生方法加载圆形图片
  8. linux基础知识总结(上)
  9. FPGA中inout端口使用方法总结
  10. 6.easyui+ztree案例:zTree树