目录

系列一:统计语言模型 (Statistical Language Models)

系列二:谈谈中文分词

系列三:隐含马尔可夫模型在语言处理中的应用

系列四:怎样度量信息

系列五:布尔代数与搜索引擎的索引

系列六:图论和网络爬虫

系列七:信息论在信息处理中的应用

系列九:如何确定网页和查询的相关性

系列十:有限状态机和地址识别

系列十二:余弦定理和新闻的分类

系列十三:信息指纹及其应用

系列十六: 不要把所有的鸡蛋放在一个篮子里--最大熵模型

系列十七: 闪光的不一定是金子 谈谈搜索引擎作弊问题

系列十八: 矩阵运算和文本处理中的分类问题

系列十九: 马尔可夫链的扩展 贝叶斯网络

系列二十: 布隆过滤器(Bloom Filter)

系列二十二: 由电视剧《暗算》所想到的 — 谈谈密码学的数学原理

系列二十三: 输入一个汉字需要敲多少个键 — 谈谈香农第一定律

系列二十四:从全球导航到输入法——谈谈动态规划


系列一:统计语言模型 (Statistical Language Models)

首先成功利用数学方法解决自然语言处理问题的是语音和语言处理大师贾里尼克 (Fred Jelinek)

如 果 S 表示一连串特定顺序排列的词 w1, w2,…, wn ,换句话说,S 可以表示某一个由一连串特定顺序排列的词而组成的一个有意义的句子。现在,机器对语言的识别从某种角度来说,就是想知道S在文本中出现的可能性,也就是数学上所说的S的概率用 P(S) 来表示。利用条件概率的公式,S 这个序列出现的概率等于每一个词出现的概率相乘,于是P(S) 可展开为:

P(S) = P(w1)P(w2|w1)P(w3| w1 w2)…P(wn|w1 w2…wn-1)

我们假定任意一个词wi的出现概率只同它前面的词 wi-1 有关(即马尔可夫假设)

S 出现的概率就变为

P(S) = P(w1)P(w2|w1)P(w3|w2)…P(wi|wi-1)…

接下来的问题就是如何估计 P (wi|wi-1)。现在有了大量机读文本后,只要数一数这对词(wi-1,wi) 在统计的文本中出现了多少次,以及 wi-1 本身在同样的文本中前后共出现了多少次,然后用两个数一除就可以了,P(wi|wi-1) = P(wi-1,wi)/ P (wi-1)

李开复用统计语言模型把 997 词语音识别的问题简化成了一个 20 词的识别问题,实现了有史以来第一次大词汇量非特定人连续语音的识别


系列二:谈谈中文分词

统计语言模型建立在词的基础上的,对于中日韩等语言,首先需要进行分词

例如把句子“中国航天官员应邀到美国与太空总署官员开会。”分成一串词:

中国 / 航天 / 官员 / 应邀 / 到 / 美国 / 与 / 太空 / 总署 / 官员 / 开会

最简单的分词办法就是查字典。这种方法最早是由北京航天航空大学的梁南元教授提出的

其实就是把一个句子从左向右扫描一遍,遇到字典里有的词就标识出来,遇到复合词(比如“上海大学”)就找最长的词匹配,遇到不认识的字串就分割成单字词

八十年代,哈工大的王晓龙博士把它理论化,发展成最少词数的分词理论,即一句话应该分成数量最少的词串。这种方法一个明显的不足是当遇到有二义性的分割时就无能为力了。比如,对短语 “发展中国家” 正确的分割是“发展-中-国家”,而从左向右查字典的办法会将它分割成“发展-中国-家”,显然是错了。另外,并非所有的最长匹配都一定是正确的。比如“ 上海大学城书店”的正确分词应该是 “上海-大学城-书店,” 而不是 “上海大学-城-书店”。

90年前后,清华大学的郭进博士用统计语言模型成功解决分词二义性问题,将汉语分词的错误率降低了一个数量级。

我们假定一个句子S可以有几种分词方法,为了简单起见我们假定有以下三种:

A1, A2, A3, ..., Ak

B1, B2, B3, ..., Bm

C1, C2, C3, ..., Cn

其中,A1, A2, B1, B2, C1, C2 等等都是汉语的词。那么最好的一种分词方法应该保证分完词后这个句子出现的概率最大。也就是说如果 A1,A2,..., Ak 是最好的分法,那么:

P (A1, A2, A3, ..., Ak)> P (B1, B2, B3, ..., Bm) 且

P (A1, A2, A3, ..., Ak)> P(C1, C2, C3, ..., Cn)

因此,只要我们利用上回提到的统计语言模型计算出每种分词后句子出现的概率,并找出其中概率最大的,我们就能够找到最好的分词方法。

但是,如果我们穷举所有可能的分词方法并计算出每种可能性下句子的概率,那么计算量是相当大的

我们可以把它看成是一个动态规划(Dynamic Programming) 的问题,并利用 “维特比”(Viterbi) 算法快速地找到最佳分词。

相关论文如下

梁南元 书面汉语自动分词系统

http://www.touchwrite.com/demo/LiangNanyuan-JCIP-1987.pdf

郭进 统计语言模型和汉语音字转换的一些新结果

http://www.touchwrite.com/demo/GuoJin-JCIP-1993.pdf

郭进 Critical Tokenization and its Properties

http://acl.ldc.upenn.edu/J/J97/J97-4004.pdf

孙茂松Chinese word segmentation without using lexicon and hand-crafted training data

Chinese word segmentation without using lexicon and hand-crafted training data | Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics - Volume 2


系列三:隐含马尔可夫模型在语言处理中的应用

怎么根据接收到的信息来推测说话者想表达的意思呢?

以语音识别为例,当我们观测到语音信号 o1,o2,o3 时,我们要根据这组信号推测出发送的句子 s1,s2,s3。显然,我们应该在所有可能的句子中找最有可能性的一个。用数学语言来描述,就是在已知 o1,o2,o3,...的情况下,求使得条件概率P (s1,s2,s3,...|o1,o2,o3....) 达到最大值的那个句子 s1,s2,s3,...

当然,上面的概率不容易直接求出,于是我们可以间接地计算它

利用贝叶斯公式并且省掉一个常数项(P(B)和s1,s2,s3,...的选择无关,因此为常数项

可以把上述公式等价变换成

P(o1,o2,o3,...|s1,s2,s3....) * P(s1,s2,s3,...)

其中P(o1,o2,o3,...|s1,s2,s3....) 表示某句话 s1,s2,s3...被读成 o1,o2,o3,...的可能性, 而P(s1,s2,s3,...) 表示字串 s1,s2,s3,...本身能够成为一个合乎情理的句子的可能性,所以这个公式的意义是用发送信号为 s1,s2,s3...这个数列的可能性乘以 s1,s2,s3...本身可以构成一个句子的可能性,得出概率。

我们在这里做两个假设

  • 马尔可夫假设 s1,s2,s3,... 是一个马尔可夫链,也就是说,si 只由 si-1 决定;

P(S) = P(s1)P(s2|s1)P(s3|s2)…P(si|si-1)…

  • 独立输出假设 第 i 时刻的接收信号 oi 只由发送信号 si 决定

即 P(o1,o2,o3,...|s1,s2,s3....) = P(o1|s1) * P(o2|s2)*P(o3|s3)...

我们就可以很容易利用算法 Viterbi 找出上面式子的最大值,进而找出要识别的句子 s1,s2,s3,...。

满足上述两个假设的模型就叫隐含马尔可夫模型

隐含马尔可夫模型的应用远不只在语音识别中。在上面的公式中,如果我们把 s1,s2,s3,...当成中文,把 o1,o2,o3,...当成对应的英文,那么我们就能利用这个模型解决机器翻译问题; 如果我们把 o1,o2,o3,...当成扫描文字得到的图像特征,就能利用这个模型解决印刷体和手写体的识别

在利用隐含马尔可夫模型解决语言处理问题前,先要进行模型的训练。 常用的训练方法由伯姆(Baum)在60年代提出的,并以他的名字命名。


系列四:怎样度量信息

1948 年,香农提出了"信息熵" 的概念,解决了对信息的量化度量问题

一本五十万字的中文书平均有多少信息量常用的汉字大约有 7000 字。假如每个字等概率,那么我们大约需要 13 个比特表示一个汉字。但汉字的使用是不平衡的。实际上,前 10% 的汉字占文本的 95% 以上。因此,即使不考虑上下文的相关性,而只考虑每个汉字的独立的概率,那么,每个汉字的信息熵大约也只有 8-9 个比特。如果我们再考虑上下文相关性,每个汉字的信息熵只有5比特左右。所以,一本五十万字的中文书,信息量大约是 250 万比特。


系列五:布尔代数与搜索引擎的索引

AND

1

0

1

1

0

0

0

0

OR

1

0

1

1

1

0

1

0

NOT

1

0

0

1

文献检索和布尔运算的关系:对于一个用户输入的关键词,搜索引擎要判断每篇文献是否含有这个关键词,如果一篇文献含有它,我们相应地给这篇文献一个逻辑值 -- 真(TRUE,或 1),否则,给一个逻辑值 -- 假(FALSE, 或0)

早期的文献检索查询系统大多基于数据库,严格要求查询语句符合布尔运算。今天的搜索引擎可以自动把用户的查询语句转换成布尔运算的算式。当然在查询时,不能将每篇文献扫描一遍,因此需要建立一个索引


系列六:图论和网络爬虫

图论中所讨论的的图由一些节点和连接这些节点的弧组成。如果我们把中国的城市当成节点,连接城市的国道当成弧,那么全国的公路干线网就是图论中所说的图。关于图的算法有很多,但最重要的是图的遍历算法,也就是如何通过弧访问图的各个节点。

以中国公路网为例,我们从北京出发,看一看北京和哪些城市直接相连,比如说和天津、济南、石家庄、南京、沈阳、大同直接相连。我们可以依次访问这些城市,然后我们看看都有哪些城市和这些已经访问过的城市相连,比如说北戴河、秦皇岛与天津相连,青岛、烟台和济南相连,太原、郑州和石家庄相连等等,我们再一次访问北戴河这些城市,直到中国所有的城市都访问过一遍为止。这种图的遍历算法称为"广度优先算法"(BFS),因为它先要尽可能广地访问每个节点所直接连接的其他节点

另外还有一种策略是从北京出发,随便找到下一个要访问的城市,比如是济南,然后从济南出发到下一个城市,比如说南京,再访问从南京出发的城市,一直走到头。然后再往回找,看看中间是否有尚未访问的城市。这种方法叫"深度优先算法"(DFS),因为它是一条路走到黑。这两种方法都可以保证访问到全部的城市

现在我们看看图论的遍历算法和搜索引擎的关系。互联网其实就是一张大图,我们可以把每一个网页当作一个节点,把那些超链接(Hyperlinks)当作连接网页的弧。有了超链接,我们可以从任何一个网页出发,用图的遍历算法,自动地访问到每一个网页并把它们存起来。完成这个功能的程序叫做网络爬虫,或者在一些文献中称为"机器人" (Robot)。世界上第一个网络爬虫是由麻省理工学院的学生马休.格雷(Matthew Gray)在 1993 年写成的。他给他的程序起了个名字叫"互联网漫游者"("www wanderer")

当然,我们也要记载哪个网页下载过了,以免重复。在网络爬虫中,我们使用一个称为"哈希表"(Hash Table)的列表记录网页是否下载过的信息。


系列七:信息论在信息处理中的应用

贾里尼克从信息熵出发,定义了一个称为语言模型复杂度(Perplexity)的概念,直接衡量语言模型的好坏。一个模型的复杂度越小,模型越好

互信息”是信息熵的引申概念,它是对两个随机事件相关性的度量。比如说随机事件北京下雨和随机变量空气湿度的相关性就很大,但是和姚明所在的休斯敦火箭队是否能赢公牛队几乎无关。互信息就是用来量化度量这种相关性的。在自然语言处理中,经常要度量一些语言现象的相关性。比如在机器翻译中,最难的问题是词义的二义性问题。比如Bush一词可以是美国总统的名字,也可以是灌木丛。那么如何正确地翻译这个词呢?人们很容易想到要用语法、要分析语句等等。其实,至今为止,没有一种语法能很好解决这个问题,真正实用的方法是使用互信息。具体的解决办法大致如下:首先从大量文本中找出和总统布什一起出现的互信息最大的一些词,比如总统、美国、国会、华盛顿等等;再用同样的方法找出和灌木丛一起出现的互信息最大的词,比如土壤、植物、野生等等。有了这两组词,在翻译Bush 时,看看上下文中哪类相关的词多就可以了。这种方法最初是由吉尔(Gale),丘奇(Church)和雅让斯基(Yarowsky)提出的

相对熵”,在有些文献中被称为成“交叉熵”。相对熵用来衡量两个正函数是否相似,对于两个完全相同的函数,它们的相对熵等于零。在自然语言处理中可以用相对熵来衡量两个常用词(在语法上和语义上)是否同义,或者两篇文章的内容是否相近等等。


系列九:如何确定网页和查询的相关性

现在任何一个搜索引擎都包含几十万甚至是上百万个多少有点关系的网页。那么哪个应该排在前面呢?这里的关键问题是如何度量网页和查询的相关性。

短语“原子能的应用”可以分成三个关键词:原子能、的、应用。根据我们的直觉,我们知道,包含这三个词多的网页应该比包含它们少的网页相关。当然,这个办法有一个明显的漏洞,就是长的网页比短的网页占便宜,因为长的网页总的来讲包含的关键词要多些。因此我们需要根据网页的长度,对关键词的次数进行归一化,也就是用关键词的次数除以网页的总字数。我们把这个商称为“关键词的频率”,或者“单文本词汇频率”(Term Frequency),比如,在某个一共有一千词的网页中“原子能”、“的”和“应用”分别出现了 2 次、35 次 和 5 次,那么它们的词频就分别是 0.002、0.035 和 0.005。 我们将这三个数相加,其和 0.042 就是相应网页和查询“原子能的应用”相关性的一个简单的度量。概括地讲,如果一个查询包含关键词 w1,w2,...,wN, 它们在一篇特定网页中的词频分别是: TF1, TF2, ..., TFN。那么,这个查询和该网页的相关性就是:TF1 + TF2 + ... + TFN。

读者可能已经发现了又一个漏洞。在上面的例子中,词“的”站了总词频的 80% 以上,而它对确定网页的主题几乎没有用。我们称这种词叫“应删除词”(Stopwords),也就是说在度量相关性是不应考虑它们的频率。在汉语中,应删除词还有“是”、“和”、“中”、“地”、“得”等等几十个。

读者可能还会发现另一个小的漏洞。在汉语中,“应用”是个很通用的词,而“原子能”是个很专业的词,后者在相关性排名中比前者重要。因此我们需要给汉语中的每一个词给一个权重,这个权重的设定必须满足下面两个条件

  • 一个词预测主题能力越强,权重就越大,反之,权重就越小。
  • 应删除词的权重应该是零

如果一个关键词只在很少的网页中出现,我们通过它就容易锁定搜索目标,它的权重也就应该大。反之如果一个词在大量网页中出现,我们看到它仍然不很清楚要找什么内容,因此它应该小。概括地讲,假定一个关键词w在Dw个网页中出现过,那么Dw越大,w的权重越小,反之亦然。在信息检索中,使用最多的权重是“逆文本频率指数” (Inverse document frequency 缩写为IDF),它的公式为log(D/Dw)其中D是全部网页数。比如,我们假定中文网页数是D=10亿,应删除词“的”在所有的网页中都出现,即 Dw=10亿,那么它的IDF=log(10亿/10亿)= 0。假如专用词“原子能”在两百万个网页中出现,即Dw=200万,则它的权重IDF=log(500) =6.2。又假定通用词“应用”,出现在五亿个网页中,它的权重IDF= log(2)≈0.7。也就只说,在网页中找到一个“原子能”的比配相当于找到九个“应用”的匹配。利用IDF,上述相关性计算个公式就由词频的简单求和变成了加权求和,即 TF1*IDF1 + TF2*IDF2 +... + TFN*IDFN。在上面的例子中,该网页和“原子能的应用”的相关性为 0.0161,其中“原子能”贡献了 0.0126,而“应用”只贡献了0.0035。这个比例和我们的直觉比较一致了。


系列十:有限状态机和地址识别

地址的识别和分析是本地搜索必不可少的技术,尽管有许多识别和分析地址的方法,最有效的是有限状态机

一个有限状态机是一个特殊的有向图,它包括一些状态(节点)和连接这些状态的有向弧。

每一个有限状态机都有一个启始状态和一个终止状态和若干中间状态。每一条弧上带有从一个状态进入下一个状态的条件。比如,在某图中当前的状态是"省",如果遇到一个词组和(区)县名有关,我们就进入状态"区县";如果遇到的下一个词组和城市有关,那么我们就进入"市"的状态,如此等等。如果一条地址能从状态机的起始状态经过状态机的若干中间状态,走到终止状态,那么这条地址则有效,否则无效。比如说,"北京市双清路83号"对于上面的有限状态来讲有效,而 "上海市辽宁省马家庄"则无效(因为无法从市走回到省)。

使用有限状态机识别地址,关键要解决两个问题,即通过一些有效的地址建立状态机,以及给定一个有限状态机后,地址字串的匹配算法。好在这两个问题都有现成的算法。有了关于地址的有限状态机后,我们就可又用它分析网页,找出网页中的地址部分,建立本地搜索的数据库。同样,我们也可以对用户输入的查询进行分析,挑出其中描述地址的部分,当然,剩下的关键词就是用户要找的内容。比如,对于用户输入的"北京市双清路附近的酒家",Google 本地会自动识别出地址"北京市双清路"和要找的对象"酒家"。

上述基于有限状态机的地址识别方法在实用中会有一些问题:当用户输入的地址不太标准或者有错别字时,有限状态机会束手无策,因为它只能进行严格匹配。为了解决这个问题,我们希望有一个能进行模糊匹配、并给出一个字串为正确地址的可能性。为了实现这一目的,科学家们提出了基于概率的有限状态机。这种基于概率的有限状态机和离散的马尔可夫链基本上等效


系列十二:余弦定理和新闻的分类

我们来看看怎样找一个向量来描述一篇新闻

对于一篇新闻中的所有实词,我们可以计算出它们的单文本词汇频率/逆文本频率值(TF/IDF)。不难想象,和新闻主题有关的那些实词频率高,TF/IDF 值很大。我们按照这些实词在词汇表的位置对它们的 TF/IDF 值排序。比如,词汇表有64,000个词,如果单词表中的某个词在新闻中没有出现,对应的值为零,那么这 64,000 个数,组成一个64,000维的向量。我们就用这个向量来代表这篇新闻,并成为新闻的特征向量。如果两篇新闻的特征向量相近,则对应的新闻内容相似,它们应当归在一类,反之亦然。

学过向量代数的人都知道,向量实际上是多维空间中有方向的线段。如果两个向量的方向一致,即夹角接近零,那么这两个向量就相近。而要确定两个向量方向是否一致,这就要用到余弦定理计算向量的夹角了。

当两条新闻向量夹角的余弦等于1时,这两条新闻完全重复(用这个办法可以删除重复的网页);当夹角的余弦接近于1时,两条新闻相似,从而可以归成一类;夹角的余弦越小,两条新闻越不相关。


系列十三:信息指纹及其应用

任何一段信息文字,都可以对应一个不太长的随机数,作为区别它和其它信息的指纹(Fingerprint)。只要算法设计的好,任何两段信息的指纹都很难重复,就如同人类的指纹一样。信息指纹在加密、信息压缩和处理中有着广泛的应用

为了防止重复下载同一个网页,我们需要在哈希表中纪录已经访问过的网址(URL)。但是在哈希表中以字符串的形式直接存储网址,既费内存空间,又浪费查找时间。因此,我们如果能够找到一个函数,将网址随机地映射到128 二进位即 16 个字节的整数空间,这样每个网址只需要占用 16 个字节。这个16 个字节的随机数,就称做该网址的信息指纹(Fingerprint)。可以证明,只要产生随机数的算法足够好,可以保证几乎不可能有两个字符串的指纹相同,就如同不可能有两个人的指纹相同一样。由于指纹是固定的 128 位整数,因此查找的计算量比字符串比较小得多。网络爬虫在下载网页时,它将访问过的网页的网址都变成一个个信息指纹,存到哈希表中,每当遇到一个新网址时,计算机就计算出它的指纹,然后比较该指纹是否已经在哈希表中,来决定是否下载这个网页。这种整数的查找比原来字符串查找,可以快几倍到几十倍。

产生信息指纹的关键算法是伪随机数产生器算法(prng)。最早的prng算法是由计算机之父冯诺伊曼提出来的。他的办法非常简单,就是将一个数的平方掐头去尾,取中间的几位数。比如一个四位的二进制数 1001(相当于十进制的9),其平方为 01010001 (十进制的 81)掐头去尾剩下中间的四位 0100。当然这种方法产生的数字并不很随机,也就是说两个不同信息很有可能有同一指纹。现在常用的 MersenneTwister 算法要好得多。

信息指纹的用途远不止网址的消重,信息指纹的的孪生兄弟是密码。信息指纹的一个特征是其不可逆性, 也就是说,无法根据信息指纹推出原有信息,这种性质, 正是网络加密传输所需要的。比如说,一个网站可以根据用户的Cookie 识别不同用户,这个cookie 就是信息指纹。但是网站无法根据信息指纹了解用户的身份,这样就可以保护用户的隐私。在互联网上,加密的可靠性,取决于是否很难人为地找到拥有同一指纹的信息,比如一个黑客是否能随意产生用户的 cookie。从加密的角度讲 MersenneTwister,算法并不好,因为它产生的随机数有相关性。互联网上加密要用基于加密伪随机数产生器(csprng)。常用的算法有 MD5 或者 SHA1 等标准,它们可以将不定长的信息变成定长的 128 二进位或者 160 二进位随机数。


系列十六: 不要把所有的鸡蛋放在一个篮子里--最大熵模型

最大熵(maximum entropy)模型,说白了,就是要保留全部的不确定性,将风险降到最小。最大熵原理指出,当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。(不做主观假设这点很重要。)在这种情况下,概率分布最均匀,预测的风险最小。因为这时概率分布的信息熵最大,所以人们称这种模型叫“最大熵模型”。

匈牙利著名数学家、信息论最高奖香农奖得主希萨(Csiszar)证明,对任何一组不自相矛盾的信息,这个最大熵模型不仅存在,而且是唯一的。而且它们都有同一个非常简单的形式 -- 指数函数。subject 表示主题

在上面的公式中,有几个参数 lambda 和 Z ,他们需要通过观测数据训练出来

最原始的最大熵模型的训练方法是一种称为通用迭代算法 GIS(generalized iterative scaling) 的迭代算法。GIS 的原理并不复杂,大致可以概括为以下几个步骤:

  • 假定第零次迭代的初始模型为等概率的均匀分布。
  • 用第 N 次迭代的模型来估算每种信息特征在训练数据中的分布,如果超过了实际的,就把相应的模型参数变小;否则,将它们变大。
  • 重复步骤 2 直到收敛。

八十年代,孪生兄弟的达拉皮垂(Della Pietra)对 GIS 算法进行了两方面的改进,提出了改进迭代算法 IIS(improved iterative scaling)。这使得最大熵模型的训练时间缩短了一到两个数量级。这样最大熵模型才有可能变得实用


系列十七: 闪光的不一定是金子 谈谈搜索引擎作弊问题

自从有了搜索引擎,就有了针对搜索引擎网页排名的作弊(SPAM)。以至于用户发现在搜索引擎中排名靠前的网页不一定就是高质量的。搜索引擎的作弊,虽然方法很多,目的只有一个,就是采用不正当手段提高自己网页的排名。早期最常见的作弊方法是重复关键词。比如一个卖数码相机的网站,重复地罗列各种数码相机的品牌,如尼康、佳能和柯达等等。为了不让读者看到众多讨厌的关键词,聪明一点的作弊者常用很小的字体和与背景相同的颜色来掩盖这些关键词。其实,这种做法很容易被搜索引擎发现并纠正

在有了网页排名(page rank)以后,作弊者发现一个网页被引用的连接越多,排名就可能越靠前,于是就有了专门卖链接和买链接的生意。比如,有人自己创建成百上千个网站,这些网站上没有实质的内容,只有到他们的客户网站的连接。这种做法比重复关键词要高明得多,但是还是不太难被发现。因为那些所谓帮别人提高排名的网站,为了维持生意需要大量地卖链接,所以很容易露马脚。

抓作弊的方法很像信号处理中的去噪音的办法。消除噪音的流程可以概括如下:

在图中,原始的信号混入了噪音,在数学上相当于两个信号做卷积。噪音消除的过程是一个解卷积的过程。这在信号处理中并不是什么难题。从广义上讲,只要噪音不是完全随机的、并且前后有相关性,就可以检测到并且消除。(事实上,完全随机不相关的高斯白噪音是很难消除的。)


系列十八: 矩阵运算和文本处理中的分类问题

在自然语言处理中,最常见的两类的分类问题分别是,将文本按主题归类(比如将所有介绍亚运会的新闻归到体育类)和将词汇表中的字词按意思归类(比如将各种体育运动的名称个归成一类)。这两种分类问题都可用通过矩阵运算来圆满地、同时解决。我们先来来回顾一下我们在余弦定理和新闻分类中介绍的方法。

分类的关键是计算相关性。我们首先对两个文本计算出它们的内容词(相当于特征提取),或者说实词的向量,然后求这两个向量的夹角。当这两个向量夹角为零时,新闻就相关;当它们垂直或者说正交时,新闻则无关。当然,夹角的余弦等同于向量的内积。从理论上讲,这种算法非常好。但是计算时间特别长。通常,我们要处理的文章的数量都很大,至少在百万篇以上,二次回标有非常长,比如说有五十万个词(包括人名地名产品名称等等)。如果想

通过对一百万篇文章两篇两篇地成对比较,来找出所有共同主题的文章,就要比较五千亿对文章。现在的计算机一秒钟最多可以比较一千对文章,完成这一百万篇文章相关性比较就需要十五年时间。注意,要真正完成文章的分类还要反复重复上述计算

在文本分类中,另一种办法是利用矩阵运算中的奇异值分解(Singular Value Decomposition,简称 SVD)。我们可以用一个大矩阵 A 来描述这一百万篇文章和五十万词的关联性。这个矩阵中,每一行对应一篇文章,每一列对应一个词。

在上面的图中,M=1,000,000,N=500,000。第 i 行,第 j 列的元素,是字典中第 j 个词在第i 篇文章中出现的加权词频(TF/IDF)。这个矩阵非常大,有一百万乘以五十万,即五千亿个元素。

奇异值分解就是把上面这样一个大矩阵,分解成三个小矩阵相乘,如下图所示。

比如把上面的例子中的矩阵分解成一个一百万乘以一百的矩阵 X,一个一百乘以一百的矩阵 B,和一个一百乘以五十万的矩阵 Y。这三个矩阵的元素总数加起来也不过 1.5 亿,仅仅是原来的三千分之一。相应的存储量和计算量都会小三个数量级以上

三个矩阵有非常清楚的物理含义。第一个矩阵 X 中的每一行表示意思相关的一类词,其中的每个非零元素表示这类词中每个词的重要性(或者说相关性),数值越大越相关。最后一个矩阵 Y 中的每一列表示同一主题一类文章,其中每个元素表示这类文章中每篇文章的相关性。中间的B矩阵则表示类词和文章之间的相关性。因此,我们只要对关联矩阵 A 进行一次奇异值分解,我们就可以同时完成了近义词分类和文章的分类。(同时得到每类文章和每类词的相关性)


系列十九: 马尔可夫链的扩展 贝叶斯网络

在现实生活中,很多事物相互的关系并不能用一条链来串起来。它们之间的关系可能是交叉的、错综复杂的

我们可以把上述的有向图看成一个网络,它就是贝叶斯网络。其中每个圆圈表示一个状态。状态之间的连线表示它们的因果关系。比如从心血管疾病出发到吸烟的弧线表示心血管疾病可能和吸烟有关。当然,这些关系可以有一个量化的可信度 (belief),用一个概率描述。我们可以通过这样一张网络估计出一个人的心血管疾病的可能性。在网络中每个节点概率的计算,可以用贝叶斯公式来进行,贝叶斯网络因此而得名。由于网络的每个弧有一个可信度,

贝叶斯网络也被称作信念网络 (belief networks)。

和马尔可夫链类似,贝叶斯网络中的每个状态值取决于前面有限个状态。不同的是,叶斯网络比马尔可夫链灵活,它不受马尔可夫链的链状结构的约束,因此可以更准确地描述事件之间的相关性。可以讲,马尔可夫链是贝叶斯网络的特例,而贝叶斯网络是马尔可夫链的推广。

使用贝叶斯网络必须知道各个状态之间相关的概率。得到这些参数的过程叫做训练。和训练马尔可夫模型一样,训练贝叶斯网络要用一些已知的数据。比如在训练上面的网络,需要知道一些心血管疾病和吸烟、家族病史等有关的情况。相比马尔可夫链,贝叶斯网络的训练比较复杂,从理论上讲,它是一个 NP-complete 问题,也就是说,对于现在的计算机是不可计算的。但是,对于某些应用,这个训练过程可以简化,并在计算上实现。


系列二十: 布隆过滤器(Bloom Filter)

在日常生活中,包括在设计计算机软件时,我们经常要判断一个元素是否在一个集合中。最直接的方法就是将集合中全部的元素存在计算机中,遇到一个新元素时,将它和集合中的元素直接比较即可。一般来讲,计算机中的集合是用哈希表(hash table)来存储的。它的好处是快速准确,缺点是费存储空间。当集合比较小时,这个问题不显著,但是当集合巨大时,哈希表存储效率低的问题就显现出来了。

今天,我们介绍一种称作布隆过滤器的数学工具,它只需要哈希表 1/8 到 1/4 的大小就能解决同样的问题。布隆过滤器是由巴顿.布隆于1970年提出的。它实际上是一个很长的二进制向量和一系列随机映射函数

假定我们存储一亿个电子邮件地址,我们先建立一个两亿字节的向量,然后将这十六亿个二进制全部设置为零。对于每一个电子邮件地址 X,我们用八个不同的随机数产生器(F1,F2, ...,F8) 产生八个信息指纹(f1, f2, ..., f8)。再用一个随机数产生器 G 把这八个信息指纹映射到 1 到十六亿中的八个自然数 g1, g2, ...,g8。现在我们把这八个位置的二进制全部设置为一。当我们对这一亿个 email 地址都进行这样的处理后。一个针对这些 email 地址的布隆过滤器就建成了。(见下图)

现在,让我们看看如何用布隆过滤器来检测一个可疑的电子邮件地址 Y 是否在黑名单中。我们用相同的八个随机数产生器(F1, F2, ..., F8)对这个地址产生八个信息指纹 s1,s2,...,s8,然后将这八个指纹对应到布隆过滤器的八个二进制位,分别是 t1,t2,...,t8。如果 Y 在黑名单中,显然,t1,t2,..,t8 对应的八个二进制一定是1。遇到任何在黑名单中电子邮件地址,我们都能准确地发现。

布隆过滤器决不会漏掉任何一个在黑名单中的可疑地址。但是,它有一条不足之处。也就是它有极小的可能将一个不在黑名单中的电子邮件地址判定为在黑名单中,因为有可能某个好的邮件地址正巧对应个八个都被设置成一的二进制位。好在这种可能性很小。我们把它称为误识概率。在上面的例子中,误识概率在万分之一以下。

布隆过滤器的好处在于快速,省空间。但是有一定的误识别率。常见的补救办法是建立一个小的白名单,存储那些可能别误判的邮件地址。


系列二十二: 由电视剧《暗算》所想到的 谈谈密码学的数学原理

公开密钥的原理

  • 找两个很大的素数(质数)P 和 Q,越大越好, 然后计算它们的乘积 N=P×Q,M=(P-1)×(Q-1)
  • 找一个和 M 互素的整数 E
  • 找一个整数 D,使得 E×D 除以 M 余 1,即 E×D mod M = 1
  • E 是公钥谁都可以用来加密,D 是私钥用于解密,一定要自己保存好。乘积 N 是公开的

系列二十三: 输入一个汉字需要敲多少个键 谈谈香农第一定律

我们假定常用的汉字在二级国标里面,一共有 6700 个作用的汉字。如果不考虑汉字频率的分布,用键盘上的 26 个字母对汉字编码,两个字母的组合只能对 676 个汉字编码, 对 6700 个汉字编码需要用三个字母的组合,即编码长度为三。当然,我们可以对常见的字用较短的编码对不常见的字用较长的编码,这样平均起来每个汉字的

编码长度可以缩短。我们假定每一个汉字的频率是

p1, p2, p3, ..., p6700

它们编码的长度是

L1, L2, L3, ..., L6700

那么,平均编码长度是

p1×L1 + p2×L2 + ... + p6700×L6700

香农第一定理指出:这个编码的长度的最小值是汉字的信息熵,也就是说任何输入方面不可能突破信息熵给定的极限。当然,香农第一定理是针对所有编码的,不但是汉字输入编码的。这里需要指出的是,如果我们将输入法的字库从二级国标扩展到更大的字库 GBK, 由于后面不常见的字频率较短,平均编码长度比针对国标的大不了多少。让我们回忆一下汉字的信息熵

H = -p1 * log p1 - ... - p6700 log p6700

我们如果对每一个字进行统计,而且不考虑上下文相关性,大致可以估算出它的值在十比特以内,当然这取决于用什么语料库来做估计。如果我们假定输入法只能用 26 个字母输入,那么每个字母可以代表 log26= 4.7 比特的信息,也就是说,输入一个汉字平均需要敲 10/4.7= 2.1 次键。

如果我们把汉字组成词,再以词为单位统计信息熵,那么,每个汉字的平均信息熵将会减少。这样,平均输入一个字可以少敲零点几次键盘。不考虑词的上下文相关性,以词为单位统计,汉字的信息熵大约是 8 比特作用,也就是说,以词为单位输入一个汉字平均只需要敲 8/4.7=1.7 次键。这就是现在所有输入法都是基于词输入的内在原因。当然,如果我们再考虑上下文的相关性,对汉语建立一个基于词的统计语言模型,我们可以将每个汉字的信息熵降

到 6 比特左右,这时,输入一个汉字只要敲 6/4.7=1.3 次键。如果一种输入方法能做到这一点,那么汉字的输入已经比英文快的多了。

但是,事实上没有一种输入方法接近这个效率。这里面主要有两个原因。首先,要接近信息论给的这个极限,就要对汉字的词组根据其词频进行特殊编码。事实上像王码这类的输入方法就是这么做到,只不过它们第一没有对词组统一编码,第二没有有效的语言模型。这种编码方法理论上讲有效,实际上不实用。原因有两个,第一,很难学;第二,从认知科学的角度上讲,人一心无二用,人们在没有稿子边想边写的情况下不太可能在回忆每个词复杂的编码的同时又不中断思维。我们过去在研究语言识别时做过很多用户测试,发现使用各种复杂编码输入法的人在脱稿打字时的速度只有他在看稿打字时的一半到四分之一。因此,虽然每个字平均敲键次数少,但是打键盘的速度也慢了很多,总的并不快。这也就是为什么基于拼音的简单输入法占统治地位的原因。事实上,汉语全拼的平均长度为 2.98,只要基于拼音的输入法能利用上下文彻底解决一音多字的问题,平均每个汉字输入的敲键次数应该在三次左右,每分钟输入 100 个字完全有可能达到。另外一个不容易达到信息论极限的输入速度的原因在于,这个理论值是根据一个很多的语言模型计算出来的。在产品中,我们不可能占有用户太多的内存空间,因此各种输入方法提供给用户的是一个压缩的很厉害的语音模型,而有的输入方法为了减小内存占用,根本没有语言模型。拼音输入法的好坏关键在准确而有效的语言模型。


系列二十四从全球导航到输入法——谈谈动态规划

图论中很常见的一个问题是要找一个图中给定两个点之间的最短路径(shortest path)。比如,我们想找到从北京到广州的最短行车路线或者最快行车路线。当然,最直接的笨办法是把所有可能的路线看一遍,然后找到最优的。这种办法只有在节点数是个位数的图中还行得通,当图的节点数(城市数目)有几十个的时候,计算的复杂度就已经让人甚至计算机难以接受了,因为所有可能路径的个数随着节点数的增长而成呈指数增长(或者说几何级数),也就是说每增加一个城市,复杂度要大一倍。显然我们的导航系统中不会用这种笨办法。

所有的导航系统采用的都是动态规划的办法(Dynamic Programming)它的原理其实很简单。以上面的问题为例,当我们要找从北京到广州的最短路线时,我们先不妨倒过来想这个问题:假如我们找到了所要的最短路线(称为路线一),如果它经过郑州,那么从北京到郑州的这条子路线(比如是北京-> 保定->石家庄->郑州,称为子路线一),必然也是所有从北京到郑州的路线中最短的。否则的话,我们可以假定还存在从北京到郑州更短的路线(比如北京->济南->徐州->郑州,称为子路线二),那么只要用这第二条子路线代替第一条,我们就可以找到一条从北京到广州的全程更短的路线(称为路线二),这就和我们讲的路线一是北京到广州最短的路线相矛盾。其矛盾的根源在于,我们假设的子路线二或者不存在,或者比子路线一还来得长。

在实际实现算法时,我们又正过来解决这个问题,也就是说,要想找到从北京到广州的最短路线,先要找到从北京到郑州的最短路线。当然,聪明的读者可能已经发现其中的一个“漏洞”,就是我们在还没有找到全程最短路线前,不能肯定它一定经过郑州。不过没有关系,

只要我们在图上横切一刀,这一刀要保证将任何从北京到广州的路一截二,那么从广州到北京的最短路径必须经过这一条线上的某个城市。我们可以先找到从北京出发到这条线上所有城市的最短路径,最后得到的全程最短路线一定包括这些局部最短路线中的一条,这样,我们就可以将一个“寻找全程最短路线”的问题,分解成一个个小的寻找局部最短路线的问题。只要我们将这条横切线从北京向广州推移,直到广州为止,我们的全程最短路线就找到了。这便是动态规划的原理。采用动态规划可以大大降低最短路径的计算复杂度。在我们上面的例子中,每加入一条横截线,线上平均有十个城市,从广州到北京最多经过十五个城市,那么采用动态规划的计算量是 10×10×15,而采用穷举路径的笨办法是 10 的 15 次方,前后差了万亿倍。

那么动态规划和拼音输入法又有什么关系呢?其实我们可以将汉语输入看成一个通信问题,而输入法则是一个将拼音串到汉字串的转换器。每一个拼音可以对应多个汉字,一个拼音串就可以对应图论中的一张图,如下:

其中,Y1,Y2,Y3,……,YN 是使用者输入的拼音串,W11,W12,W13 是第一个音 Y1 的 候选汉字,

W21,W22,W23,W24 是对应于 Y2 的候选汉字,以此类推。从第一个字到最后一个字可以组成很多很多句子,我们的拼音输入法就是要根据上下文找到一个最优的句子。如果我们再将上下文的相关性量化,作为从前一个汉字到后一个汉字的距离,那么,寻找给定拼音条件下最合理句子的问题就变成了一个典型的“最短路径”问题,我们的算法就是动态规划

数学之美系列 1.3w字精简版阅读笔记相关推荐

  1. 数学之美系列16(转帖)

    数学之美 系列十六(上) 不要把所有的鸡蛋放在一个篮子里 -- 谈谈最大熵模型2006年10月8日 上午 07:27:00 发表者:Google 研究员,吴军 [我们在投资时常常讲不要把所有的鸡蛋放在 ...

  2. 数学之美 系列十六(上) 不要把所有的鸡蛋放在一个篮子里 -- 谈谈最大熵模型

    数学之美 系列十六(上) 不要把所有的鸡蛋放在一个篮子里 -- 谈谈最大熵模型 [我们在投资时常常讲不要把所有的鸡蛋放在一个篮子里,这样可以降低风险.在信息处理中,这个原理同样适用.在数学上,这个原理 ...

  3. 数学之美 系列十五 繁与简 自然语言处理的几位精英

    数学之美 系列十五 繁与简 自然语言处理的几位精英 我在数学之美系列中一直强调的一个好方法就是简单.但是,事实上,自然语言处理中也有一些特例,比如有些学者将一个问题研究到极致,执著追求完善甚至可以说完 ...

  4. 数学之美 系列十 有限状态机和地址识别

    数学之美 系列十 有限状态机和地址识别 地址的识别和分析是本地搜索必不可少的技术,尽管有许多识别和分析地址的方法,最有效的是有限状态机. 一个有限状态机是一个特殊的有向图(参见有关图论的系列),它包括 ...

  5. 数学之美系列 4 -- 怎样度量信息?

    数学之美系列 4 -- 怎样度量信息? 前言: Google 一直以 "整合全球信息,让人人能获取,使人人能受益" 为使命.那么究竟每一条信息应该怎样度量呢? 信息是个很抽象的概念 ...

  6. 数学之美 系列二 -- 谈谈中文分词

    数学之美 系列二 -- 谈谈中文分词 2006年4月10日 上午 08:10:00 发表者: 吴军, Google 研究员 谈谈中文分词 ----- 统计语言模型在中文处理中的一个应用 上回我们谈到利 ...

  7. 数学之美系列14(转帖)

    数学之美 十四 谈谈数学模型的重要性2006年8月9日 上午 09:12:00 发表者:吴军,Google 研究员 [注:一直关注数学之美系列的读者可能已经发现,我们对任何问题总是在找相应的准确的数学 ...

  8. 数学之美 系列一 -- 统计语言模型

    数学之美 系列一 -- 统计语言模型 Posted on 2009-09-11 14:54 小y 阅读(576) 评论(0) 编辑 收藏  发表者: 吴军, Google 研究员 前言 也许大家不相信 ...

  9. 数学之美 系列十六 (下)- 不要把所有的鸡蛋放在一个篮子里 最大熵模型

    数学之美 系列十六 (下)- 不要把所有的鸡蛋放在一个篮子里 最大熵模型 我们上次谈到用最大熵模型可以将各种信息综合在一起.我们留下一个问题没有回答,就是如何构造最大熵模型.我们已经所有的最大熵模型都 ...

  10. 数学之美 系列十三 信息指纹及其应用

    数学之美 系列十三 信息指纹及其应用 任何一段信息文字,都可以对应一个不太长的随机数,作为区别它和其它信息的指纹(Fingerprint).只要算法设计的好,任何两段信息的指纹都很难重复,就如同人类的 ...

最新文章

  1. CMB标量功率谱第一个谱指数跑动项n(1)跑动带来的影响
  2. [BZOJ4553][TJOI2016HEOI2016]序列(CDQ分治)
  3. python的多线程threading
  4. 008 Android之Service
  5. 【vue-number-scroll】数字逐渐增加或者减少的滚动解决方案
  6. 使用Eclipse和Open Liberty的Java EE 8上的Java 9
  7. Two.js – 为现代浏览器而生的 2D 绘图 API
  8. 一步步编写操作系统 30 cpu的分支预测简介
  9. Linus Torvalds的安全性,Facebook的AI工具等
  10. Widget实例可以添加多个并独立更新
  11. MAC 终端打开sublime3
  12. 使用fseek()函数随机访问文件
  13. SQL:pgsql查询geom参考系以及更改geom参考系
  14. vue运行报错:Cannot find module 'webpack/bin/config-yargs'
  15. pyquery库之爬取豆瓣读书
  16. 高并发下接口幂等性解决方案
  17. 动态背景下的运动目标检测
  18. NFC交通卡移动支付产业链
  19. 计算机应用项目中 属于科学计算应用领域,下列计算机应用项目中,属于科学计算应用领域的是(    )...
  20. 如何进行有效的大数据处理、分析?

热门文章

  1. 山西职业技术学院计算机宿舍怎么样,山西职业技术学院宿舍条件、住宿好吗、寝室情况...
  2. 川土微 | CA-IS3105W 全集成 DC-DC 转换器
  3. C4D四视图切换及基本操作
  4. 记录贴,使用PDFviewer时遇到的导入问题
  5. EtherCAT基于SOEM建立主站程序
  6. 《游戏设计艺术(第2版)》——学习笔记(27)第27章 通过试玩创造好游戏
  7. 产品经理岗位职责说明_11份公司高层管理人员的岗位职责说明书,改改就能用,拿去参考...
  8. SurfaceView 实现 转盘抽奖
  9. python安装使用pip安装numpy
  10. linux运行海康,海康网络摄像机SDK Linux对接