作者|蜉蝣采采

来源|无线深海

小小手机,大有乾坤。

这个曾经只用来打电话的通信工具,目前已经无所不能,成为了人们连接整个世界的第一窗口。

而手机屏幕,承担着手机的显示功能,以及触控操作的入口,更是“窗口的窗口”,地位十分重要。

本期,蜉蝣君将跟大家聊一聊手机屏幕背后的秘密。看完本文,下面的这些问题就可以得到答案:

1、手机屏幕都有哪些形态?

2、如何度量手机屏幕的尺寸大小?

3、分辨率,PPI,刷新率这些概念指的是什么?

4、手机屏幕有哪些类型,背后的技术原理是什么?

01

手机屏幕的形态

自从智能手机占据主流市场以来,手机作为碎片时间的娱乐及资讯中心,需要更大的显示面积,因此屏幕越来越大;与此同时,传统的手机都有一个用来放置听筒和前置摄像头的“额头”,以及用来放置Home键的“下巴”,导致手机体积过大,屏占比难以提升。

后来,苹果想出了一个办法,把手机额头上的一系列器件集中要中央,两边则让屏幕延伸上去,神似“齐刘海儿”,因此这种屏幕就被叫做“刘海屏”。

▲ iPhone标志性的“刘海屏”

“刘海屏”打响了手机屏占比这场战争的第一枪。之后各路安卓手机争相效仿,但很快觉得丑陋且乏味,于是各种屏占比更高的设计出现了。

水滴屏:屏幕上方避开了前置摄像头,且摄像头的黑底色和上边框连在一起,就像悬挂着一颗摇摇欲坠的水滴一样,因此得名“水滴屏”。

▲ 安卓手机的“水滴屏”

珍珠屏:其实就是水滴屏,但华为觉得摄像头占据的部分更像是一颗饱满圆润的珍珠,为了彰显不凡气质,故称之为“珍珠屏”。

▲ 华为手机的“珍珠屏”

挖孔屏:从前面的几种形态可以看出,对于前置摄像头的处理方式,决定了屏幕的形态。如果把屏幕挖个孔,并将摄像头镶于其上,就成为了“挖孔屏”。

▲ 安卓手机的“挖孔屏”

瀑布屏:前面的刘海屏,水滴屏还有挖孔屏都无一例外地跟手机上端的摄像头死磕,但手机两侧还是有边框啊,看着还是不够震撼。于是就有人想到,那我在左右两侧搞个曲面,把屏幕往下弯一些,不就从正面不就看不到边框了吗!这种屏幕的左右两侧像瀑布一样,因此得名“瀑布屏”。

▲ 安卓手机的“瀑布屏”

全面屏:手机的正面就是完整的一块屏幕,没有刘海,也没有水滴或者珍珠,更没有挖孔。全面屏看似完美,却是由一系列妥协达成的:前置摄像头平时收缩于机身内部,使用时则徐徐从顶部弹出,这个结构必须精密耐用,因此为了完美的外观增加了不必要的复杂度。真全屏还可以和瀑布屏叠加。

▲ 安卓手机的真“全面屏”

02

手机屏幕的主要参数

手机屏幕以英寸度量,每英寸相当于2.54厘米。我们平常说手机屏幕是多少寸,其实指的并非是手机的边长,而是屏幕对角线的长度。

▲ 屏幕的大小使用对角线的长度来衡量,

单位为英寸

随着手机从功能机向智能机的演进,手机屏幕也越来越大。曾经乔布斯宣称手机屏幕的黄金尺寸是3.5英寸,结果现在大多数旗舰机屏幕尺寸都维持在6英寸以上,甚至有不少厂商已经将手机屏幕扩大到了7英寸。

话说屏幕尺寸大了,图像显示必然就更清晰吗?这就要引入像素和分辨率的概念。

像素(Pixel):屏幕显示的原理,其实是把有效面积划分为很多个小格子,每个格子只显示一种颜色,是成像的最小元素,因此就叫做“像素”。

▲ 像素是屏幕上的小方格,每个方格显示一种颜色

分辨率:屏幕在长度和宽度这两个方向上各有多少像素,就叫做分辨率,一般用AxB来表示。分辨率越高,每个像素的面积越小,显示效果就越平滑精细。

▲ 常见的显示器屏幕分辨率定义

比如,iPhone X的屏幕大小为5.8英寸,分辨率为1125x2436,也就是说,这款手机在宽度方向有1125个像素,长度方向有2436个像素。

PPI:不同手机屏幕的尺寸不同,自然分辨率也就不同,那么如何直观地表示手机屏幕的像素密度,也就是清晰度呢?

答案很简单,不管你屏幕面积多大,我都给折算成单位面积的像素数量,然后不就标准统一,可以相互比较了吗?

实际上,因为屏幕大小用英寸表示,业界标准折算的是每英寸屏幕包含的像素数量,叫做PPI(Pixels Per Inch),也可称为像素密度。

PPI的计算方式如下:利用勾股定理,通过分辨率中水平方向和垂直方向的像素数量,计算出对角线方向的像素数量,然后再除以对角线长度(也就是手机平面大小的英寸数)即可。

下图以iPhone5为例,通过计算可得出其PPI为326。当然,通过查看产品介绍来获取PPI值更为简单方便。

▲ PPI计算示例(iPhone5)

有了度量方式,那么手机屏幕采用多大的PPI才好呢?我们的期望当然是:眼睛看到的图像清晰平滑,完全感受不到像素的存在。

十年前,在iPhone 4发布会上,乔布斯是这样说的:“当你所拿的东西距离你10-12英寸(约25-30厘米)时,它的分辨率只要达到300 PPI这个‘神奇数字’以上,你的视网膜就无法分辨出像素点了。”

▲ 乔布斯手持iPhone4

这就是苹果对“视网膜屏幕(Retina)”的最初定义,iPhone 4屏幕的像素密度也达到了326ppi。

实际上,乔布斯的定义中假设看屏幕的人的视力为1.0,但实际上很多人的视力要远好于1.0;并且看屏幕的距离需要在25到30厘米,实际上很多人可能会凑地更近。因此,300 PPI这个数值并不是绝对的。

业界也并未囿于这个值,而是不断拔高,目前主流手机的PPI都在300到500之间,三星的旗舰甚至都超过了500,连苹果自己的iPhone X和11都已达到了458的PPI。

下面再说说最近被炒得比较热的另外一个参数:刷新率。

刷新率,就是一秒时间内手机屏幕显示刷新的次数。比如常见的60Hz刷新率,就是屏幕上显示的内容每秒刷新60次。

为啥屏幕显示的内容要快速刷新呢?

当物体在快速运动时, 当人眼所看到的影像消失后,人眼仍能继续保留其影像0.1-0.4秒左右的图像,这种现象被称为视觉暂留现象。

由于视觉暂留效应,如果给人眼看多张快速变换的图片的话,前一张图片的内容还在视觉暂留,下一张图片又很快映入眼帘,就给人以连续的动画感觉,这就是视频的原理。

▲ 视频或者动画的原理

因此,视频播放有一个“帧率(FPS: Frame per second)的概念,就是每秒播放多少张连续画面。

当帧率为16 FPS时,人眼就会认为图像是连贯的,更高的帧率可以得到更流畅、更逼真的动画。一般来说25到30 FPS是可以接受的,但是将帧率提升至60 FPS则可以明显提升交互感和逼真感。

▲ 不同帧率下的动图

因此,屏幕的刷新率必须要大于视频的帧率。否则,视频都播放到下一帧了,而屏幕还没刷新显示,停留在上一帧都内容上,用户体验自然是不好。

目前绝大多数的视频帧率都小于60FPS,因此手机屏幕的刷新率不应低于60Hz。理论上来说,刷新率越高,屏幕的显示和操作越细腻流畅,因此目前很多旗舰机都使用了90Hz,甚至120Hz的刷新率。

03

手机的屏幕背后的技术

如果我们看手机的宣传海报是话,可以发现这里面关于屏幕材质和技术的的用语是五花八门:有TFT LCD,TFT,IPS,LTPS,OLED,AMOLED等等,让人眼花缭乱。

使用这些技术的屏幕到底哪里不同,有啥优劣点?

其实,目前主流的手机屏幕,从大的技术上来分类,无非就是LCD和OLED这两种。

LCD:英文全称Liquid Crystal Display,其实就是大名鼎鼎的液晶显示。

OLED:英文全称Organic Light-Emitting Diode,翻译过来就是有机发光二极管,又称作有机电激光显示。

光的三原色是红绿蓝,不同比例的这三种颜色混合,就可以得到自然界中几乎所有颜色了。因此,手机屏幕上的每个像素也都是由这三种颜色混合组成。

▲ 光的三原色及混合色

下图是LCD和OLED技术下,每个像素的纵切面图,表示了这个像素发光的原理。

▲ LCD和OLED屏幕结构

LCD技术,“液晶(就是上图中左侧的Liquid Crystal)”两个字虽然很显眼,但液晶却并不能发出光来,需要一块由LED(发光二极管)组成的背板来提供白色光源,也叫做“背光(上图中的Back-light)”。

每个像素在背光的基础上,再加上一层有着红,绿,蓝这三种颜色的薄膜,白光透过这些薄膜,就变成了红,绿,蓝这三种颜色的有色光。

但这三种光的强度如果一样的话,混合起来就又成了白光或者灰光,因此必须灵活控制每种光的强度,才能混合出多种颜色来。

这时,就轮到液晶这种材料出场了。液晶这种物质有个特点,那就是在电场的作用下,其分子排列会产生变化,从而影响到对光的通透性,改变电压可调整透过光的多少。

对于LCD屏幕来说,夹在背光和薄膜之间的液晶层,通过调整输入电压来调整可通过的光亮,再通过有色薄膜之后,就可以得到不同强度的三原色光,混合之后就是变化万千的颜色了。

那么,怎样调整每个像素输入电压呢?

所谓TFT(Thin film transistor)是指液晶面板玻璃基片上的薄膜晶体管阵列,可以让LCD的每个像素都设有自身的一个半导体开关,从而实现“点对点”的独立精确控制。

因此,主流的LCD屏幕也叫做TFT-LCD。而IPS,LTPS其实都是TFT-LCD下的不同技术实现,在此不再赘述。

LCD说了这么多,现在轮到OLED了。

OLED屏的结构和LCD相比简单很多,不需要背光,也没有液晶和彩色滤光膜,其内部的有机材料涂层就像有色小灯泡一样,通电即可发光。

AMOLED:OLED大家已经知道了,前面的AM说的是OLED的驱动方式,其全称是Active Matrix,也就是有源矩阵,通常使用TFT作为开关,来控制通过有机材料的电流来实现不同颜色显示。目前所有用于手机的OLED都是AMOLED,因此可以认为两者是同一个东西。

Super AMOLED:三星对AMOLED的改进,取消了中间的触摸感应面板,将AMOLED感应层做在了屏幕之上,因此操控更灵敏,更纤薄,亮度也更高,在阳光下的演示效果更好。

Dynamic AMOLED:还是三星推出的AMOLED改进技术,目前主要用于高端机。这种技术改变了OLED中的有机材料,据称可以实现更广的动态范围,在图像明暗对比较高时,可以显示更多的暗部细节。

本质来说,Super AMOLED和Dynamic AMOLED噱头的成分居多,它们都属于AMOLED,而AMOLED正是用于手机的OLED技术。

▲ LCD和OLED下的各种细分屏幕技术

跟OLED屏相比,LCD屏有不少劣势。

1、无法显示黑色:由于液晶层无法完全闭合,总有一些背光会透过去,因此LCD无法显示纯黑色,只能显示为深灰色。而OLED则可以通过控制每个像素的开关来实现纯黑色显示。

▲ OLED屏幕(左侧)下的夜空要明显深邃一些

2、容易漏光:LCD屏幕的背光,很容易从屏幕和手机的边框泄漏出去,形成漏光现象,这种现象在手机做工粗糙的时代很普遍,目前已经很少见到了。

▲ LCD屏幕漏光

3、屏幕厚度大:LCD由于技术复杂,受限于背光层和液晶层,屏幕厚度远大于OLED。当然这点厚度在电视上完全不值一提,但在手机这种追求纤薄,内部空间极为有限的场景下,屏幕薄一些,就能塞下更多的其他元器件,用于提升其它方面的性能。

▲ LCD屏幕的厚度远大于OLED屏幕

4、难以实现曲面屏:LCD无法大幅度弯曲,而OLED可以。因此对于那些像曲面屏手机,就只能采用OLED屏了。

▲ OLED非常适合实现曲面屏

5、耗电量大:由于LCD屏存在背光,使用时必须整个点亮,而OLED可以单独控制每个像素的开关,所以LCD屏的耗电量远大于OLED。下图中坚果R1和小米mix2s都是LCD屏幕,在长时间视频播放下续航明显处于劣势。

▲ LCD屏幕能耗大,续航吃亏

6、响应时间长:LCD屏幕由于响应时间长,在画面快速滑动时会产生拖影。而OLED响应迅速,干净利落没有拖影。

▲ LCD屏幕的拖影现象

说了这么多LCD的缺点,那么,难道OLED就是完美无缺的吗?当然不是,OLED主要有烧屏和频闪的问题。

1、烧屏:由于OLED屏所采用的有机材料老化速度较快,如果有的像素工作负荷大,有的则比较空闲,就会出现整块屏幕老化程度不一致的问题,导致不同区域的颜色显示发生偏差。这种现象就叫做烧屏。

▲ OLED屏幕的烧屏现象

不过在正常使用情况下,烧屏是个缓慢的过程,等明显感受到的时候三年都过去了,大部分人也该换手机了。

烧屏是OLED屏的缺点,对于LCD来说,背光事整个点亮的,并且液晶的老化时间也要更长一些,因此基本不存在烧屏的问题。

2、频闪:对于LCD来说,要控制屏幕亮度,直接调整背光的亮度就可以了。但OLED就比较麻烦,需要通过高频地开关屏幕来实现调光,想要调亮就打开屏幕的次数多一些,想要调暗就关闭屏幕的次数多一些。

▲ OLED屏幕的调光:凸起的部分为屏幕打开

由于每次开关屏幕的时间很短,人眼虽然难以察觉到屏幕的每次开关变化,但可以却感受到一段时间内平均的明暗,这样就实现了调光的效果。

比如说,要实现50%的亮度,就要一半的时间打开屏幕,一半的时间关闭屏幕,在更低亮度是关闭屏幕的时间会更长,屏幕一闪一闪的,甚至到了肉眼可以可见到的地步:眼睛说不出的难受。

▲ OLED屏幕低亮度时的频闪

OLED的这个现象就叫做频闪,也因此得名“伤眼屏”。与之相对的,LCD屏幕就大大方方地自称为“护眼屏”了。

虽有缺点,但瑕不掩瑜,目前来说,OLED屏幕已步入主流,逐渐压缩LCD屏的生存空间,这一点在高端机上尤为明显。

对此,我们从苹果的配置上可以一窥端倪。

从上可以看出,从刘海屏的X系列开始,定位高的产品都使用OLED屏,而价格低的则使用LCD。

好了,本期的内容就到这里。相信大家已经对手机屏幕的主要参数和技术有所了解,希望在后续选购手机时有所帮助。

RECOMMEND

网易智能有12个不同垂直领域社群等你来

添加智能菌微信:kaiwu_club

扫码了解更多

手机屏幕的那些门道,一文看懂!相关推荐

  1. 华为p40pro手机计算机在哪里,一文看懂华为P40/P40 Pro差别在哪

    中关村在线消息:北京时间2020年3月26日,华为在线上举办新款旗舰产品发布会,会上发布了三款重量级手机新品:华为P40.华为P40 Pro和华为P40 Pro+. 在正式发布新品前,华为总裁余承东发 ...

  2. 一文看懂Android APK安装的原理

    一文看懂Android APK安装的原理 前言 APK包的构成 安装APK 总结 前言 大家有没有想过一个应用的APK是怎么被安装到安卓手机上的,安装的本质是什么?我们知道,Windows应用程序的安 ...

  3. 一文看懂计算机视觉-CV(基本原理+2大挑战+8大任务+4个应用)

    2020-03-06 20:00:00 计算机视觉(Computer Vision)是人工智能领域的一个重要分支.它的目的是:看懂图片里的内容. 本文将介绍计算机视觉的基本概念.实现原理.8 个任务和 ...

  4. 判别两棵树是否相等 设计算法_一文看懂生成对抗网络 - GANs?(附:10种典型算法+13种应用)...

    生成对抗网络 – GANs 是最近2年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频.我们手机里的照片处理软件中就会使用到它. 本文将详细介绍生成对抗网络 – GANs 的设计初衷.基 ...

  5. 一文看懂「生成对抗网络 - GAN」基本原理+10种典型算法+13种应用

    生成对抗网络 – Generative Adversarial Networks | GAN 文章目录 GAN的设计初衷 生成对抗网络 GAN 的基本原理 GAN的优缺点 10大典型的GAN算法 GA ...

  6. 一文看懂“业务定制智能客服”的产品设计_团员分享_@苍狼剑歌

    前言:本文作者是"AI产品经理大本营"团员@苍狼剑歌,现任某一线大厂AI产品经理.另外,文末还有2个"hanniman读者专属福利",1)优惠券 for 三节课 ...

  7. 《SOC芯片研究框架》深度科普,发展趋势、技术特点、产业链一文看懂

    片上系统SoC(System on Chip),即在一块芯片上集成一整个信息处理系统,简单来说 SoC芯片是在中央处理器CPU的基础上扩展音视频功能和专用接口的超大规模集成电路,是智能设备的" ...

  8. 一文看懂“语音识别ASR” | AI产品经理需要了解的AI技术概念

    原标题:一文看懂"语音识别ASR" | AI产品经理需要了解的AI技术概念 温馨提示:文末有[重大福利]:优惠券(金额很大) for 三节课<产品经理P2(进阶)系列课程&g ...

  9. 天线巴伦制作和原理_一文看懂巴伦(功能原理、性能参数、基本类型)

    原标题:一文看懂巴伦(功能原理.性能参数.基本类型) 巴伦(英语为balun)为一种三端口器件,或者说是一种通过将匹配输入转换为差分输出而实现平衡传输线电路与不平衡传输线电路之间的连接的宽带射频传输线 ...

  10. 一文看懂“声纹识别VPR” | AI产品经理需要了解的AI技术概念_团员分享_@cony

    前言:声纹识别是AI领域中一个看似很小.但其实有机会在近期落地,且比较有意思的细分方向:本文作者是"AI产品经理大本营"团员@cony  ,她总结了AI产品经理"最必要& ...

最新文章

  1. PyTorch 笔记(05)— Tensor 基本运算(torch.abs、torch.add、torch.clamp、torch.div、torch.mul、torch.pow等)
  2. 独家 | 经验教训分享:我的第一个机器学习项目
  3. C 整数反转
  4. overflow encountered in exp
  5. hdu 1054(最小顶点覆盖)
  6. 笔记-中项案例题-2018年下-采购管理
  7. 苹果电脑mac截屏_谁说 mac系统 不适合搞科研? | 假期不宜出门,宜学习!
  8. 贪心算法求解背包问题
  9. 面试官:背了几道面试题就敢说熟悉Java源码?我们不招连源码都不会看的人|原力计划...
  10. python 加速方法_24种方法加速你的Python
  11. bzoj 1179: [Apio2009]Atm(Trajan+SPFA)
  12. WP7 App性能优化(12):检测应用程序性能(Ⅴ)
  13. c语言 word转pdf,超简单的Word转换成PDF技巧,可惜很多人还不会
  14. STM32个人笔记-电源管理
  15. Android微信页面缓存清理,安卓用户如何彻底清理微信大量缓存?4招让你彻底解决内存烦恼...
  16. 周易六十四卦——水风井卦
  17. 一个IT前辈的JIRA使用心得
  18. signature=d363d26bda212f777fef81d270ecd42b,基于DNA-pooling全基因组重测序初步筛查CAD易感基因变异位点...
  19. 串口实现PC之间传输文件
  20. android监听耳机,Android监听耳机按键事件

热门文章

  1. Python+Django+MySQL资产管理系统
  2. WorldFirst万里汇推出港币和离岸人民币账户!
  3. 苹果手机测距离_手机传感器怎样运作 手机传感器工作原理【介绍】
  4. 一文看懂DSP的DMA传输(burst、transfer、wrap)
  5. 基于android下的amr转mp3
  6. FaceBook和Google广告API接口文档
  7. 程序员理想中的工作环境是什么样的?
  8. 推荐歌曲《 起风了》
  9. office 中墨迹书写工具_在word2019或ppt2019中如何调出墨迹书写工具
  10. openpyxl进行excel的整行复制