贝塞尔曲线生成,Bresenham算法实现

/*** Marlin 3D Printer Firmware* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]** Based on Sprinter and grbl.* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm** This program is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** This program is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with this program.  If not, see <https://www.gnu.org/licenses/>.**//*** stepper.cpp - A singleton object to execute motion plans using stepper motors* Marlin Firmware** Derived from Grbl* Copyright (c) 2009-2011 Simen Svale Skogsrud** Grbl is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** Grbl is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with Grbl.  If not, see <https://www.gnu.org/licenses/>.*//*** Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith* and Philipp Tiefenbacher.*//***         __________________________*        /|                        |\     _________________         ^*       / |                        | \   /|               |\        |*      /  |                        |  \ / |               | \       s*     /   |                        |   |  |               |  \      p*    /    |                        |   |  |               |   \     e*   +-----+------------------------+---+--+---------------+----+    e*   |               BLOCK 1            |      BLOCK 2          |    d**                           time ----->**  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates*  first block->accelerate_until step_events_completed, then keeps going at constant speed until*  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.*  The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.*//*** Marlin uses the Bresenham algorithm. For a detailed explanation of theory and* method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html*//*** Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.* Equations based on Synthethos TinyG2 sources, but the fixed-point* implementation is new, as we are running the ISR with a variable period.* Also implemented the Bézier velocity curve evaluation in ARM assembler,* to avoid impacting ISR speed.*/#include "stepper.h"Stepper stepper; // Singleton#define BABYSTEPPING_EXTRA_DIR_WAIT#ifdef __AVR__#include "speed_lookuptable.h"
#endif#include "endstops.h"
#include "planner.h"
#include "motion.h"#include "temperature.h"
#include "../lcd/ultralcd.h"
#include "../gcode/queue.h"
#include "../sd/cardreader.h"
#include "../MarlinCore.h"
#include "../HAL/shared/Delay.h"#if ENABLED(INTEGRATED_BABYSTEPPING)#include "../feature/babystep.h"
#endif#if MB(ALLIGATOR)#include "../feature/dac/dac_dac084s085.h"
#endif#if HAS_MOTOR_CURRENT_SPI#include <SPI.h>
#endif#if ENABLED(MIXING_EXTRUDER)#include "../feature/mixing.h"
#endif#if HAS_FILAMENT_RUNOUT_DISTANCE#include "../feature/runout.h"
#endif#if HAS_L64XX#include "../libs/L64XX/L64XX_Marlin.h"uint8_t L6470_buf[MAX_L64XX + 1];   // chip command sequence - element 0 not usedbool L64XX_OK_to_power_up = false;  // flag to keep L64xx steppers powered down after a reset or power up
#endif#if ENABLED(POWER_LOSS_RECOVERY)#include "../feature/powerloss.h"
#endif#if HAS_CUTTER#include "../feature/spindle_laser.h"
#endif// public:#if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)bool Stepper::separate_multi_axis = false;
#endif#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWMbool Stepper::initialized; // = falseuint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()#if HAS_MOTOR_CURRENT_SPIconstexpr uint32_t Stepper::digipot_count[];#endif
#endif// private:block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traceduint8_t Stepper::last_direction_bits, // = 0Stepper::axis_did_move; // = 0bool Stepper::abort_current_block;#if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDERuint8_t Stepper::last_moved_extruder = 0xFF;
#endif#if ENABLED(X_DUAL_ENDSTOPS)bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
#endif#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false#if NUM_Z_STEPPER_DRIVERS >= 3, Stepper::locked_Z3_motor = false#if NUM_Z_STEPPER_DRIVERS >= 4, Stepper::locked_Z4_motor = false#endif#endif;
#endifuint32_t Stepper::acceleration_time, Stepper::deceleration_time;
uint8_t Stepper::steps_per_isr;TERN(ADAPTIVE_STEP_SMOOTHING,,constexpr) uint8_t Stepper::oversampling_factor;xyze_long_t Stepper::delta_error{0};xyze_ulong_t Stepper::advance_dividend{0};
uint32_t Stepper::advance_divisor = 0,Stepper::step_events_completed = 0, // The number of step events executed in the current blockStepper::accelerate_until,          // The count at which to stop acceleratingStepper::decelerate_after,          // The count at which to start deceleratingStepper::step_event_count;          // The total event count for the current block#if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)uint8_t Stepper::stepper_extruder;
#elseconstexpr uint8_t Stepper::stepper_extruder;
#endif#if ENABLED(S_CURVE_ACCELERATION)int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A");    // A coefficient in Bézier speed curve with alias for assemblerint32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B");    // B coefficient in Bézier speed curve with alias for assemblerint32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C");    // C coefficient in Bézier speed curve with alias for assembleruint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F");   // F coefficient in Bézier speed curve with alias for assembleruint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler#ifdef __AVR__bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative#endifbool Stepper::bezier_2nd_half;    // =false If Bézier curve has been initialized or not
#endif#if ENABLED(LIN_ADVANCE)uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,Stepper::LA_isr_rate = LA_ADV_NEVER;uint16_t Stepper::LA_current_adv_steps = 0,Stepper::LA_final_adv_steps,Stepper::LA_max_adv_steps;int8_t   Stepper::LA_steps = 0;bool Stepper::LA_use_advance_lead;#endif // LIN_ADVANCE#if ENABLED(INTEGRATED_BABYSTEPPING)uint32_t Stepper::nextBabystepISR = BABYSTEP_NEVER;
#endif#if ENABLED(DIRECT_STEPPING)page_step_state_t Stepper::page_step_state;
#endifint32_t Stepper::ticks_nominal = -1;
#if DISABLED(S_CURVE_ACCELERATION)uint32_t Stepper::acc_step_rate; // needed for deceleration start point
#endifxyz_long_t Stepper::endstops_trigsteps;
xyze_long_t Stepper::count_position{0};
xyze_int8_t Stepper::count_direction{0};#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)Stepper::stepper_laser_t Stepper::laser_trap = {.enabled = false,.cur_power = 0,.cruise_set = false,#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT).last_step_count = 0,.acc_step_count = 0#else.till_update = 0#endif};
#endif#define DUAL_ENDSTOP_APPLY_STEP(A,V)                                                                                        \if (separate_multi_axis) {                                                                                                \if (A##_HOME_DIR < 0) {                                                                                                 \if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V);    \if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \}                                                                                                                       \else {                                                                                                                  \if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V);    \if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \}                                                                                                                       \}                                                                                                                         \else {                                                                                                                    \A##_STEP_WRITE(V);                                                                                                      \A##2_STEP_WRITE(V);                                                                                                     \}#define DUAL_SEPARATE_APPLY_STEP(A,V)             \if (separate_multi_axis) {                      \if (!locked_##A##_motor) A##_STEP_WRITE(V);   \if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \}                                               \else {                                          \A##_STEP_WRITE(V);                            \A##2_STEP_WRITE(V);                           \}#define TRIPLE_ENDSTOP_APPLY_STEP(A,V)                                                                                      \if (separate_multi_axis) {                                                                                                \if (A##_HOME_DIR < 0) {                                                                                                 \if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V);    \if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \if (!(TEST(endstops.state(), A##3_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \}                                                                                                                       \else {                                                                                                                  \if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V);    \if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \if (!(TEST(endstops.state(), A##3_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \}                                                                                                                       \}                                                                                                                         \else {                                                                                                                    \A##_STEP_WRITE(V);                                                                                                      \A##2_STEP_WRITE(V);                                                                                                     \A##3_STEP_WRITE(V);                                                                                                     \}#define TRIPLE_SEPARATE_APPLY_STEP(A,V)           \if (separate_multi_axis) {                      \if (!locked_##A##_motor) A##_STEP_WRITE(V);   \if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \}                                               \else {                                          \A##_STEP_WRITE(V);                            \A##2_STEP_WRITE(V);                           \A##3_STEP_WRITE(V);                           \}#define QUAD_ENDSTOP_APPLY_STEP(A,V)                                                                                        \if (separate_multi_axis) {                                                                                                \if (A##_HOME_DIR < 0) {                                                                                                 \if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V);    \if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \if (!(TEST(endstops.state(), A##3_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \if (!(TEST(endstops.state(), A##4_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##4_motor) A##4_STEP_WRITE(V); \}                                                                                                                       \else {                                                                                                                  \if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V);    \if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \if (!(TEST(endstops.state(), A##3_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \if (!(TEST(endstops.state(), A##4_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##4_motor) A##4_STEP_WRITE(V); \}                                                                                                                       \}                                                                                                                         \else {                                                                                                                    \A##_STEP_WRITE(V);                                                                                                      \A##2_STEP_WRITE(V);                                                                                                     \A##3_STEP_WRITE(V);                                                                                                     \A##4_STEP_WRITE(V);                                                                                                     \}#define QUAD_SEPARATE_APPLY_STEP(A,V)             \if (separate_multi_axis) {                      \if (!locked_##A##_motor) A##_STEP_WRITE(V);   \if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \}                                               \else {                                          \A##_STEP_WRITE(V);                            \A##2_STEP_WRITE(V);                           \A##3_STEP_WRITE(V);                           \A##4_STEP_WRITE(V);                           \}#if ENABLED(X_DUAL_STEPPER_DRIVERS)#define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)#if ENABLED(X_DUAL_ENDSTOPS)#define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)#else#define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)#endif
#elif ENABLED(DUAL_X_CARRIAGE)#define X_APPLY_DIR(v,ALWAYS) do{ \if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(v); X2_DIR_WRITE(mirrored_duplication_mode ? !(v) : v); } \else if (last_moved_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \}while(0)#define X_APPLY_STEP(v,ALWAYS) do{ \if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(v); X2_STEP_WRITE(v); } \else if (last_moved_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \}while(0)
#else#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
#endif#if ENABLED(Y_DUAL_STEPPER_DRIVERS)#define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)#if ENABLED(Y_DUAL_ENDSTOPS)#define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)#else#define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)#endif
#else#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
#endif#if NUM_Z_STEPPER_DRIVERS == 4#define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); Z3_DIR_WRITE(v); Z4_DIR_WRITE(v); }while(0)#if ENABLED(Z_MULTI_ENDSTOPS)#define Z_APPLY_STEP(v,Q) QUAD_ENDSTOP_APPLY_STEP(Z,v)#elif ENABLED(Z_STEPPER_AUTO_ALIGN)#define Z_APPLY_STEP(v,Q) QUAD_SEPARATE_APPLY_STEP(Z,v)#else#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); Z4_STEP_WRITE(v); }while(0)#endif
#elif NUM_Z_STEPPER_DRIVERS == 3#define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); Z3_DIR_WRITE(v); }while(0)#if ENABLED(Z_MULTI_ENDSTOPS)#define Z_APPLY_STEP(v,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,v)#elif ENABLED(Z_STEPPER_AUTO_ALIGN)#define Z_APPLY_STEP(v,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,v)#else#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); }while(0)#endif
#elif NUM_Z_STEPPER_DRIVERS == 2#define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)#if ENABLED(Z_MULTI_ENDSTOPS)#define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)#elif ENABLED(Z_STEPPER_AUTO_ALIGN)#define Z_APPLY_STEP(v,Q) DUAL_SEPARATE_APPLY_STEP(Z,v)#else#define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)#endif
#else#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
#endif#if DISABLED(MIXING_EXTRUDER)#define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v)
#endif#define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000))
#define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE))// Round up when converting from ns to timer ticks
#define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK))#define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES))#define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS)))
#define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS)))#define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0
#define START_TIMED_PULSE(DIR) (start_pulse_count = HAL_timer_get_count(PULSE_TIMER_NUM))
#define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(PULSE_TIMER_NUM) - start_pulse_count) { }
#define START_HIGH_PULSE()  START_TIMED_PULSE(HIGH)
#define AWAIT_HIGH_PULSE()  AWAIT_TIMED_PULSE(HIGH)
#define START_LOW_PULSE()   START_TIMED_PULSE(LOW)
#define AWAIT_LOW_PULSE()   AWAIT_TIMED_PULSE(LOW)#if MINIMUM_STEPPER_PRE_DIR_DELAY > 0#define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY)
#else#define DIR_WAIT_BEFORE()
#endif#if MINIMUM_STEPPER_POST_DIR_DELAY > 0#define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY)
#else#define DIR_WAIT_AFTER()
#endif/*** Set the stepper direction of each axis**   COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS*   COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS*   COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS*/
void Stepper::set_directions() {DIR_WAIT_BEF ORE();#define SET_STEP_DIR(A)                       \if (motor_direction(_AXIS(A))) {            \A##_APPLY_DIR(INVERT_##A##_DIR, false);   \count_direction[_AXIS(A)] = -1;           \}                                           \else {                                      \A##_APPLY_DIR(!INVERT_##A##_DIR, false);  \count_direction[_AXIS(A)] = 1;            \}#if HAS_X_DIRSET_STEP_DIR(X); // A#endif#if HAS_Y_DIRSET_STEP_DIR(Y); // B#endif#if HAS_Z_DIRSET_STEP_DIR(Z); // C#endif#if DISABLED(LIN_ADVANCE)#if ENABLED(MIXING_EXTRUDER)// Because this is valid for the whole block we don't know// what e-steppers will step. Likely all. Set all.if (motor_direction(E_AXIS)) {MIXER_STEPPER_LOOP(j) REV_E_DIR(j);count_direction.e = -1;}else {MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);count_direction.e = 1;}#elseif (motor_direction(E_AXIS)) {REV_E_DIR(stepper_extruder);count_direction.e = -1;}else {NORM_E_DIR(stepper_extruder);count_direction.e = 1;}#endif#endif // !LIN_ADVANCE#if HAS_L64XXif (L64XX_OK_to_power_up) { // OK to send the direction commands (which powers up the L64XX steppers)if (L64xxManager.spi_active) {L64xxManager.spi_abort = true;                    // Interrupted SPI transfer needs to shut down gracefullyfor (uint8_t j = 1; j <= L64XX::chain[0]; j++)L6470_buf[j] = dSPIN_NOP;                         // Fill buffer with NOOPsL64xxManager.transfer(L6470_buf, L64XX::chain[0]);  // Send enough NOOPs to complete any commandL64xxManager.transfer(L6470_buf, L64XX::chain[0]);L64xxManager.transfer(L6470_buf, L64XX::chain[0]);}// L64xxManager.dir_commands[] is an array that holds direction command for each stepper// Scan command array, copy matches into L64xxManager.transferfor (uint8_t j = 1; j <= L64XX::chain[0]; j++)L6470_buf[j] = L64xxManager.dir_commands[L64XX::chain[j]];L64xxManager.transfer(L6470_buf, L64XX::chain[0]);  // send the command stream to the drivers}#endifDIR_WAIT_AFTER();
}#if ENABLED(S_CURVE_ACCELERATION)/***  This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving*  a "linear pop" velocity curve; with pop being the sixth derivative of position:*  velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th**  The Bézier curve takes the form:**  V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)**  Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)*  through B_5(t) are the Bernstein basis as follows:**        B_0(t) =   (1-t)^5        =   -t^5 +  5t^4 - 10t^3 + 10t^2 -  5t   +   1*        B_1(t) =  5(1-t)^4 * t    =   5t^5 - 20t^4 + 30t^3 - 20t^2 +  5t*        B_2(t) = 10(1-t)^3 * t^2  = -10t^5 + 30t^4 - 30t^3 + 10t^2*        B_3(t) = 10(1-t)^2 * t^3  =  10t^5 - 20t^4 + 10t^3*        B_4(t) =  5(1-t)   * t^4  =  -5t^5 +  5t^4*        B_5(t) =             t^5  =    t^5*                                      ^       ^       ^       ^       ^       ^*                                      |       |       |       |       |       |*                                      A       B       C       D       E       F**  Unfortunately, we cannot use forward-differencing to calculate each position through*  the curve, as Marlin uses variable timer periods. So, we require a formula of the form:**        V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F**  Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5*  through t of the Bézier form of V(t), we can determine that:**        A =    -P_0 +  5*P_1 - 10*P_2 + 10*P_3 -  5*P_4 +  P_5*        B =   5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 +  5*P_4*        C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3*        D =  10*P_0 - 20*P_1 + 10*P_2*        E = - 5*P_0 +  5*P_1*        F =     P_0**  Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,*  We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),*  which, after simplification, resolves to:**        A = - 6*P_i +  6*P_t =  6*(P_t - P_i)*        B =  15*P_i - 15*P_t = 15*(P_i - P_t)*        C = -10*P_i + 10*P_t = 10*(P_t - P_i)*        D = 0*        E = 0*        F = P_i**  As the t is evaluated in non uniform steps here, there is no other way rather than evaluating*  the Bézier curve at each point:**        V_f(t) = A*t^5 + B*t^4 + C*t^3 + F          [0 <= t <= 1]** Floating point arithmetic execution time cost is prohibitive, so we will transform the math to* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps* per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid* overflows on the evaluation of the Bézier curve, means we can use**   t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned*   A:   signed Q24.7 ,            |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign*   B:   signed Q24.7 ,            |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign*   C:   signed Q24.7 ,            |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign*   F:   signed Q24.7 ,            |range = +/- 250000     * 128 =      32000000 = 0x01E84800 | 25 bits + sign** The trapezoid generator state contains the following information, that we will use to create and evaluate* the Bézier curve:**  blk->step_event_count [TS] = The total count of steps for this movement. (=distance)*  blk->initial_rate     [VI] = The initial steps per second (=velocity)*  blk->final_rate       [VF] = The ending steps per second  (=velocity)*  and the count of events completed (step_events_completed) [CS] (=distance until now)**  Note the abbreviations we use in the following formulae are between []s**  For Any 32bit CPU:**    At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:**      A =  6*128*(VF - VI) =  768*(VF - VI)*      B = 15*128*(VI - VF) = 1920*(VI - VF)*      C = 10*128*(VF - VI) = 1280*(VF - VI)*      F =    128*VI        =  128*VI*     AV = (1<<32)/TS      ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)**    And for each point, evaluate the curve with the following sequence:**      void lsrs(uint32_t& d, uint32_t s, int cnt) {*        d = s >> cnt;*      }*      void lsls(uint32_t& d, uint32_t s, int cnt) {*        d = s << cnt;*      }*      void lsrs(int32_t& d, uint32_t s, int cnt) {*        d = uint32_t(s) >> cnt;*      }*      void lsls(int32_t& d, uint32_t s, int cnt) {*        d = uint32_t(s) << cnt;*      }*      void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {*        uint64_t res = uint64_t(op1) * op2;*        rlo = uint32_t(res & 0xFFFFFFFF);*        rhi = uint32_t((res >> 32) & 0xFFFFFFFF);*      }*      void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {*        int64_t mul = int64_t(op1) * op2;*        int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));*        mul += s;*        rlo = int32_t(mul & 0xFFFFFFFF);*        rhi = int32_t((mul >> 32) & 0xFFFFFFFF);*      }*      int32_t _eval_bezier_curve_arm(uint32_t curr_step) {*        uint32_t flo = 0;*        uint32_t fhi = bezier_AV * curr_step;*        uint32_t t = fhi;*        int32_t alo = bezier_F;*        int32_t ahi = 0;*        int32_t A = bezier_A;*        int32_t B = bezier_B;*        int32_t C = bezier_C;**        lsrs(ahi, alo, 1);          // a  = F << 31*        lsls(alo, alo, 31);         //*        umull(flo, fhi, fhi, t);    // f *= t*        umull(flo, fhi, fhi, t);    // f>>=32; f*=t*        lsrs(flo, fhi, 1);          //*        smlal(alo, ahi, flo, C);    // a+=(f>>33)*C*        umull(flo, fhi, fhi, t);    // f>>=32; f*=t*        lsrs(flo, fhi, 1);          //*        smlal(alo, ahi, flo, B);    // a+=(f>>33)*B*        umull(flo, fhi, fhi, t);    // f>>=32; f*=t*        lsrs(flo, fhi, 1);          // f>>=33;*        smlal(alo, ahi, flo, A);    // a+=(f>>33)*A;*        lsrs(alo, ahi, 6);          // a>>=38**        return alo;*      }**  This is rewritten in ARM assembly for optimal performance (43 cycles to execute).**  For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:*  Let's reduce precision as much as possible. After some experimentation we found that:**    Assume t and AV with 24 bits is enough*       A =  6*(VF - VI)*       B = 15*(VI - VF)*       C = 10*(VF - VI)*       F =     VI*      AV = (1<<24)/TS   (this is computed at the planner, to offload expensive calculations from the ISR)**    Instead of storing sign for each coefficient, we will store its absolute value,*    and flag the sign of the A coefficient, so we can save to store the sign bit.*    It always holds that sign(A) = - sign(B) = sign(C)**     So, the resulting range of the coefficients are:**       t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned*       A:   signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits*       B:   signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits*       C:   signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits*       F:   signed Q24 , range = 250000     =  250000 = 0x0ED090 | 20 bits**    And for each curve, estimate its coefficients with:**      void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {*       // Calculate the Bézier coefficients*       if (v1 < v0) {*         A_negative = true;*         bezier_A = 6 * (v0 - v1);*         bezier_B = 15 * (v0 - v1);*         bezier_C = 10 * (v0 - v1);*       }*       else {*         A_negative = false;*         bezier_A = 6 * (v1 - v0);*         bezier_B = 15 * (v1 - v0);*         bezier_C = 10 * (v1 - v0);*       }*       bezier_F = v0;*      }**    And for each point, evaluate the curve with the following sequence:**      // unsigned multiplication of 24 bits x 24bits, return upper 16 bits*      void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {*        r = (uint64_t(op1) * op2) >> 8;*      }*      // unsigned multiplication of 16 bits x 16bits, return upper 16 bits*      void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {*        r = (uint32_t(op1) * op2) >> 16;*      }*      // unsigned multiplication of 16 bits x 24bits, return upper 24 bits*      void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {*        r = uint24_t((uint64_t(op1) * op2) >> 16);*      }**      int32_t _eval_bezier_curve(uint32_t curr_step) {*        // To save computing, the first step is always the initial speed*        if (!curr_step)*          return bezier_F;**        uint16_t t;*        umul24x24to16hi(t, bezier_AV, curr_step);   // t: Range 0 - 1^16 = 16 bits*        uint16_t f = t;*        umul16x16to16hi(f, f, t);                   // Range 16 bits (unsigned)*        umul16x16to16hi(f, f, t);                   // Range 16 bits : f = t^3  (unsigned)*        uint24_t acc = bezier_F;                    // Range 20 bits (unsigned)*        if (A_negative) {*          uint24_t v;*          umul16x24to24hi(v, f, bezier_C);          // Range 21bits*          acc -= v;*          umul16x16to16hi(f, f, t);                 // Range 16 bits : f = t^4  (unsigned)*          umul16x24to24hi(v, f, bezier_B);          // Range 22bits*          acc += v;*          umul16x16to16hi(f, f, t);                 // Range 16 bits : f = t^5  (unsigned)*          umul16x24to24hi(v, f, bezier_A);          // Range 21bits + 15 = 36bits (plus sign)*          acc -= v;*        }*        else {*          uint24_t v;*          umul16x24to24hi(v, f, bezier_C);          // Range 21bits*          acc += v;*          umul16x16to16hi(f, f, t);                 // Range 16 bits : f = t^4  (unsigned)*          umul16x24to24hi(v, f, bezier_B);          // Range 22bits*          acc -= v;*          umul16x16to16hi(f, f, t);                 // Range 16 bits : f = t^5  (unsigned)*          umul16x24to24hi(v, f, bezier_A);          // Range 21bits + 15 = 36bits (plus sign)*          acc += v;*        }*        return acc;*      }*    These functions are translated to assembler for optimal performance.*    Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.*/#ifdef __AVR__// For AVR we use assembly to maximize speedvoid Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {// Store advancebezier_AV = av;// Calculate the rest of the coefficientsuint8_t r2 = v0 & 0xFF;uint8_t r3 = (v0 >> 8) & 0xFF;uint8_t r12 = (v0 >> 16) & 0xFF;uint8_t r5 = v1 & 0xFF;uint8_t r6 = (v1 >> 8) & 0xFF;uint8_t r7 = (v1 >> 16) & 0xFF;uint8_t r4,r8,r9,r10,r11;__asm__ __volatile__(/* Calculate the Bézier coefficients *//*  %10:%1:%0 = v0*//*  %5:%4:%3 = v1*//*  %7:%6:%10 = temporary*//*  %9 = val (must be high register!)*//*  %10 (must be high register!)*//* Store initial velocity*/A("sts bezier_F, %0")A("sts bezier_F+1, %1")A("sts bezier_F+2, %10")    /* bezier_F = %10:%1:%0 = v0 *//* Get delta speed */A("ldi %2,-1")              /* %2 = 0xFF, means A_negative = true */A("clr %8")                 /* %8 = 0 */A("sub %0,%3")A("sbc %1,%4")A("sbc %10,%5")             /*  v0 -= v1, C=1 if result is negative */A("brcc 1f")                /* branch if result is positive (C=0), that means v0 >= v1 *//*  Result was negative, get the absolute value*/A("com %10")A("com %1")A("neg %0")A("sbc %1,%2")A("sbc %10,%2")             /* %10:%1:%0 +1  -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */A("clr %2")                 /* %2 = 0, means A_negative = false *//*  Store negative flag*/L("1")A("sts A_negative, %2")     /* Store negative flag *//*  Compute coefficients A,B and C   [20 cycles worst case]*/A("ldi %9,6")               /* %9 = 6 */A("mul %0,%9")              /* r1:r0 = 6*LO(v0-v1) */A("sts bezier_A, r0")A("mov %6,r1")A("clr %7")                 /* %7:%6:r0 = 6*LO(v0-v1) */A("mul %1,%9")              /* r1:r0 = 6*MI(v0-v1) */A("add %6,r0")A("adc %7,r1")              /* %7:%6:?? += 6*MI(v0-v1) << 8 */A("mul %10,%9")             /* r1:r0 = 6*HI(v0-v1) */A("add %7,r0")              /* %7:%6:?? += 6*HI(v0-v1) << 16 */A("sts bezier_A+1, %6")A("sts bezier_A+2, %7")     /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */A("ldi %9,15")              /* %9 = 15 */A("mul %0,%9")              /* r1:r0 = 5*LO(v0-v1) */A("sts bezier_B, r0")A("mov %6,r1")A("clr %7")                 /* %7:%6:?? = 5*LO(v0-v1) */A("mul %1,%9")              /* r1:r0 = 5*MI(v0-v1) */A("add %6,r0")A("adc %7,r1")              /* %7:%6:?? += 5*MI(v0-v1) << 8 */A("mul %10,%9")             /* r1:r0 = 5*HI(v0-v1) */A("add %7,r0")              /* %7:%6:?? += 5*HI(v0-v1) << 16 */A("sts bezier_B+1, %6")A("sts bezier_B+2, %7")     /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */A("ldi %9,10")              /* %9 = 10 */A("mul %0,%9")              /* r1:r0 = 10*LO(v0-v1) */A("sts bezier_C, r0")A("mov %6,r1")A("clr %7")                 /* %7:%6:?? = 10*LO(v0-v1) */A("mul %1,%9")              /* r1:r0 = 10*MI(v0-v1) */A("add %6,r0")A("adc %7,r1")              /* %7:%6:?? += 10*MI(v0-v1) << 8 */A("mul %10,%9")             /* r1:r0 = 10*HI(v0-v1) */A("add %7,r0")              /* %7:%6:?? += 10*HI(v0-v1) << 16 */A("sts bezier_C+1, %6")" sts bezier_C+2, %7"       /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */: "+r" (r2),"+d" (r3),"=r" (r4),"+r" (r5),"+r" (r6),"+r" (r7),"=r" (r8),"=r" (r9),"=r" (r10),"=d" (r11),"+r" (r12):: "r0", "r1", "cc", "memory");}FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {// If dealing with the first step, save expensive computing and return the initial speedif (!curr_step)return bezier_F;uint8_t r0 = 0; /* Zero register */uint8_t r2 = (curr_step) & 0xFF;uint8_t r3 = (curr_step >> 8) & 0xFF;uint8_t r4 = (curr_step >> 16) & 0xFF;uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */__asm__ __volatile(/* umul24x24to16hi(t, bezier_AV, curr_step);  t: Range 0 - 1^16 = 16 bits*/A("lds %9,bezier_AV")       /* %9 = LO(AV)*/A("mul %9,%2")              /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/A("mov %7,r1")              /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/A("clr %8")                 /* %8:%7  = LO(bezier_AV)*LO(curr_step) >> 8*/A("lds %10,bezier_AV+1")    /* %10 = MI(AV)*/A("mul %10,%2")             /* r1:r0  = MI(bezier_AV)*LO(curr_step)*/A("add %7,r0")A("adc %8,r1")              /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/A("lds r1,bezier_AV+2")     /* r11 = HI(AV)*/A("mul r1,%2")              /* r1:r0  = HI(bezier_AV)*LO(curr_step)*/A("add %8,r0")              /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/A("mul %9,%3")              /* r1:r0 =  LO(bezier_AV)*MI(curr_step)*/A("add %7,r0")A("adc %8,r1")              /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/A("mul %10,%3")             /* r1:r0 =  MI(bezier_AV)*MI(curr_step)*/A("add %8,r0")              /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/A("mul %9,%4")              /* r1:r0 =  LO(bezier_AV)*HI(curr_step)*/A("add %8,r0")              /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*//* %8:%7 = t*//* uint16_t f = t;*/A("mov %5,%7")              /* %6:%5 = f*/A("mov %6,%8")/* %6:%5 = f*//* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */A("mul %5,%7")              /* r1:r0 = LO(f) * LO(t)*/A("mov %9,r1")              /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/A("clr %10")                /* %10 = 0*/A("clr %11")                /* %11 = 0*/A("mul %5,%8")              /* r1:r0 = LO(f) * HI(t)*/A("add %9,r0")              /* %9 += LO(LO(f) * HI(t))*/A("adc %10,r1")             /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%7")              /* r1:r0 = HI(f) * LO(t)*/A("add %9,r0")              /* %9 += LO(HI(f) * LO(t))*/A("adc %10,r1")             /* %10 += HI(HI(f) * LO(t)) */A("adc %11,%0")             /* %11 += carry*/A("mul %6,%8")              /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0")             /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1")             /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10")             /* %6:%5 = */A("mov %6,%11")             /* f = %10:%11*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3  (unsigned) [17]*/A("mul %5,%7")              /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1")              /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10")                /* %10 = 0*/A("clr %11")                /* %11 = 0*/A("mul %5,%8")              /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0")              /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1")             /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%7")              /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0")              /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1")             /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%8")              /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0")             /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1")             /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10")             /* %6:%5 =*/A("mov %6,%11")             /* f = %10:%11*//* [15 +17*2] = [49]*//* %4:%3:%2 will be acc from now on*//* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/A("clr %9")                 /* "decimal place we get for free"*/A("lds %2,bezier_F")A("lds %3,bezier_F+1")A("lds %4,bezier_F+2")      /* %4:%3:%2 = acc*//* if (A_negative) {*/A("lds r0,A_negative")A("or r0,%0")               /* Is flag signalling negative? */A("brne 3f")                /* If yes, Skip next instruction if A was negative*/A("rjmp 1f")                /* Otherwise, jump *//* uint24_t v; *//* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] *//* acc -= v; */L("3")A("lds %10, bezier_C")      /* %10 = LO(bezier_C)*/A("mul %10,%5")             /* r1:r0 = LO(bezier_C) * LO(f)*/A("sub %9,r1")A("sbc %2,%0")A("sbc %3,%0")A("sbc %4,%0")              /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/A("lds %11, bezier_C+1")    /* %11 = MI(bezier_C)*/A("mul %11,%5")             /* r1:r0 = MI(bezier_C) * LO(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0")              /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/A("lds %1, bezier_C+2")     /* %1 = HI(bezier_C)*/A("mul %1,%5")              /* r1:r0 = MI(bezier_C) * LO(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0")              /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/A("mul %10,%6")             /* r1:r0 = LO(bezier_C) * MI(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0")              /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/A("mul %11,%6")             /* r1:r0 = MI(bezier_C) * MI(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0")              /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/A("mul %1,%6")              /* r1:r0 = HI(bezier_C) * LO(f)*/A("sub %3,r0")A("sbc %4,r1")              /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3  (unsigned) [17]*/A("mul %5,%7")              /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1")              /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10")                /* %10 = 0*/A("clr %11")                /* %11 = 0*/A("mul %5,%8")              /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0")              /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1")             /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%7")              /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0")              /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1")             /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%8")              /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0")             /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1")             /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10")             /* %6:%5 =*/A("mov %6,%11")             /* f = %10:%11*//* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*//* acc += v; */A("lds %10, bezier_B")      /* %10 = LO(bezier_B)*/A("mul %10,%5")             /* r1:r0 = LO(bezier_B) * LO(f)*/A("add %9,r1")A("adc %2,%0")A("adc %3,%0")A("adc %4,%0")              /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/A("lds %11, bezier_B+1")    /* %11 = MI(bezier_B)*/A("mul %11,%5")             /* r1:r0 = MI(bezier_B) * LO(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0")              /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/A("lds %1, bezier_B+2")     /* %1 = HI(bezier_B)*/A("mul %1,%5")              /* r1:r0 = MI(bezier_B) * LO(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0")              /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/A("mul %10,%6")             /* r1:r0 = LO(bezier_B) * MI(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0")              /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/A("mul %11,%6")             /* r1:r0 = MI(bezier_B) * MI(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0")              /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/A("mul %1,%6")              /* r1:r0 = HI(bezier_B) * LO(f)*/A("add %3,r0")A("adc %4,r1")              /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5  (unsigned) [17]*/A("mul %5,%7")              /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1")              /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10")                /* %10 = 0*/A("clr %11")                /* %11 = 0*/A("mul %5,%8")              /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0")              /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1")             /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%7")              /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0")              /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1")             /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%8")              /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0")             /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1")             /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10")             /* %6:%5 =*/A("mov %6,%11")             /* f = %10:%11*//* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*//* acc -= v; */A("lds %10, bezier_A")      /* %10 = LO(bezier_A)*/A("mul %10,%5")             /* r1:r0 = LO(bezier_A) * LO(f)*/A("sub %9,r1")A("sbc %2,%0")A("sbc %3,%0")A("sbc %4,%0")              /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/A("lds %11, bezier_A+1")    /* %11 = MI(bezier_A)*/A("mul %11,%5")             /* r1:r0 = MI(bezier_A) * LO(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0")              /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/A("lds %1, bezier_A+2")     /* %1 = HI(bezier_A)*/A("mul %1,%5")              /* r1:r0 = MI(bezier_A) * LO(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0")              /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/A("mul %10,%6")             /* r1:r0 = LO(bezier_A) * MI(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0")              /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/A("mul %11,%6")             /* r1:r0 = MI(bezier_A) * MI(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0")              /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/A("mul %1,%6")              /* r1:r0 = HI(bezier_A) * LO(f)*/A("sub %3,r0")A("sbc %4,r1")              /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/A("jmp 2f")                 /* Done!*/L("1")/* uint24_t v; *//* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*//* acc += v; */A("lds %10, bezier_C")      /* %10 = LO(bezier_C)*/A("mul %10,%5")             /* r1:r0 = LO(bezier_C) * LO(f)*/A("add %9,r1")A("adc %2,%0")A("adc %3,%0")A("adc %4,%0")              /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/A("lds %11, bezier_C+1")    /* %11 = MI(bezier_C)*/A("mul %11,%5")             /* r1:r0 = MI(bezier_C) * LO(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0")              /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/A("lds %1, bezier_C+2")     /* %1 = HI(bezier_C)*/A("mul %1,%5")              /* r1:r0 = MI(bezier_C) * LO(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0")              /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/A("mul %10,%6")             /* r1:r0 = LO(bezier_C) * MI(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0")              /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/A("mul %11,%6")             /* r1:r0 = MI(bezier_C) * MI(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0")              /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/A("mul %1,%6")              /* r1:r0 = HI(bezier_C) * LO(f)*/A("add %3,r0")A("adc %4,r1")              /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3  (unsigned) [17]*/A("mul %5,%7")              /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1")              /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10")                /* %10 = 0*/A("clr %11")                /* %11 = 0*/A("mul %5,%8")              /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0")              /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1")             /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%7")              /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0")              /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1")             /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%8")              /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0")             /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1")             /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10")             /* %6:%5 =*/A("mov %6,%11")             /* f = %10:%11*//* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*//* acc -= v;*/A("lds %10, bezier_B")      /* %10 = LO(bezier_B)*/A("mul %10,%5")             /* r1:r0 = LO(bezier_B) * LO(f)*/A("sub %9,r1")A("sbc %2,%0")A("sbc %3,%0")A("sbc %4,%0")              /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/A("lds %11, bezier_B+1")    /* %11 = MI(bezier_B)*/A("mul %11,%5")             /* r1:r0 = MI(bezier_B) * LO(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0")              /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/A("lds %1, bezier_B+2")     /* %1 = HI(bezier_B)*/A("mul %1,%5")              /* r1:r0 = MI(bezier_B) * LO(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0")              /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/A("mul %10,%6")             /* r1:r0 = LO(bezier_B) * MI(f)*/A("sub %9,r0")A("sbc %2,r1")A("sbc %3,%0")A("sbc %4,%0")              /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/A("mul %11,%6")             /* r1:r0 = MI(bezier_B) * MI(f)*/A("sub %2,r0")A("sbc %3,r1")A("sbc %4,%0")              /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/A("mul %1,%6")              /* r1:r0 = HI(bezier_B) * LO(f)*/A("sub %3,r0")A("sbc %4,r1")              /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*//* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5  (unsigned) [17]*/A("mul %5,%7")              /* r1:r0 = LO(f) * LO(t)*/A("mov %1,r1")              /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/A("clr %10")                /* %10 = 0*/A("clr %11")                /* %11 = 0*/A("mul %5,%8")              /* r1:r0 = LO(f) * HI(t)*/A("add %1,r0")              /* %1 += LO(LO(f) * HI(t))*/A("adc %10,r1")             /* %10 = HI(LO(f) * HI(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%7")              /* r1:r0 = HI(f) * LO(t)*/A("add %1,r0")              /* %1 += LO(HI(f) * LO(t))*/A("adc %10,r1")             /* %10 += HI(HI(f) * LO(t))*/A("adc %11,%0")             /* %11 += carry*/A("mul %6,%8")              /* r1:r0 = HI(f) * HI(t)*/A("add %10,r0")             /* %10 += LO(HI(f) * HI(t))*/A("adc %11,r1")             /* %11 += HI(HI(f) * HI(t))*/A("mov %5,%10")             /* %6:%5 =*/A("mov %6,%11")             /* f = %10:%11*//* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*//* acc += v; */A("lds %10, bezier_A")      /* %10 = LO(bezier_A)*/A("mul %10,%5")             /* r1:r0 = LO(bezier_A) * LO(f)*/A("add %9,r1")A("adc %2,%0")A("adc %3,%0")A("adc %4,%0")              /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/A("lds %11, bezier_A+1")    /* %11 = MI(bezier_A)*/A("mul %11,%5")             /* r1:r0 = MI(bezier_A) * LO(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0")              /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/A("lds %1, bezier_A+2")     /* %1 = HI(bezier_A)*/A("mul %1,%5")              /* r1:r0 = MI(bezier_A) * LO(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0")              /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/A("mul %10,%6")             /* r1:r0 = LO(bezier_A) * MI(f)*/A("add %9,r0")A("adc %2,r1")A("adc %3,%0")A("adc %4,%0")              /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/A("mul %11,%6")             /* r1:r0 = MI(bezier_A) * MI(f)*/A("add %2,r0")A("adc %3,r1")A("adc %4,%0")              /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/A("mul %1,%6")              /* r1:r0 = HI(bezier_A) * LO(f)*/A("add %3,r0")A("adc %4,r1")              /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/L("2")" clr __zero_reg__"         /* C runtime expects r1 = __zero_reg__ = 0 */: "+r"(r0),"+r"(r1),"+r"(r2),"+r"(r3),"+r"(r4),"+r"(r5),"+r"(r6),"+r"(r7),"+r"(r8),"+r"(r9),"+r"(r10),"+r"(r11)::"cc","r0","r1");return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);}#else// For all the other 32bit CPUsFORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {// Calculate the Bézier coefficientsbezier_A =  768 * (v1 - v0);bezier_B = 1920 * (v0 - v1);bezier_C = 1280 * (v1 - v0);bezier_F =  128 * v0;bezier_AV = av;}FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {#if defined(__arm__) || defined(__thumb__)// For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to executeuint32_t flo = 0;uint32_t fhi = bezier_AV * curr_step;uint32_t t = fhi;int32_t alo = bezier_F;int32_t ahi = 0;int32_t A = bezier_A;int32_t B = bezier_B;int32_t C = bezier_C;__asm__ __volatile__(".syntax unified" "\n\t"              // is to prevent CM0,CM1 non-unified syntaxA("lsrs  %[ahi],%[alo],#1")           // a  = F << 31      1 cyclesA("lsls  %[alo],%[alo],#31")          //                   1 cyclesA("umull %[flo],%[fhi],%[fhi],%[t]")  // f *= t            5 cycles [fhi:flo=64bits]A("umull %[flo],%[fhi],%[fhi],%[t]")  // f>>=32; f*=t      5 cycles [fhi:flo=64bits]A("lsrs  %[flo],%[fhi],#1")           //                   1 cycles [31bits]A("smlal %[alo],%[ahi],%[flo],%[C]")  // a+=(f>>33)*C;     5 cyclesA("umull %[flo],%[fhi],%[fhi],%[t]")  // f>>=32; f*=t      5 cycles [fhi:flo=64bits]A("lsrs  %[flo],%[fhi],#1")           //                   1 cycles [31bits]A("smlal %[alo],%[ahi],%[flo],%[B]")  // a+=(f>>33)*B;     5 cyclesA("umull %[flo],%[fhi],%[fhi],%[t]")  // f>>=32; f*=t      5 cycles [fhi:flo=64bits]A("lsrs  %[flo],%[fhi],#1")           // f>>=33;           1 cycles [31bits]A("smlal %[alo],%[ahi],%[flo],%[A]")  // a+=(f>>33)*A;     5 cyclesA("lsrs  %[alo],%[ahi],#6")           // a>>=38            1 cycles: [alo]"+r"( alo ) ,[flo]"+r"( flo ) ,[fhi]"+r"( fhi ) ,[ahi]"+r"( ahi ) ,[A]"+r"( A ) ,  // <== Note: Even if A, B, C, and t registers are INPUT ONLY[B]"+r"( B ) ,  //  GCC does bad optimizations on the code if we list them as[C]"+r"( C ) ,  //  such, breaking this function. So, to avoid that problem,[t]"+r"( t )    //  we list all registers as input-outputs.:: "cc");return alo;#else// For non ARM targets, we provide a fallback implementation. Really doubt it// will be useful, unless the processor is fast and 32bituint32_t t = bezier_AV * curr_step;               // t: Range 0 - 1^32 = 32 bitsuint64_t f = t;f *= t;                                           // Range 32*2 = 64 bits (unsigned)f >>= 32;                                         // Range 32 bits  (unsigned)f *= t;                                           // Range 32*2 = 64 bits  (unsigned)f >>= 32;                                         // Range 32 bits : f = t^3  (unsigned)int64_t acc = (int64_t) bezier_F << 31;           // Range 63 bits (signed)acc += ((uint32_t) f >> 1) * (int64_t) bezier_C;  // Range 29bits + 31 = 60bits (plus sign)f *= t;                                           // Range 32*2 = 64 bitsf >>= 32;                                         // Range 32 bits : f = t^3  (unsigned)acc += ((uint32_t) f >> 1) * (int64_t) bezier_B;  // Range 29bits + 31 = 60bits (plus sign)f *= t;                                           // Range 32*2 = 64 bitsf >>= 32;                                         // Range 32 bits : f = t^3  (unsigned)acc += ((uint32_t) f >> 1) * (int64_t) bezier_A;  // Range 28bits + 31 = 59bits (plus sign)acc >>= (31 + 7);                                 // Range 24bits (plus sign)return (int32_t) acc;#endif}#endif
#endif // S_CURVE_ACCELERATION/*** Stepper Driver Interrupt** Directly pulses the stepper motors at high frequency.*/HAL_STEP_TIMER_ISR() {HAL_timer_isr_prologue(STEP_TIMER_NUM);Stepper::isr();HAL_timer_isr_epilogue(STEP_TIMER_NUM);
}#ifdef CPU_32_BIT#define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B)
#else#define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
#endifvoid Stepper::isr() {static uint32_t nextMainISR = 0;  // Interval until the next main Stepper Pulse phase (0 = Now)#ifndef __AVR__// Disable interrupts, to avoid ISR preemption while we reprogram the period// (AVR enters the ISR with global interrupts disabled, so no need to do it here)DISABLE_ISRS();#endif// Program timer compare for the maximum period, so it does NOT// flag an interrupt while this ISR is running - So changes from small// periods to big periods are respected and the timer does not reset to 0HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(HAL_TIMER_TYPE_MAX));// Count of ticks for the next ISRhal_timer_t next_isr_ticks = 0;// Limit the amount of iterationsuint8_t max_loops = 10;// We need this variable here to be able to use it in the following loophal_timer_t min_ticks;do {// Enable ISRs to reduce USART processing latencyENABLE_ISRS();if (!nextMainISR) pulse_phase_isr();                            // 0 = Do coordinated axes Stepper pulses#if ENABLED(LIN_ADVANCE)if (!nextAdvanceISR) nextAdvanceISR = advance_isr();          // 0 = Do Linear Advance E Stepper pulses#endif#if ENABLED(INTEGRATED_BABYSTEPPING)const bool is_babystep = (nextBabystepISR == 0);              // 0 = Do Babystepping (XY)Z pulsesif (is_babystep) nextBabystepISR = babystepping_isr();#endif// ^== Time critical. NOTHING besides pulse generation should be above here!!!if (!nextMainISR) nextMainISR = block_phase_isr();  // Manage acc/deceleration, get next block#if ENABLED(INTEGRATED_BABYSTEPPING)if (is_babystep)                                  // Avoid ANY stepping too soon after baby-steppingNOLESS(nextMainISR, (BABYSTEP_TICKS) / 8);      // FULL STOP for 125µs after a baby-stepif (nextBabystepISR != BABYSTEP_NEVER)            // Avoid baby-stepping too close to axis SteppingNOLESS(nextBabystepISR, nextMainISR / 2);       // TODO: Only look at axes enabled for baby-stepping#endif// Get the interval to the next ISR callconst uint32_t interval = _MIN(nextMainISR                                       // Time until the next Pulse / Block phase#if ENABLED(LIN_ADVANCE), nextAdvanceISR                                // Come back early for Linear Advance?#endif#if ENABLED(INTEGRATED_BABYSTEPPING), nextBabystepISR                               // Come back early for Babystepping?#endif, uint32_t(HAL_TIMER_TYPE_MAX)                    // Come back in a very long time);//// Compute remaining time for each ISR phase//     NEVER : The phase is idle//      Zero : The phase will occur on the next ISR call//  Non-zero : The phase will occur on a future ISR call//nextMainISR -= interval;#if ENABLED(LIN_ADVANCE)if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;#endif#if ENABLED(INTEGRATED_BABYSTEPPING)if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval;#endif/*** This needs to avoid a race-condition caused by interleaving* of interrupts required by both the LA and Stepper algorithms.** Assume the following tick times for stepper pulses:*   Stepper ISR (S):  1 1000 2000 3000 4000*   Linear Adv. (E): 10 1010 2010 3010 4010** The current algorithm tries to interleave them, giving:*  1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E** Ideal timing would yield these delta periods:*  1:S  9:E  990:S   10:E  990:S   10:E  990:S   10:E  990:S   10:E** But, since each event must fire an ISR with a minimum duration, the* minimum delta might be 900, so deltas under 900 get rounded up:*  900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E** It works, but divides the speed of all motors by half, leading to a sudden* reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even* accounting for double/quad stepping, which makes it even worse).*/// Compute the tick count for the next ISRnext_isr_ticks += interval;/*** The following section must be done with global interrupts disabled.* We want nothing to interrupt it, as that could mess the calculations* we do for the next value to program in the period register of the* stepper timer and lead to skipped ISRs (if the value we happen to program* is less than the current count due to something preempting between the* read and the write of the new period value).*/DISABLE_ISRS();/*** Get the current tick value + margin* Assuming at least 6µs between calls to this ISR...* On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin* On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin*/min_ticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t(#ifdef __AVR__8#else1#endif* (STEPPER_TIMER_TICKS_PER_US));/*** NB: If for some reason the stepper monopolizes the MPU, eventually the* timer will wrap around (and so will 'next_isr_ticks'). So, limit the* loop to 10 iterations. Beyond that, there's no way to ensure correct pulse* timing, since the MCU isn't fast enough.*/if (!--max_loops) next_isr_ticks = min_ticks;// Advance pulses if not enough time to wait for the next ISR} while (next_isr_ticks < min_ticks);// Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are// sure that the time has not arrived yet - Warrantied by the scheduler// Set the next ISR to fire at the proper timeHAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(next_isr_ticks));// Don't forget to finally reenable interruptsENABLE_ISRS();
}#if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE#define ISR_PULSE_CONTROL 1
#endif
#if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM)#define ISR_MULTI_STEPS 1
#endif/*** This phase of the ISR should ONLY create the pulses for the steppers.* This prevents jitter caused by the interval between the start of the* interrupt and the start of the pulses. DON'T add any logic ahead of the* call to this method that might cause variation in the timing. The aim* is to keep pulse timing as regular as possible.*/
void Stepper::pulse_phase_isr() {// If we must abort the current block, do so!if (abort_current_block) {abort_current_block = false;if (current_block) discard_current_block();}// If there is no current block, do nothingif (!current_block) return;// Count of pending loops and events for this iterationconst uint32_t pending_events = step_event_count - step_events_completed;uint8_t events_to_do = _MIN(pending_events, steps_per_isr);// Just update the value we will get at the end of the loopstep_events_completed += events_to_do;// Take multiple steps per interrupt (For high speed moves)#if ISR_MULTI_STEPSbool firstStep = true;USING_TIMED_PULSE();#endifxyze_bool_t step_needed{0};do {#define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS)#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN// Determine if a pulse is needed using Bresenham#define PULSE_PREP(AXIS) do{ \delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \if (step_needed[_AXIS(AXIS)]) { \count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \delta_error[_AXIS(AXIS)] -= advance_divisor; \} \}while(0)// Start an active pulse if needed#define PULSE_START(AXIS) do{ \if (step_needed[_AXIS(AXIS)]) { \_APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \} \}while(0)// Stop an active pulse if needed#define PULSE_STOP(AXIS) do { \if (step_needed[_AXIS(AXIS)]) { \_APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), 0); \} \}while(0)// Direct Stepping page?const bool is_page = IS_PAGE(current_block);#if ENABLED(DIRECT_STEPPING)if (is_page) {#if STEPPER_PAGE_FORMAT == SP_4x4D_128#define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{   \if ((VALUE) <  7) SBI(dm, _AXIS(AXIS)); \else if ((VALUE) >  7) CBI(dm, _AXIS(AXIS)); \page_step_state.sd[_AXIS(AXIS)] = VALUE;     \page_step_state.bd[_AXIS(AXIS)] += VALUE;    \}while(0)#define PAGE_PULSE_PREP(AXIS) do{ \step_needed[_AXIS(AXIS)] =      \pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7]); \}while(0)switch (page_step_state.segment_steps) {case DirectStepping::Config::SEGMENT_STEPS:page_step_state.segment_idx += 2;page_step_state.segment_steps = 0;// fallthrucase 0: {const uint8_t low = page_step_state.page[page_step_state.segment_idx],high = page_step_state.page[page_step_state.segment_idx + 1];uint8_t dm = last_direction_bits;PAGE_SEGMENT_UPDATE(X, low >> 4);PAGE_SEGMENT_UPDATE(Y, low & 0xF);PAGE_SEGMENT_UPDATE(Z, high >> 4);PAGE_SEGMENT_UPDATE(E, high & 0xF);if (dm != last_direction_bits) {last_direction_bits = dm;set_directions();}} break;default: break;}PAGE_PULSE_PREP(X);PAGE_PULSE_PREP(Y);PAGE_PULSE_PREP(Z);PAGE_PULSE_PREP(E);page_step_state.segment_steps++;#elif STEPPER_PAGE_FORMAT == SP_4x2_256#define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \page_step_state.sd[_AXIS(AXIS)] = VALUE; \page_step_state.bd[_AXIS(AXIS)] += VALUE;#define PAGE_PULSE_PREP(AXIS) do{ \step_needed[_AXIS(AXIS)] =      \pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3]); \}while(0)switch (page_step_state.segment_steps) {case DirectStepping::Config::SEGMENT_STEPS:page_step_state.segment_idx++;page_step_state.segment_steps = 0;// fallthrucase 0: {const uint8_t b = page_step_state.page[page_step_state.segment_idx];PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3);PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3);PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3);PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3);} break;default: break;}PAGE_PULSE_PREP(X);PAGE_PULSE_PREP(Y);PAGE_PULSE_PREP(Z);PAGE_PULSE_PREP(E);page_step_state.segment_steps++;#elif STEPPER_PAGE_FORMAT == SP_4x1_512#define PAGE_PULSE_PREP(AXIS, BITS) do{             \step_needed[_AXIS(AXIS)] = (steps >> BITS) & 0x1; \if (step_needed[_AXIS(AXIS)])                     \page_step_state.bd[_AXIS(AXIS)]++;              \}while(0)uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1];if (page_step_state.segment_idx & 0x1) steps >>= 4;PAGE_PULSE_PREP(X, 3);PAGE_PULSE_PREP(Y, 2);PAGE_PULSE_PREP(Z, 1);PAGE_PULSE_PREP(E, 0);page_step_state.segment_idx++;#else#error "Unknown direct stepping page format!"#endif}#endif // DIRECT_STEPPINGif (!is_page) {// Determine if pulses are needed#if HAS_X_STEPPULSE_PREP(X);#endif#if HAS_Y_STEPPULSE_PREP(Y);#endif#if HAS_Z_STEPPULSE_PREP(Z);#endif#if EITHER(LIN_ADVANCE, MIXING_EXTRUDER)delta_error.e += advance_dividend.e;if (delta_error.e >= 0) {count_position.e += count_direction.e;#if ENABLED(LIN_ADVANCE)delta_error.e -= advance_divisor;// Don't step E here - But remember the number of steps to performmotor_direction(E_AXIS) ? --LA_steps : ++LA_steps;#elsestep_needed.e = true;#endif}#elif HAS_E0_STEPPULSE_PREP(E);#endif}#if ISR_MULTI_STEPSif (firstStep)firstStep = false;elseAWAIT_LOW_PULSE();#endif// Pulse start#if HAS_X_STEPPULSE_START(X);#endif#if HAS_Y_STEPPULSE_START(Y);#endif#if HAS_Z_STEPPULSE_START(Z);#endif#if DISABLED(LIN_ADVANCE)#if ENABLED(MIXING_EXTRUDER)if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);#elif HAS_E0_STEPPULSE_START(E);#endif#endif#if ENABLED(I2S_STEPPER_STREAM)i2s_push_sample();#endif// TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s#if ISR_MULTI_STEPSSTART_HIGH_PULSE();AWAIT_HIGH_PULSE();#endif// Pulse stop#if HAS_X_STEPPULSE_STOP(X);#endif#if HAS_Y_STEPPULSE_STOP(Y);#endif#if HAS_Z_STEPPULSE_STOP(Z);#endif#if DISABLED(LIN_ADVANCE)#if ENABLED(MIXING_EXTRUDER)if (delta_error.e >= 0) {delta_error.e -= advance_divisor;E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);}#elif HAS_E0_STEPPULSE_STOP(E);#endif#endif#if ISR_MULTI_STEPSif (events_to_do) START_LOW_PULSE();#endif} while (--events_to_do);
}// This is the last half of the stepper interrupt: This one processes and
// properly schedules blocks from the planner. This is executed after creating
// the step pulses, so it is not time critical, as pulses are already done.uint32_t Stepper::block_phase_isr() {// If no queued movements, just wait 1ms for the next blockuint32_t interval = (STEPPER_TIMER_RATE) / 1000UL;// If there is a current blockif (current_block) {// If current block is finished, reset pointer and finalize stateif (step_events_completed >= step_event_count) {#if ENABLED(DIRECT_STEPPING)#if STEPPER_PAGE_FORMAT == SP_4x4D_128#define PAGE_SEGMENT_UPDATE_POS(AXIS) \count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7;#elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256#define PAGE_SEGMENT_UPDATE_POS(AXIS) \count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)];#endifif (IS_PAGE(current_block)) {PAGE_SEGMENT_UPDATE_POS(X);PAGE_SEGMENT_UPDATE_POS(Y);PAGE_SEGMENT_UPDATE_POS(Z);PAGE_SEGMENT_UPDATE_POS(E);}#endifTERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block));discard_current_block();}else {// Step events not completed yet...// Are we in acceleration phase ?if (step_events_completed <= accelerate_until) { // Calculate new timer value#if ENABLED(S_CURVE_ACCELERATION)// Get the next speed to use (Jerk limited!)uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time? _eval_bezier_curve(acceleration_time): current_block->cruise_rate;#elseacc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;NOMORE(acc_step_rate, current_block->nominal_rate);#endif// acc_step_rate is in steps/second// step_rate to timer interval and steps per stepper isrinterval = calc_timer_interval(acc_step_rate, &steps_per_isr);acceleration_time += interval;#if ENABLED(LIN_ADVANCE)if (LA_use_advance_lead) {// Fire ISR if final adv_rate is reachedif (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;}else if (LA_steps) nextAdvanceISR = 0;#endif// Update laser - Accelerating#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)if (laser_trap.enabled) {#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)if (current_block->laser.entry_per) {laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;laser_trap.last_step_count = step_events_completed;// Should be faster than a divide, since this should trip just onceif (laser_trap.acc_step_count < 0) {while (laser_trap.acc_step_count < 0) {laser_trap.acc_step_count += current_block->laser.entry_per;if (laser_trap.cur_power < current_block->laser.power) laser_trap.cur_power++;}cutter.set_ocr_power(laser_trap.cur_power);}}#elseif (laser_trap.till_update)laser_trap.till_update--;else {laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;laser_trap.cur_power = (current_block->laser.power * acc_step_rate) / current_block->nominal_rate;cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency is irrelevant it the last line was many cycles}#endif}#endif}// Are we in Deceleration phase ?else if (step_events_completed > decelerate_after) {uint32_t step_rate;#if ENABLED(S_CURVE_ACCELERATION)// If this is the 1st time we process the 2nd half of the trapezoid...if (!bezier_2nd_half) {// Initialize the Bézier speed curve_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);bezier_2nd_half = true;// The first point starts at cruise rate. Just save evaluation of the Bézier curvestep_rate = current_block->cruise_rate;}else {// Calculate the next speed to usestep_rate = deceleration_time < current_block->deceleration_time? _eval_bezier_curve(deceleration_time): current_block->final_rate;}#else// Using the old trapezoidal controlstep_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);if (step_rate < acc_step_rate) { // Still decelerating?step_rate = acc_step_rate - step_rate;NOLESS(step_rate, current_block->final_rate);}elsestep_rate = current_block->final_rate;#endif// step_rate is in steps/second// step_rate to timer interval and steps per stepper isrinterval = calc_timer_interval(step_rate, &steps_per_isr);deceleration_time += interval;#if ENABLED(LIN_ADVANCE)if (LA_use_advance_lead) {// Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reachedif (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {initiateLA();LA_isr_rate = current_block->advance_speed;}}else if (LA_steps) nextAdvanceISR = 0;#endif // LIN_ADVANCE// Update laser - Decelerating#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)if (laser_trap.enabled) {#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)if (current_block->laser.exit_per) {laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;laser_trap.last_step_count = step_events_completed;// Should be faster than a divide, since this should trip just onceif (laser_trap.acc_step_count < 0) {while (laser_trap.acc_step_count < 0) {laser_trap.acc_step_count += current_block->laser.exit_per;if (laser_trap.cur_power > current_block->laser.power_exit) laser_trap.cur_power--;}cutter.set_ocr_power(laser_trap.cur_power);}}#elseif (laser_trap.till_update)laser_trap.till_update--;else {laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;laser_trap.cur_power = (current_block->laser.power * step_rate) / current_block->nominal_rate;cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency isn't relevant when the last line was many cycles}#endif}#endif}// Must be in cruise phase otherwiseelse {#if ENABLED(LIN_ADVANCE)// If there are any esteps, fire the next advance_isr "now"if (LA_steps && LA_isr_rate != current_block->advance_speed) initiateLA();#endif// Calculate the ticks_nominal for this nominal speed, if not done yetif (ticks_nominal < 0) {// step_rate to timer interval and loops for the nominal speedticks_nominal = calc_timer_interval(current_block->nominal_rate, &steps_per_isr);}// The timer interval is just the nominal value for the nominal speedinterval = ticks_nominal;// Update laser - Cruising#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)if (laser_trap.enabled) {if (!laser_trap.cruise_set) {laser_trap.cur_power = current_block->laser.power;cutter.set_ocr_power(laser_trap.cur_power);laser_trap.cruise_set = true;}#if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;#elselaser_trap.last_step_count = step_events_completed;#endif}#endif}}}// If there is no current block at this point, attempt to pop one from the buffer// and prepare its movementif (!current_block) {// Anything in the buffer?if ((current_block = planner.get_current_block())) {// Sync block? Sync the stepper counts and returnwhile (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {_set_position(current_block->position);discard_current_block();// Try to get a new blockif (!(current_block = planner.get_current_block()))return interval; // No more queued movements!}// For non-inline cutter, grossly apply power#if ENABLED(LASER_FEATURE) && DISABLED(LASER_POWER_INLINE)cutter.apply_power(current_block->cutter_power);#endifTERN_(POWER_LOSS_RECOVERY, recovery.info.sdpos = current_block->sdpos);#if ENABLED(DIRECT_STEPPING)if (IS_PAGE(current_block)) {page_step_state.segment_steps = 0;page_step_state.segment_idx = 0;page_step_state.page = page_manager.get_page(current_block->page_idx);page_step_state.bd.reset();if (DirectStepping::Config::DIRECTIONAL)current_block->direction_bits = last_direction_bits;if (!page_step_state.page) {discard_current_block();return interval;}}#endif// Flag all moving axes for proper endstop handling#if IS_CORE// Define conditions for checking endstops#define S_(N) current_block->steps[CORE_AXIS_##N]#define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)#endif#if CORE_IS_XY || CORE_IS_XZ/*** Head direction in -X axis for CoreXY and CoreXZ bots.** If steps differ, both axes are moving.* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)* If DeltaA ==  DeltaB, the movement is only in the 1st axis (X)*/#if EITHER(COREXY, COREXZ)#define X_CMP(A,B) ((A)==(B))#else#define X_CMP(A,B) ((A)!=(B))#endif#define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) )#elif ENABLED(MARKFORGED_XY)#define X_MOVE_TEST (current_block->steps.a != current_block->steps.b)#else#define X_MOVE_TEST !!current_block->steps.a#endif#if CORE_IS_XY || CORE_IS_YZ/*** Head direction in -Y axis for CoreXY / CoreYZ bots.** If steps differ, both axes are moving* If DeltaA ==  DeltaB, the movement is only in the 1st axis (X or Y)* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)*/#if EITHER(COREYX, COREYZ)#define Y_CMP(A,B) ((A)==(B))#else#define Y_CMP(A,B) ((A)!=(B))#endif#define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) )#else#define Y_MOVE_TEST !!current_block->steps.b#endif#if CORE_IS_XZ || CORE_IS_YZ/*** Head direction in -Z axis for CoreXZ or CoreYZ bots.** If steps differ, both axes are moving* If DeltaA ==  DeltaB, the movement is only in the 1st axis (X or Y, already handled above)* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)*/#if EITHER(COREZX, COREZY)#define Z_CMP(A,B) ((A)==(B))#else#define Z_CMP(A,B) ((A)!=(B))#endif#define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) )#else#define Z_MOVE_TEST !!current_block->steps.c#endifuint8_t axis_bits = 0;if (X_MOVE_TEST) SBI(axis_bits, A_AXIS);if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS);if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS);//if (!!current_block->steps.e) SBI(axis_bits, E_AXIS);//if (!!current_block->steps.a) SBI(axis_bits, X_HEAD);//if (!!current_block->steps.b) SBI(axis_bits, Y_HEAD);//if (!!current_block->steps.c) SBI(axis_bits, Z_HEAD);axis_did_move = axis_bits;// No acceleration / deceleration time elapsed so faracceleration_time = deceleration_time = 0;#if ENABLED(ADAPTIVE_STEP_SMOOTHING)uint8_t oversampling = 0;                           // Assume no axis smoothing (via oversampling)// Decide if axis smoothing is possibleuint32_t max_rate = current_block->nominal_rate;    // Get the step event ratewhile (max_rate < MIN_STEP_ISR_FREQUENCY) {         // As long as more ISRs are possible...max_rate <<= 1;                                   // Try to double the rateif (max_rate < MIN_STEP_ISR_FREQUENCY)            // Don't exceed the estimated ISR limit++oversampling;                                 // Increase the oversampling (used for left-shift)}oversampling_factor = oversampling;                 // For all timer interval calculations#elseconstexpr uint8_t oversampling = 0;#endif// Based on the oversampling factor, do the calculationsstep_event_count = current_block->step_event_count << oversampling;// Initialize Bresenham delta errors to 1/2delta_error = -int32_t(step_event_count);// Calculate Bresenham dividends and divisorsadvance_dividend = current_block->steps << 1;advance_divisor = step_event_count << 1;// No step events completed so farstep_events_completed = 0;// Compute the acceleration and deceleration pointsaccelerate_until = current_block->accelerate_until << oversampling;decelerate_after = current_block->decelerate_after << oversampling;#if ENABLED(MIXING_EXTRUDER)MIXER_STEPPER_SETUP();#endif#if HAS_MULTI_EXTRUDERstepper_extruder = current_block->extruder;#endif// Initialize the trapezoid generator from the current block.#if ENABLED(LIN_ADVANCE)#if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1// If the now active extruder wasn't in use during the last move, its pressure is most likely gone.if (stepper_extruder != last_moved_extruder) LA_current_adv_steps = 0;#endifif ((LA_use_advance_lead = current_block->use_advance_lead)) {LA_final_adv_steps = current_block->final_adv_steps;LA_max_adv_steps = current_block->max_adv_steps;initiateLA(); // Start the ISRLA_isr_rate = current_block->advance_speed;}else LA_isr_rate = LA_ADV_NEVER;#endifif ( ENABLED(HAS_L64XX)  // Always set direction for L64xx (Also enables the chips)|| current_block->direction_bits != last_direction_bits|| TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)) {last_direction_bits = current_block->direction_bits;#if HAS_MULTI_EXTRUDERlast_moved_extruder = stepper_extruder;#endifTERN_(HAS_L64XX, L64XX_OK_to_power_up = true);set_directions();}#if ENABLED(LASER_POWER_INLINE)const power_status_t stat = current_block->laser.status;#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)laser_trap.enabled = stat.isPlanned && stat.isEnabled;laser_trap.cur_power = current_block->laser.power_entry; // RESET STATElaser_trap.cruise_set = false;#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)laser_trap.last_step_count = 0;laser_trap.acc_step_count = current_block->laser.entry_per / 2;#elselaser_trap.till_update = 0;#endif// Always have PWM in this caseif (stat.isPlanned) {                        // Planner controls the lasercutter.set_ocr_power(stat.isEnabled ? laser_trap.cur_power : 0 // ON with power or OFF);}#elseif (stat.isPlanned) {                        // Planner controls the laser#if ENABLED(SPINDLE_LASER_PWM)cutter.set_ocr_power(stat.isEnabled ? current_block->laser.power : 0 // ON with power or OFF);#elsecutter.set_enabled(stat.isEnabled);#endif}#endif#endif // LASER_POWER_INLINE// At this point, we must ensure the movement about to execute isn't// trying to force the head against a limit switch. If using interrupt-// driven change detection, and already against a limit then no call to// the endstop_triggered method will be done and the movement will be// done against the endstop. So, check the limits here: If the movement// is against the limits, the block will be marked as to be killed, and// on the next call to this ISR, will be discarded.endstops.update();#if ENABLED(Z_LATE_ENABLE)// If delayed Z enable, enable it now. This option will severely interfere with// timing between pulses when chaining motion between blocks, and it could lead// to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!if (current_block->steps.z) ENABLE_AXIS_Z();#endif// Mark the time_nominal as not calculated yetticks_nominal = -1;#if ENABLED(S_CURVE_ACCELERATION)// Initialize the Bézier speed curve_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);// We haven't started the 2nd half of the trapezoidbezier_2nd_half = false;#else// Set as deceleration point the initial rate of the blockacc_step_rate = current_block->initial_rate;#endif// Calculate the initial timer intervalinterval = calc_timer_interval(current_block->initial_rate, &steps_per_isr);}#if ENABLED(LASER_POWER_INLINE_CONTINUOUS)else { // No new block found; so apply inline laser parameters// This should mean ending file with 'M5 I' will stop the laser; thus the inline flag isn't neededconst power_status_t stat = planner.laser_inline.status;if (stat.isPlanned) {             // Planner controls the laser#if ENABLED(SPINDLE_LASER_PWM)cutter.set_ocr_power(stat.isEnabled ? planner.laser_inline.power : 0 // ON with power or OFF);#elsecutter.set_enabled(stat.isEnabled);#endif}}#endif}// Return the interval to waitreturn interval;
}#if ENABLED(LIN_ADVANCE)// Timer interrupt for E. LA_steps is set in the main routineuint32_t Stepper::advance_isr() {uint32_t interval;if (LA_use_advance_lead) {if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {LA_steps--;LA_current_adv_steps--;interval = LA_isr_rate;}else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {//step_events_completed <= (uint32_t)accelerate_until) {LA_steps++;LA_current_adv_steps++;interval = LA_isr_rate;}elseinterval = LA_isr_rate = LA_ADV_NEVER;}elseinterval = LA_ADV_NEVER;DIR_WAIT_BEFORE();#if ENABLED(MIXING_EXTRUDER)// We don't know which steppers will be stepped because LA loop follows,// with potentially multiple steps. Set all.if (LA_steps > 0)MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);else if (LA_steps < 0)MIXER_STEPPER_LOOP(j) REV_E_DIR(j);#elseif (LA_steps > 0)NORM_E_DIR(stepper_extruder);else if (LA_steps < 0)REV_E_DIR(stepper_extruder);#endifDIR_WAIT_AFTER();//const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);// Step E stepper if we have steps#if ISR_MULTI_STEPSbool firstStep = true;USING_TIMED_PULSE();#endifwhile (LA_steps) {#if ISR_MULTI_STEPSif (firstStep)firstStep = false;elseAWAIT_LOW_PULSE();#endif// Set the STEP pulse ON#if ENABLED(MIXING_EXTRUDER)E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);#elseE_STEP_WRITE(stepper_extruder, !INVERT_E_STEP_PIN);#endif// Enforce a minimum duration for STEP pulse ON#if ISR_PULSE_CONTROLSTART_HIGH_PULSE();#endifLA_steps < 0 ? ++LA_steps : --LA_steps;#if ISR_PULSE_CONTROLAWAIT_HIGH_PULSE();#endif// Set the STEP pulse OFF#if ENABLED(MIXING_EXTRUDER)E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);#elseE_STEP_WRITE(stepper_extruder, INVERT_E_STEP_PIN);#endif// For minimum pulse time wait before looping// Just wait for the requested pulse duration#if ISR_PULSE_CONTROLif (LA_steps) START_LOW_PULSE();#endif} // LA_stepsreturn interval;}#endif // LIN_ADVANCE#if ENABLED(INTEGRATED_BABYSTEPPING)// Timer interrupt for baby-steppinguint32_t Stepper::babystepping_isr() {babystep.task();return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER;}#endif// Check if the given block is busy or not - Must not be called from ISR contexts
// The current_block could change in the middle of the read by an Stepper ISR, so
// we must explicitly prevent that!
bool Stepper::is_block_busy(const block_t* const block) {#ifdef __AVR__// A SW memory barrier, to ensure GCC does not overoptimize loops#define sw_barrier() asm volatile("": : :"memory");// Keep reading until 2 consecutive reads return the same value,// meaning there was no update in-between caused by an interrupt.// This works because stepper ISRs happen at a slower rate than// successive reads of a variable, so 2 consecutive reads with// the same value means no interrupt updated it.block_t* vold, *vnew = current_block;sw_barrier();do {vold = vnew;vnew = current_block;sw_barrier();} while (vold != vnew);#elseblock_t *vnew = current_block;#endif// Return if the block is busy or notreturn block == vnew;
}void Stepper::init() {#if MB(ALLIGATOR)const float motor_current[] = MOTOR_CURRENT;unsigned int digipot_motor = 0;LOOP_L_N(i, 3 + EXTRUDERS) {digipot_motor = 255 * (motor_current[i] / 2.5);dac084s085::setValue(i, digipot_motor);}#endif// Init Microstepping PinsTERN_(HAS_MICROSTEPS, microstep_init());// Init Dir PinsTERN_(HAS_X_DIR, X_DIR_INIT());TERN_(HAS_X2_DIR, X2_DIR_INIT());#if HAS_Y_DIRY_DIR_INIT();#if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_DIR)Y2_DIR_INIT();#endif#endif#if HAS_Z_DIRZ_DIR_INIT();#if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_DIRZ2_DIR_INIT();#endif#if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_DIRZ3_DIR_INIT();#endif#if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_DIRZ4_DIR_INIT();#endif#endif#if HAS_E0_DIRE0_DIR_INIT();#endif#if HAS_E1_DIRE1_DIR_INIT();#endif#if HAS_E2_DIRE2_DIR_INIT();#endif#if HAS_E3_DIRE3_DIR_INIT();#endif#if HAS_E4_DIRE4_DIR_INIT();#endif#if HAS_E5_DIRE5_DIR_INIT();#endif#if HAS_E6_DIRE6_DIR_INIT();#endif#if HAS_E7_DIRE7_DIR_INIT();#endif// Init Enable Pins - steppers default to disabled.#if HAS_X_ENABLEX_ENABLE_INIT();if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);#if EITHER(DUAL_X_CARRIAGE, X_DUAL_STEPPER_DRIVERS) && HAS_X2_ENABLEX2_ENABLE_INIT();if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);#endif#endif#if HAS_Y_ENABLEY_ENABLE_INIT();if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);#if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_ENABLE)Y2_ENABLE_INIT();if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);#endif#endif#if HAS_Z_ENABLEZ_ENABLE_INIT();if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);#if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_ENABLEZ2_ENABLE_INIT();if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);#endif#if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_ENABLEZ3_ENABLE_INIT();if (!Z_ENABLE_ON) Z3_ENABLE_WRITE(HIGH);#endif#if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_ENABLEZ4_ENABLE_INIT();if (!Z_ENABLE_ON) Z4_ENABLE_WRITE(HIGH);#endif#endif#if HAS_E0_ENABLEE0_ENABLE_INIT();if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);#endif#if HAS_E1_ENABLEE1_ENABLE_INIT();if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);#endif#if HAS_E2_ENABLEE2_ENABLE_INIT();if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);#endif#if HAS_E3_ENABLEE3_ENABLE_INIT();if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);#endif#if HAS_E4_ENABLEE4_ENABLE_INIT();if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);#endif#if HAS_E5_ENABLEE5_ENABLE_INIT();if (!E_ENABLE_ON) E5_ENABLE_WRITE(HIGH);#endif#if HAS_E6_ENABLEE6_ENABLE_INIT();if (!E_ENABLE_ON) E6_ENABLE_WRITE(HIGH);#endif#if HAS_E7_ENABLEE7_ENABLE_INIT();if (!E_ENABLE_ON) E7_ENABLE_WRITE(HIGH);#endif#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT()#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)#define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS()#define AXIS_INIT(AXIS, PIN) \_STEP_INIT(AXIS); \_WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \_DISABLE_AXIS(AXIS)#define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)// Init Step Pins#if HAS_X_STEP#if EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE)X2_STEP_INIT();X2_STEP_WRITE(INVERT_X_STEP_PIN);#endifAXIS_INIT(X, X);#endif#if HAS_Y_STEP#if ENABLED(Y_DUAL_STEPPER_DRIVERS)Y2_STEP_INIT();Y2_STEP_WRITE(INVERT_Y_STEP_PIN);#endifAXIS_INIT(Y, Y);#endif#if HAS_Z_STEP#if NUM_Z_STEPPER_DRIVERS >= 2Z2_STEP_INIT();Z2_STEP_WRITE(INVERT_Z_STEP_PIN);#endif#if NUM_Z_STEPPER_DRIVERS >= 3Z3_STEP_INIT();Z3_STEP_WRITE(INVERT_Z_STEP_PIN);#endif#if NUM_Z_STEPPER_DRIVERS >= 4Z4_STEP_INIT();Z4_STEP_WRITE(INVERT_Z_STEP_PIN);#endifAXIS_INIT(Z, Z);#endif#if E_STEPPERS && HAS_E0_STEPE_AXIS_INIT(0);#endif#if E_STEPPERS > 1 && HAS_E1_STEPE_AXIS_INIT(1);#endif#if E_STEPPERS > 2 && HAS_E2_STEPE_AXIS_INIT(2);#endif#if E_STEPPERS > 3 && HAS_E3_STEPE_AXIS_INIT(3);#endif#if E_STEPPERS > 4 && HAS_E4_STEPE_AXIS_INIT(4);#endif#if E_STEPPERS > 5 && HAS_E5_STEPE_AXIS_INIT(5);#endif#if E_STEPPERS > 6 && HAS_E6_STEPE_AXIS_INIT(6);#endif#if E_STEPPERS > 7 && HAS_E7_STEPE_AXIS_INIT(7);#endif#if DISABLED(I2S_STEPPER_STREAM)HAL_timer_start(STEP_TIMER_NUM, 122); // Init Stepper ISR to 122 Hz for quick startingwake_up();sei();#endif// Init direction bits for first moveslast_direction_bits = 0| (INVERT_X_DIR ? _BV(X_AXIS) : 0)| (INVERT_Y_DIR ? _BV(Y_AXIS) : 0)| (INVERT_Z_DIR ? _BV(Z_AXIS) : 0);set_directions();#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWMinitialized = true;digipot_init();#endif
}/*** Set the stepper positions directly in steps** The input is based on the typical per-axis XYZ steps.* For CORE machines XYZ needs to be translated to ABC.** This allows get_axis_position_mm to correctly* derive the current XYZ position later on.*/
void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {#if CORE_IS_XY// corexy positioning// these equations follow the form of the dA and dB equations on https://www.corexy.com/theory.htmlcount_position.set(a + b, CORESIGN(a - b), c);#elif CORE_IS_XZ// corexz planningcount_position.set(a + c, b, CORESIGN(a - c));#elif CORE_IS_YZ// coreyz planningcount_position.set(a, b + c, CORESIGN(b - c));#elif ENABLED(MARKFORGED_XY)count_position.set(a - b, b, c);#else// default non-h-bot planningcount_position.set(a, b, c);#endifcount_position.e = e;
}/*** Get a stepper's position in steps.*/
int32_t Stepper::position(const AxisEnum axis) {#ifdef __AVR__// Protect the access to the position. Only required for AVR, as//  any 32bit CPU offers atomic access to 32bit variablesconst bool was_enabled = suspend();#endifconst int32_t v = count_position[axis];#ifdef __AVR__// Reenable Stepper ISRif (was_enabled) wake_up();#endifreturn v;
}// Set the current position in steps
void Stepper::set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {planner.synchronize();const bool was_enabled = suspend();_set_position(a, b, c, e);if (was_enabled) wake_up();
}void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) {planner.synchronize();#ifdef __AVR__// Protect the access to the position. Only required for AVR, as//  any 32bit CPU offers atomic access to 32bit variablesconst bool was_enabled = suspend();#endifcount_position[a] = v;#ifdef __AVR__// Reenable Stepper ISRif (was_enabled) wake_up();#endif
}// Signal endstops were triggered - This function can be called from
// an ISR context  (Temperature, Stepper or limits ISR), so we must
// be very careful here. If the interrupt being preempted was the
// Stepper ISR (this CAN happen with the endstop limits ISR) then
// when the stepper ISR resumes, we must be very sure that the movement
// is properly canceled
void Stepper::endstop_triggered(const AxisEnum axis) {const bool was_enabled = suspend();endstops_trigsteps[axis] = (#if IS_CORE(axis == CORE_AXIS_2? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]): count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]) * double(0.5)#elif ENABLED(MARKFORGED_XY)axis == CORE_AXIS_1? count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]: count_position[CORE_AXIS_2]#else // !IS_COREcount_position[axis]#endif);// Discard the rest of the move if there is a current blockquick_stop();if (was_enabled) wake_up();
}int32_t Stepper::triggered_position(const AxisEnum axis) {#ifdef __AVR__// Protect the access to the position. Only required for AVR, as//  any 32bit CPU offers atomic access to 32bit variablesconst bool was_enabled = suspend();#endifconst int32_t v = endstops_trigsteps[axis];#ifdef __AVR__// Reenable Stepper ISRif (was_enabled) wake_up();#endifreturn v;
}void Stepper::report_a_position(const xyz_long_t &pos) {#if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, DELTA, IS_SCARA)SERIAL_ECHOPAIR(STR_COUNT_A, pos.x, " B:", pos.y);#elseSERIAL_ECHOPAIR_P(PSTR(STR_COUNT_X), pos.x, SP_Y_LBL, pos.y);#endif#if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA)SERIAL_ECHOLNPAIR(" C:", pos.z);#elseSERIAL_ECHOLNPAIR_P(SP_Z_LBL, pos.z);#endif
}void Stepper::report_positions() {#ifdef __AVR__// Protect the access to the position.const bool was_enabled = suspend();#endifconst xyz_long_t pos = count_position;#ifdef __AVR__if (was_enabled) wake_up();#endifreport_a_position(pos);
}#if ENABLED(BABYSTEPPING)#define _ENABLE_AXIS(AXIS) ENABLE_AXIS_## AXIS()#define _READ_DIR(AXIS) AXIS ##_DIR_READ()#define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)#if MINIMUM_STEPPER_PULSE#define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)#else#define STEP_PULSE_CYCLES 0#endif#if ENABLED(DELTA)#define CYCLES_EATEN_BABYSTEP (2 * 15)#else#define CYCLES_EATEN_BABYSTEP 0#endif#define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))#if EXTRA_CYCLES_BABYSTEP > 20#define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM)#define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }#else#define _SAVE_START() NOOP#if EXTRA_CYCLES_BABYSTEP > 0#define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)#elif ENABLED(DELTA)#define _PULSE_WAIT() DELAY_US(2);#elif STEP_PULSE_CYCLES > 0#define _PULSE_WAIT() NOOP#else#define _PULSE_WAIT() DELAY_US(4);#endif#endif#if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT)#define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE#define EXTRA_DIR_WAIT_AFTER  DIR_WAIT_AFTER#else#define EXTRA_DIR_WAIT_BEFORE()#define EXTRA_DIR_WAIT_AFTER()#endif#if DISABLED(DELTA)#define BABYSTEP_AXIS(AXIS, INV, DIR) do{           \const uint8_t old_dir = _READ_DIR(AXIS);          \_ENABLE_AXIS(AXIS);                               \DIR_WAIT_BEFORE();                                \_APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INV);      \DIR_WAIT_AFTER();                                 \_SAVE_START();                                    \_APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), true); \_PULSE_WAIT();                                    \_APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), true);  \EXTRA_DIR_WAIT_BEFORE();                          \_APPLY_DIR(AXIS, old_dir);                        \EXTRA_DIR_WAIT_AFTER();                           \}while(0)#endif#if IS_CORE#define BABYSTEP_CORE(A, B, INV, DIR, ALT) do{              \const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \_ENABLE_AXIS(A); _ENABLE_AXIS(B);                         \DIR_WAIT_BEFORE();                                        \_APPLY_DIR(A, _INVERT_DIR(A)^DIR^INV);                    \_APPLY_DIR(B, _INVERT_DIR(B)^DIR^INV^ALT);                \DIR_WAIT_AFTER();                                         \_SAVE_START();                                            \_APPLY_STEP(A, !_INVERT_STEP_PIN(A), true);               \_APPLY_STEP(B, !_INVERT_STEP_PIN(B), true);               \_PULSE_WAIT();                                            \_APPLY_STEP(A, _INVERT_STEP_PIN(A), true);                \_APPLY_STEP(B, _INVERT_STEP_PIN(B), true);                \EXTRA_DIR_WAIT_BEFORE();                                  \_APPLY_DIR(A, old_dir.a); _APPLY_DIR(B, old_dir.b);       \EXTRA_DIR_WAIT_AFTER();                                   \}while(0)#endif// MUST ONLY BE CALLED BY AN ISR,// No other ISR should ever interrupt this!void Stepper::do_babystep(const AxisEnum axis, const bool direction) {#if DISABLED(INTEGRATED_BABYSTEPPING)cli();#endifswitch (axis) {#if ENABLED(BABYSTEP_XY)case X_AXIS:#if CORE_IS_XYBABYSTEP_CORE(X, Y, 0, direction, 0);#elif CORE_IS_XZBABYSTEP_CORE(X, Z, 0, direction, 0);#elseBABYSTEP_AXIS(X, 0, direction);#endifbreak;case Y_AXIS:#if CORE_IS_XYBABYSTEP_CORE(X, Y, 1, !direction, (CORESIGN(1)>0));#elif CORE_IS_YZBABYSTEP_CORE(Y, Z, 0, direction, (CORESIGN(1)<0));#elseBABYSTEP_AXIS(Y, 0, direction);#endifbreak;#endifcase Z_AXIS: {#if CORE_IS_XZBABYSTEP_CORE(X, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));#elif CORE_IS_YZBABYSTEP_CORE(Y, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));#elif DISABLED(DELTA)BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);#else // DELTAconst bool z_direction = direction ^ BABYSTEP_INVERT_Z;ENABLE_AXIS_X();ENABLE_AXIS_Y();ENABLE_AXIS_Z();DIR_WAIT_BEFORE();const xyz_byte_t old_dir = { X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ() };X_DIR_WRITE(INVERT_X_DIR ^ z_direction);Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);DIR_WAIT_AFTER();_SAVE_START();X_STEP_WRITE(!INVERT_X_STEP_PIN);Y_STEP_WRITE(!INVERT_Y_STEP_PIN);Z_STEP_WRITE(!INVERT_Z_STEP_PIN);_PULSE_WAIT();X_STEP_WRITE(INVERT_X_STEP_PIN);Y_STEP_WRITE(INVERT_Y_STEP_PIN);Z_STEP_WRITE(INVERT_Z_STEP_PIN);// Restore direction bitsEXTRA_DIR_WAIT_BEFORE();X_DIR_WRITE(old_dir.x);Y_DIR_WRITE(old_dir.y);Z_DIR_WRITE(old_dir.z);EXTRA_DIR_WAIT_AFTER();#endif} break;default: break;}#if DISABLED(INTEGRATED_BABYSTEPPING)sei();#endif}#endif // BABYSTEPPING/*** Software-controlled Stepper Motor Current*/#if HAS_MOTOR_CURRENT_SPI// From Arduino DigitalPotControl examplevoid Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) {WRITE(DIGIPOTSS_PIN, LOW);  // Take the SS pin low to select the chipSPI.transfer(address);      // Send the address and value via SPISPI.transfer(value);WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip//delay(10);}#endif // HAS_MOTOR_CURRENT_SPI#if HAS_MOTOR_CURRENT_PWMvoid Stepper::refresh_motor_power() {if (!initialized) return;LOOP_L_N(i, COUNT(motor_current_setting)) {switch (i) {#if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y)case 0:#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)case 1:#endif#if ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_E0, MOTOR_CURRENT_PWM_E1)case 2:#endifset_digipot_current(i, motor_current_setting[i]);default: break;}}}#endif // HAS_MOTOR_CURRENT_PWM#if !MB(PRINTRBOARD_G2)#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWMvoid Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {if (WITHIN(driver, 0, COUNT(motor_current_setting) - 1))motor_current_setting[driver] = current; // update motor_current_settingif (!initialized) return;#if HAS_MOTOR_CURRENT_SPI//SERIAL_ECHOLNPAIR("Digipotss current ", current);const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;set_digipot_value_spi(digipot_ch[driver], current);#elif HAS_MOTOR_CURRENT_PWM#define _WRITE_CURRENT_PWM(P) analogWrite(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))switch (driver) {case 0:#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)_WRITE_CURRENT_PWM(X);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)_WRITE_CURRENT_PWM(Y);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)_WRITE_CURRENT_PWM(XY);#endifbreak;case 1:#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)_WRITE_CURRENT_PWM(Z);#endifbreak;case 2:#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)_WRITE_CURRENT_PWM(E);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)_WRITE_CURRENT_PWM(E0);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)_WRITE_CURRENT_PWM(E1);#endifbreak;}#endif}void Stepper::digipot_init() {#if HAS_MOTOR_CURRENT_SPISPI.begin();SET_OUTPUT(DIGIPOTSS_PIN);LOOP_L_N(i, COUNT(motor_current_setting))set_digipot_current(i, motor_current_setting[i]);#elif HAS_MOTOR_CURRENT_PWM#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)SET_PWM(MOTOR_CURRENT_PWM_X_PIN);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)SET_PWM(MOTOR_CURRENT_PWM_Y_PIN);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)SET_PWM(MOTOR_CURRENT_PWM_XY_PIN);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)SET_PWM(MOTOR_CURRENT_PWM_Z_PIN);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)SET_PWM(MOTOR_CURRENT_PWM_E_PIN);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)SET_PWM(MOTOR_CURRENT_PWM_E0_PIN);#endif#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)SET_PWM(MOTOR_CURRENT_PWM_E1_PIN);#endifrefresh_motor_power();// Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)#ifdef __AVR__SET_CS5(PRESCALER_1);#endif#endif}#endif#else // PRINTRBOARD_G2#include HAL_PATH(../HAL, fastio/G2_PWM.h)#endif#if HAS_MICROSTEPS/*** Software-controlled Microstepping*/void Stepper::microstep_init() {#if HAS_X_MS_PINSSET_OUTPUT(X_MS1_PIN);SET_OUTPUT(X_MS2_PIN);#if PIN_EXISTS(X_MS3)SET_OUTPUT(X_MS3_PIN);#endif#endif#if HAS_X2_MS_PINSSET_OUTPUT(X2_MS1_PIN);SET_OUTPUT(X2_MS2_PIN);#if PIN_EXISTS(X2_MS3)SET_OUTPUT(X2_MS3_PIN);#endif#endif#if HAS_Y_MS_PINSSET_OUTPUT(Y_MS1_PIN);SET_OUTPUT(Y_MS2_PIN);#if PIN_EXISTS(Y_MS3)SET_OUTPUT(Y_MS3_PIN);#endif#endif#if HAS_Y2_MS_PINSSET_OUTPUT(Y2_MS1_PIN);SET_OUTPUT(Y2_MS2_PIN);#if PIN_EXISTS(Y2_MS3)SET_OUTPUT(Y2_MS3_PIN);#endif#endif#if HAS_Z_MS_PINSSET_OUTPUT(Z_MS1_PIN);SET_OUTPUT(Z_MS2_PIN);#if PIN_EXISTS(Z_MS3)SET_OUTPUT(Z_MS3_PIN);#endif#endif#if HAS_Z2_MS_PINSSET_OUTPUT(Z2_MS1_PIN);SET_OUTPUT(Z2_MS2_PIN);#if PIN_EXISTS(Z2_MS3)SET_OUTPUT(Z2_MS3_PIN);#endif#endif#if HAS_Z3_MS_PINSSET_OUTPUT(Z3_MS1_PIN);SET_OUTPUT(Z3_MS2_PIN);#if PIN_EXISTS(Z3_MS3)SET_OUTPUT(Z3_MS3_PIN);#endif#endif#if HAS_Z4_MS_PINSSET_OUTPUT(Z4_MS1_PIN);SET_OUTPUT(Z4_MS2_PIN);#if PIN_EXISTS(Z4_MS3)SET_OUTPUT(Z4_MS3_PIN);#endif#endif#if HAS_E0_MS_PINSSET_OUTPUT(E0_MS1_PIN);SET_OUTPUT(E0_MS2_PIN);#if PIN_EXISTS(E0_MS3)SET_OUTPUT(E0_MS3_PIN);#endif#endif#if HAS_E1_MS_PINSSET_OUTPUT(E1_MS1_PIN);SET_OUTPUT(E1_MS2_PIN);#if PIN_EXISTS(E1_MS3)SET_OUTPUT(E1_MS3_PIN);#endif#endif#if HAS_E2_MS_PINSSET_OUTPUT(E2_MS1_PIN);SET_OUTPUT(E2_MS2_PIN);#if PIN_EXISTS(E2_MS3)SET_OUTPUT(E2_MS3_PIN);#endif#endif#if HAS_E3_MS_PINSSET_OUTPUT(E3_MS1_PIN);SET_OUTPUT(E3_MS2_PIN);#if PIN_EXISTS(E3_MS3)SET_OUTPUT(E3_MS3_PIN);#endif#endif#if HAS_E4_MS_PINSSET_OUTPUT(E4_MS1_PIN);SET_OUTPUT(E4_MS2_PIN);#if PIN_EXISTS(E4_MS3)SET_OUTPUT(E4_MS3_PIN);#endif#endif#if HAS_E5_MS_PINSSET_OUTPUT(E5_MS1_PIN);SET_OUTPUT(E5_MS2_PIN);#if PIN_EXISTS(E5_MS3)SET_OUTPUT(E5_MS3_PIN);#endif#endif#if HAS_E6_MS_PINSSET_OUTPUT(E6_MS1_PIN);SET_OUTPUT(E6_MS2_PIN);#if PIN_EXISTS(E6_MS3)SET_OUTPUT(E6_MS3_PIN);#endif#endif#if HAS_E7_MS_PINSSET_OUTPUT(E7_MS1_PIN);SET_OUTPUT(E7_MS2_PIN);#if PIN_EXISTS(E7_MS3)SET_OUTPUT(E7_MS3_PIN);#endif#endifstatic const uint8_t microstep_modes[] = MICROSTEP_MODES;for (uint16_t i = 0; i < COUNT(microstep_modes); i++)microstep_mode(i, microstep_modes[i]);}void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) {if (ms1 >= 0) switch (driver) {#if HAS_X_MS_PINS || HAS_X2_MS_PINScase 0:#if HAS_X_MS_PINSWRITE(X_MS1_PIN, ms1);#endif#if HAS_X2_MS_PINSWRITE(X2_MS1_PIN, ms1);#endifbreak;#endif#if HAS_Y_MS_PINS || HAS_Y2_MS_PINScase 1:#if HAS_Y_MS_PINSWRITE(Y_MS1_PIN, ms1);#endif#if HAS_Y2_MS_PINSWRITE(Y2_MS1_PIN, ms1);#endifbreak;#endif#if HAS_SOME_Z_MS_PINScase 2:#if HAS_Z_MS_PINSWRITE(Z_MS1_PIN, ms1);#endif#if HAS_Z2_MS_PINSWRITE(Z2_MS1_PIN, ms1);#endif#if HAS_Z3_MS_PINSWRITE(Z3_MS1_PIN, ms1);#endif#if HAS_Z4_MS_PINSWRITE(Z4_MS1_PIN, ms1);#endifbreak;#endif#if HAS_E0_MS_PINScase  3: WRITE(E0_MS1_PIN, ms1); break;#endif#if HAS_E1_MS_PINScase  4: WRITE(E1_MS1_PIN, ms1); break;#endif#if HAS_E2_MS_PINScase  5: WRITE(E2_MS1_PIN, ms1); break;#endif#if HAS_E3_MS_PINScase  6: WRITE(E3_MS1_PIN, ms1); break;#endif#if HAS_E4_MS_PINScase  7: WRITE(E4_MS1_PIN, ms1); break;#endif#if HAS_E5_MS_PINScase  8: WRITE(E5_MS1_PIN, ms1); break;#endif#if HAS_E6_MS_PINScase  9: WRITE(E6_MS1_PIN, ms1); break;#endif#if HAS_E7_MS_PINScase 10: WRITE(E7_MS1_PIN, ms1); break;#endif}if (ms2 >= 0) switch (driver) {#if HAS_X_MS_PINS || HAS_X2_MS_PINScase 0:#if HAS_X_MS_PINSWRITE(X_MS2_PIN, ms2);#endif#if HAS_X2_MS_PINSWRITE(X2_MS2_PIN, ms2);#endifbreak;#endif#if HAS_Y_MS_PINS || HAS_Y2_MS_PINScase 1:#if HAS_Y_MS_PINSWRITE(Y_MS2_PIN, ms2);#endif#if HAS_Y2_MS_PINSWRITE(Y2_MS2_PIN, ms2);#endifbreak;#endif#if HAS_SOME_Z_MS_PINScase 2:#if HAS_Z_MS_PINSWRITE(Z_MS2_PIN, ms2);#endif#if HAS_Z2_MS_PINSWRITE(Z2_MS2_PIN, ms2);#endif#if HAS_Z3_MS_PINSWRITE(Z3_MS2_PIN, ms2);#endif#if HAS_Z4_MS_PINSWRITE(Z4_MS2_PIN, ms2);#endifbreak;#endif#if HAS_E0_MS_PINScase  3: WRITE(E0_MS2_PIN, ms2); break;#endif#if HAS_E1_MS_PINScase  4: WRITE(E1_MS2_PIN, ms2); break;#endif#if HAS_E2_MS_PINScase  5: WRITE(E2_MS2_PIN, ms2); break;#endif#if HAS_E3_MS_PINScase  6: WRITE(E3_MS2_PIN, ms2); break;#endif#if HAS_E4_MS_PINScase  7: WRITE(E4_MS2_PIN, ms2); break;#endif#if HAS_E5_MS_PINScase  8: WRITE(E5_MS2_PIN, ms2); break;#endif#if HAS_E6_MS_PINScase  9: WRITE(E6_MS2_PIN, ms2); break;#endif#if HAS_E7_MS_PINScase 10: WRITE(E7_MS2_PIN, ms2); break;#endif}if (ms3 >= 0) switch (driver) {#if HAS_X_MS_PINS || HAS_X2_MS_PINScase 0:#if HAS_X_MS_PINS && PIN_EXISTS(X_MS3)WRITE(X_MS3_PIN, ms3);#endif#if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3)WRITE(X2_MS3_PIN, ms3);#endifbreak;#endif#if HAS_Y_MS_PINS || HAS_Y2_MS_PINScase 1:#if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3)WRITE(Y_MS3_PIN, ms3);#endif#if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3)WRITE(Y2_MS3_PIN, ms3);#endifbreak;#endif#if HAS_SOME_Z_MS_PINScase 2:#if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3)WRITE(Z_MS3_PIN, ms3);#endif#if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3)WRITE(Z2_MS3_PIN, ms3);#endif#if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3)WRITE(Z3_MS3_PIN, ms3);#endif#if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3)WRITE(Z4_MS3_PIN, ms3);#endifbreak;#endif#if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3)case  3: WRITE(E0_MS3_PIN, ms3); break;#endif#if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3)case  4: WRITE(E1_MS3_PIN, ms3); break;#endif#if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3)case  5: WRITE(E2_MS3_PIN, ms3); break;#endif#if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3)case  6: WRITE(E3_MS3_PIN, ms3); break;#endif#if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3)case  7: WRITE(E4_MS3_PIN, ms3); break;#endif#if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3)case  8: WRITE(E5_MS3_PIN, ms3); break;#endif#if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3)case  9: WRITE(E6_MS3_PIN, ms3); break;#endif#if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3)case 10: WRITE(E7_MS3_PIN, ms3); break;#endif}}void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {switch (stepping_mode) {#if HAS_MICROSTEP1case 1: microstep_ms(driver, MICROSTEP1); break;#endif#if HAS_MICROSTEP2case 2: microstep_ms(driver, MICROSTEP2); break;#endif#if HAS_MICROSTEP4case 4: microstep_ms(driver, MICROSTEP4); break;#endif#if HAS_MICROSTEP8case 8: microstep_ms(driver, MICROSTEP8); break;#endif#if HAS_MICROSTEP16case 16: microstep_ms(driver, MICROSTEP16); break;#endif#if HAS_MICROSTEP32case 32: microstep_ms(driver, MICROSTEP32); break;#endif#if HAS_MICROSTEP64case 64: microstep_ms(driver, MICROSTEP64); break;#endif#if HAS_MICROSTEP128case 128: microstep_ms(driver, MICROSTEP128); break;#endifdefault: SERIAL_ERROR_MSG("Microsteps unavailable"); break;}}void Stepper::microstep_readings() {#define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN))#define MS_LINE(A)  do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0)SERIAL_ECHOPGM("MS1|2|3 Pins");#if HAS_X_MS_PINSMS_LINE(X);#if PIN_EXISTS(X_MS3)PIN_CHAR(X_MS3);#endif#endif#if HAS_Y_MS_PINSMS_LINE(Y);#if PIN_EXISTS(Y_MS3)PIN_CHAR(Y_MS3);#endif#endif#if HAS_Z_MS_PINSMS_LINE(Z);#if PIN_EXISTS(Z_MS3)PIN_CHAR(Z_MS3);#endif#endif#if HAS_E0_MS_PINSMS_LINE(E0);#if PIN_EXISTS(E0_MS3)PIN_CHAR(E0_MS3);#endif#endif#if HAS_E1_MS_PINSMS_LINE(E1);#if PIN_EXISTS(E1_MS3)PIN_CHAR(E1_MS3);#endif#endif#if HAS_E2_MS_PINSMS_LINE(E2);#if PIN_EXISTS(E2_MS3)PIN_CHAR(E2_MS3);#endif#endif#if HAS_E3_MS_PINSMS_LINE(E3);#if PIN_EXISTS(E3_MS3)PIN_CHAR(E3_MS3);#endif#endif#if HAS_E4_MS_PINSMS_LINE(E4);#if PIN_EXISTS(E4_MS3)PIN_CHAR(E4_MS3);#endif#endif#if HAS_E5_MS_PINSMS_LINE(E5);#if PIN_EXISTS(E5_MS3)PIN_CHAR(E5_MS3);#endif#endif#if HAS_E6_MS_PINSMS_LINE(E6);#if PIN_EXISTS(E6_MS3)PIN_CHAR(E6_MS3);#endif#endif#if HAS_E7_MS_PINSMS_LINE(E7);#if PIN_EXISTS(E7_MS3)PIN_CHAR(E7_MS3);#endif#endifSERIAL_EOL();}#endif // HAS_MICROSTEPS

Marlin固件电机控制部分stepper.cpp相关推荐

  1. marlin固件烧录教程_Marlin固件配置教程详解

    首先从Marlin固件GitHub下载固件源代码,也可从Makeboard网盘下载. Marlin固件主要分为两个版本,一个是1.0.2-2版本,是稳定版,已经一年没怎么更新了,功能比较少,网上的教程 ...

  2. 3D打印机Marlin固件双Z轴设置

    3D打印机Marlin固件双Z轴设置 在3D打印机Marlin固件的最新版本2.1.1中,设置双Z轴和老版本有一些改动.记录一下如何在最新版本的Marlin固件中设置双Z轴. 以MKS GEN_L V ...

  3. Marlin固件显示其他Gcode文件扩展名

    Marlin固件支持Gcode文件的打印.可是,有时候我们并不喜欢Gcode的扩展名.不过也是受切片软件的限制,我们切片出来的文件一般都是Gcode后缀的扩展名. 假设,只是假设有需要,如果你想改掉后 ...

  4. 3D打印机DIY之三------Arduino开发环境构建和Marlin固件配置

    一.Arduino开发环境 1.搜索Arduino IDE下载安装即可. 2.使用VS code开发Arduino Arduino IDE很简单,很多功能都没有,使用起来很不方便.因此建议使用Visu ...

  5. 3D打印机如何使用marlin固件控制普通57闭环步进电机-“教程”

    本次教程中主板型号为MKS GENL V2.1,创客之家的 探究原因是在b站看见大佬飞翔的AMX用雷赛57闭环步进做3D打印,但是可惜的是大佬刷的klipper固件,我用的marlin固件 在大佬评论 ...

  6. marlin固件烧录教程_i3型3D打印机制作详解――Marlin固件介绍

    Marlin固件下载 基本配置 使用 Arduino IDE 打开 marlin.ino,切换到 Configuration.h 即可查看并修改该文件.或者使用任何一款文本编辑器(notepad,no ...

  7. 机械臂——arduino、marlin固件、printrun软件

    最近了解到,在市面上大多数机械臂控制都采用的arduino这个开源硬件来控制的,而我发现既然会单片机,就没有必要采用arduino来控制了,arduino只是一种为了简化编程而开发一种软硬件控制平台, ...

  8. Marlin固件之—:基础入门与测试

    一.Marlin的简单介绍 Marlin固件是一个3D打印的开源固件,3D打印固件有许多,Marlin最为健全和强大,当然相对也会复杂一些.使用Gcode控制爱,Gcode是数控机床等工控控制使用范围 ...

  9. Marlin固件之二:源代码详解与移植

    由于需要进行固件定制化,Marlin固件太过于强大和紧凑,我对这个固件进行了裁剪,只剩下主枝干,实现功能的定制和裁剪.以下的代码详解是基于我已经移植在stm32上面的一个程序进行的.

最新文章

  1. 《转》十种更好的表达“你的代码写的很烂”的方法
  2. tableau可视化数据分析60讲(十三)-tableau常用可视化视图(条形图折线图饼图)
  3. 一个简单的MVP模式案例
  4. Lua 笔记--表达式
  5. python storm连接mysql_python ORM storm中的复合外键引用
  6. 微信小游戏源码及H5开源小程序游戏源码1000套
  7. 谷歌地球尝试验证时检测到错误_验证码为何越来越难了?
  8. printf 输出格式、域宽
  9. 2019年5月个人总结:大家都在跨界,原谅自己的懈怠
  10. Excel打开时自动开一个sheet1页面
  11. [CnPeng说]低代码并不Low
  12. HTML实现怀旧小游戏,超级玛丽、飞机大战…等十余款【完整源码分享】
  13. 计算物体自由下落距离
  14. cesium设置相机的初始位置
  15. SLAM静态编译中动态链接库问题
  16. 用HTML+CSS做一个简单好看的校园社团网页
  17. 蹩脚的CSDN手机绑定
  18. python实现12306全自动抢票
  19. javascript 神经网络
  20. Web数据挖掘:挖掘Web内容模式、结构和用途

热门文章

  1. 用头部运动学习无姿态注视偏差
  2. Java小技能:异常处理
  3. 计算机组成原理:真值,原码,补码,反码,移码
  4. 有数列:9,99,999,9999...,编程计算前10项的值。
  5. Linux vi种 wq 、wq!、x、q、q!区别
  6. 【渝粤教育】电大中专计算机职业素养 (5)作业 题库
  7. 财经365今日股市行情|涨停后的股票行情分及投资解读
  8. Java基础加强重温_13:XML(可拓展标记语言)、XML语法、XML约束、XML解析(Dom4j,JAXP)、Dom4j基本使用、Xpath表达式(XML路径语言)、XML解析综合案例
  9. 球半比分,美职业:费城联合-华盛顿联 7月9日
  10. 物联网智能家居项目总结(全)