FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24...)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法。

swscale主要用于在2个AVFrame之间进行转换。
下面来看一个视频解码的简单例子,这个程序完成了对"北京移动开发者大会茶歇视频2.flv"(其实就是优酷上的一个普通视频)的解码工作,并将解码后的数据保存为原始数据文件(例如YUV420,YUV422,RGB24等等)。其中略去了很多的代码。
注:完整代码在文章:100行代码实现最简单的基于FFMPEG+SDL的视频播放器
//ffmpeg simple player
//
//媒资检索系统子系统
//
//2013 雷霄骅 leixiaohua1020@126.com
//中国传媒大学/数字电视技术
//
#include "stdafx.h"int _tmain(int argc, _TCHAR* argv[])
{AVFormatContext    *pFormatCtx;int             i, videoindex;AVCodecContext    *pCodecCtx;AVCodec          *pCodec;char filepath[]="北京移动开发者大会茶歇视频2.flv";av_register_all();avformat_network_init();pFormatCtx = avformat_alloc_context();if(avformat_open_input(&pFormatCtx,filepath,NULL,NULL)!=0){printf("无法打开文件\n");return -1;}......AVFrame  *pFrame,*pFrameYUV;pFrame=avcodec_alloc_frame();pFrameYUV=avcodec_alloc_frame();uint8_t *out_buffer;out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height)];avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height);
/*out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height)];avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height);*//*out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_UYVY422, pCodecCtx->width, pCodecCtx->height)];avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_UYVY422, pCodecCtx->width, pCodecCtx->height);out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_YUV422P, pCodecCtx->width, pCodecCtx->height)];avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_YUV422P, pCodecCtx->width, pCodecCtx->height);*/......FILE *output=fopen("out.rgb","wb+");//------------------------------while(av_read_frame(pFormatCtx, packet)>=0){if(packet->stream_index==videoindex){ret = avcodec_decode_video2(pCodecCtx, pFrame, &got_picture, packet);if(ret < 0){printf("解码错误\n");return -1;}if(got_picture){/*img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_UYVY422, SWS_BICUBIC, NULL, NULL, NULL); sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameYUV->data, pFrameYUV->linesize);img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_YUV422P, SWS_BICUBIC, NULL, NULL, NULL); sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameYUV->data, pFrameYUV->linesize);*///转换img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_RGB24, SWS_BICUBIC, NULL, NULL, NULL); sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameYUV->data, pFrameYUV->linesize);//RGBfwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height)*3,1,output);/*//UYVYfwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),2,output);//YUV420Pfwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),1,output);fwrite(pFrameYUV->data[1],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);fwrite(pFrameYUV->data[2],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);*/......}}av_free_packet(packet);}fclose(output);......return 0;
}

从代码中可以看出,解码后的视频帧数据保存在pFrame变量中,然后经过swscale函数转换后,将视频帧数据保存在pFrameYUV变量中。最后将pFrameYUV中的数据写入成文件。

在本代码中,将数据保存成了RGB24的格式。如果想保存成其他格式,比如YUV420,YUV422等,需要做2个步骤:

1.初始化pFrameYUV的时候,设定想要转换的格式:

AVFrame  *pFrame,*pFrameYUV;
pFrame=avcodec_alloc_frame();
pFrameYUV=avcodec_alloc_frame();
uint8_t *out_buffer;out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height)];
avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height);

只需要把PIX_FMT_***改了就可以了

2.在sws_getContext()中更改想要转换的格式:

img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_RGB24, SWS_BICUBIC, NULL, NULL, NULL); 

也是把PIX_FMT_***改了就可以了

最后,如果想将转换后的原始数据存成文件,只需要将pFrameYUV的data指针指向的数据写入文件就可以了。

例如,保存YUV420P格式的数据,用以下代码:

fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),1,output);
fwrite(pFrameYUV->data[1],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);
fwrite(pFrameYUV->data[2],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);

保存RGB24格式的数据,用以下代码:

fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height)*3,1,output);

保存UYVY格式的数据,用以下代码:

fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),2,output);

在这里又有一个问题,YUV420P格式需要写入data[0],data[1],data[2];而RGB24,UYVY格式却仅仅是写入data[0],他们的区别到底是什么呢?经过研究发现,在FFMPEG中,图像原始数据包括两种:planar和packed。planar就是将几个分量分开存,比如YUV420中,data[0]专门存Y,data[1]专门存U,data[2]专门存V。而packed则是打包存,所有数据都存在data[0]中。

具体哪个格式是planar,哪个格式是packed,可以查看pixfmt.h文件。注:有些格式名称后面是LE或BE,分别对应little-endian或big-endian。另外名字后面有P的是planar格式。

/* 雷霄骅* 中国传媒大学/数字电视技术* leixiaohua1020@126.com**//** copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>** This file is part of FFmpeg.** FFmpeg is free software; you can redistribute it and/or* modify it under the terms of the GNU Lesser General Public* License as published by the Free Software Foundation; either* version 2.1 of the License, or (at your option) any later version.** FFmpeg is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU* Lesser General Public License for more details.** You should have received a copy of the GNU Lesser General Public* License along with FFmpeg; if not, write to the Free Software* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA*/#ifndef AVUTIL_PIXFMT_H
#define AVUTIL_PIXFMT_H/*** @file* pixel format definitions**/#include "libavutil/avconfig.h"/*** Pixel format.** @note* PIX_FMT_RGB32 is handled in an endian-specific manner. An RGBA* color is put together as:*  (A << 24) | (R << 16) | (G << 8) | B* This is stored as BGRA on little-endian CPU architectures and ARGB on* big-endian CPUs.** @par* When the pixel format is palettized RGB (PIX_FMT_PAL8), the palettized* image data is stored in AVFrame.data[0]. The palette is transported in* AVFrame.data[1], is 1024 bytes long (256 4-byte entries) and is* formatted the same as in PIX_FMT_RGB32 described above (i.e., it is* also endian-specific). Note also that the individual RGB palette* components stored in AVFrame.data[1] should be in the range 0..255.* This is important as many custom PAL8 video codecs that were designed* to run on the IBM VGA graphics adapter use 6-bit palette components.** @par* For all the 8bit per pixel formats, an RGB32 palette is in data[1] like* for pal8. This palette is filled in automatically by the function* allocating the picture.** @note* make sure that all newly added big endian formats have pix_fmt&1==1* and that all newly added little endian formats have pix_fmt&1==0* this allows simpler detection of big vs little endian.*/
enum PixelFormat {PIX_FMT_NONE= -1,PIX_FMT_YUV420P,   ///< planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)PIX_FMT_YUYV422,   ///< packed YUV 4:2:2, 16bpp, Y0 Cb Y1 CrPIX_FMT_RGB24,     ///< packed RGB 8:8:8, 24bpp, RGBRGB...PIX_FMT_BGR24,     ///< packed RGB 8:8:8, 24bpp, BGRBGR...PIX_FMT_YUV422P,   ///< planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)PIX_FMT_YUV444P,   ///< planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)PIX_FMT_YUV410P,   ///< planar YUV 4:1:0,  9bpp, (1 Cr & Cb sample per 4x4 Y samples)PIX_FMT_YUV411P,   ///< planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)PIX_FMT_GRAY8,     ///<        Y        ,  8bppPIX_FMT_MONOWHITE, ///<        Y        ,  1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsbPIX_FMT_MONOBLACK, ///<        Y        ,  1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsbPIX_FMT_PAL8,      ///< 8 bit with PIX_FMT_RGB32 palettePIX_FMT_YUVJ420P,  ///< planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV420P and setting color_rangePIX_FMT_YUVJ422P,  ///< planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV422P and setting color_rangePIX_FMT_YUVJ444P,  ///< planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV444P and setting color_rangePIX_FMT_XVMC_MPEG2_MC,///< XVideo Motion Acceleration via common packet passingPIX_FMT_XVMC_MPEG2_IDCT,PIX_FMT_UYVY422,   ///< packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1PIX_FMT_UYYVYY411, ///< packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3PIX_FMT_BGR8,      ///< packed RGB 3:3:2,  8bpp, (msb)2B 3G 3R(lsb)PIX_FMT_BGR4,      ///< packed RGB 1:2:1 bitstream,  4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bitsPIX_FMT_BGR4_BYTE, ///< packed RGB 1:2:1,  8bpp, (msb)1B 2G 1R(lsb)PIX_FMT_RGB8,      ///< packed RGB 3:3:2,  8bpp, (msb)2R 3G 3B(lsb)PIX_FMT_RGB4,      ///< packed RGB 1:2:1 bitstream,  4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bitsPIX_FMT_RGB4_BYTE, ///< packed RGB 1:2:1,  8bpp, (msb)1R 2G 1B(lsb)PIX_FMT_NV12,      ///< planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (first byte U and the following byte V)PIX_FMT_NV21,      ///< as above, but U and V bytes are swappedPIX_FMT_ARGB,      ///< packed ARGB 8:8:8:8, 32bpp, ARGBARGB...PIX_FMT_RGBA,      ///< packed RGBA 8:8:8:8, 32bpp, RGBARGBA...PIX_FMT_ABGR,      ///< packed ABGR 8:8:8:8, 32bpp, ABGRABGR...PIX_FMT_BGRA,      ///< packed BGRA 8:8:8:8, 32bpp, BGRABGRA...PIX_FMT_GRAY16BE,  ///<        Y        , 16bpp, big-endianPIX_FMT_GRAY16LE,  ///<        Y        , 16bpp, little-endianPIX_FMT_YUV440P,   ///< planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)PIX_FMT_YUVJ440P,  ///< planar YUV 4:4:0 full scale (JPEG), deprecated in favor of PIX_FMT_YUV440P and setting color_rangePIX_FMT_YUVA420P,  ///< planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)PIX_FMT_VDPAU_H264,///< H.264 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headersPIX_FMT_VDPAU_MPEG1,///< MPEG-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headersPIX_FMT_VDPAU_MPEG2,///< MPEG-2 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headersPIX_FMT_VDPAU_WMV3,///< WMV3 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headersPIX_FMT_VDPAU_VC1, ///< VC-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headersPIX_FMT_RGB48BE,   ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big-endianPIX_FMT_RGB48LE,   ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as little-endianPIX_FMT_RGB565BE,  ///< packed RGB 5:6:5, 16bpp, (msb)   5R 6G 5B(lsb), big-endianPIX_FMT_RGB565LE,  ///< packed RGB 5:6:5, 16bpp, (msb)   5R 6G 5B(lsb), little-endianPIX_FMT_RGB555BE,  ///< packed RGB 5:5:5, 16bpp, (msb)1A 5R 5G 5B(lsb), big-endian, most significant bit to 0PIX_FMT_RGB555LE,  ///< packed RGB 5:5:5, 16bpp, (msb)1A 5R 5G 5B(lsb), little-endian, most significant bit to 0PIX_FMT_BGR565BE,  ///< packed BGR 5:6:5, 16bpp, (msb)   5B 6G 5R(lsb), big-endianPIX_FMT_BGR565LE,  ///< packed BGR 5:6:5, 16bpp, (msb)   5B 6G 5R(lsb), little-endianPIX_FMT_BGR555BE,  ///< packed BGR 5:5:5, 16bpp, (msb)1A 5B 5G 5R(lsb), big-endian, most significant bit to 1PIX_FMT_BGR555LE,  ///< packed BGR 5:5:5, 16bpp, (msb)1A 5B 5G 5R(lsb), little-endian, most significant bit to 1PIX_FMT_VAAPI_MOCO, ///< HW acceleration through VA API at motion compensation entry-point, Picture.data[3] contains a vaapi_render_state struct which contains macroblocks as well as various fields extracted from headersPIX_FMT_VAAPI_IDCT, ///< HW acceleration through VA API at IDCT entry-point, Picture.data[3] contains a vaapi_render_state struct which contains fields extracted from headersPIX_FMT_VAAPI_VLD,  ///< HW decoding through VA API, Picture.data[3] contains a vaapi_render_state struct which contains the bitstream of the slices as well as various fields extracted from headersPIX_FMT_YUV420P16LE,  ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endianPIX_FMT_YUV420P16BE,  ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endianPIX_FMT_YUV422P16LE,  ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endianPIX_FMT_YUV422P16BE,  ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endianPIX_FMT_YUV444P16LE,  ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endianPIX_FMT_YUV444P16BE,  ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endianPIX_FMT_VDPAU_MPEG4,  ///< MPEG4 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headersPIX_FMT_DXVA2_VLD,    ///< HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointerPIX_FMT_RGB444LE,  ///< packed RGB 4:4:4, 16bpp, (msb)4A 4R 4G 4B(lsb), little-endian, most significant bits to 0PIX_FMT_RGB444BE,  ///< packed RGB 4:4:4, 16bpp, (msb)4A 4R 4G 4B(lsb), big-endian, most significant bits to 0PIX_FMT_BGR444LE,  ///< packed BGR 4:4:4, 16bpp, (msb)4A 4B 4G 4R(lsb), little-endian, most significant bits to 1PIX_FMT_BGR444BE,  ///< packed BGR 4:4:4, 16bpp, (msb)4A 4B 4G 4R(lsb), big-endian, most significant bits to 1PIX_FMT_GRAY8A,    ///< 8bit gray, 8bit alphaPIX_FMT_BGR48BE,   ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big-endianPIX_FMT_BGR48LE,   ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as little-endian//the following 10 formats have the disadvantage of needing 1 format for each bit depth, thus//If you want to support multiple bit depths, then using PIX_FMT_YUV420P16* with the bpp stored seperately//is betterPIX_FMT_YUV420P9BE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endianPIX_FMT_YUV420P9LE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endianPIX_FMT_YUV420P10BE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endianPIX_FMT_YUV420P10LE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endianPIX_FMT_YUV422P10BE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endianPIX_FMT_YUV422P10LE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endianPIX_FMT_YUV444P9BE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endianPIX_FMT_YUV444P9LE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endianPIX_FMT_YUV444P10BE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endianPIX_FMT_YUV444P10LE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endianPIX_FMT_YUV422P9BE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endianPIX_FMT_YUV422P9LE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endianPIX_FMT_VDA_VLD,    ///< hardware decoding through VDA#ifdef AV_PIX_FMT_ABI_GIT_MASTERPIX_FMT_RGBA64BE,  ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as big-endianPIX_FMT_RGBA64LE,  ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as little-endianPIX_FMT_BGRA64BE,  ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as big-endianPIX_FMT_BGRA64LE,  ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian
#endifPIX_FMT_GBRP,      ///< planar GBR 4:4:4 24bppPIX_FMT_GBRP9BE,   ///< planar GBR 4:4:4 27bpp, big endianPIX_FMT_GBRP9LE,   ///< planar GBR 4:4:4 27bpp, little endianPIX_FMT_GBRP10BE,  ///< planar GBR 4:4:4 30bpp, big endianPIX_FMT_GBRP10LE,  ///< planar GBR 4:4:4 30bpp, little endianPIX_FMT_GBRP16BE,  ///< planar GBR 4:4:4 48bpp, big endianPIX_FMT_GBRP16LE,  ///< planar GBR 4:4:4 48bpp, little endian#ifndef AV_PIX_FMT_ABI_GIT_MASTERPIX_FMT_RGBA64BE=0x123,  ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as big-endianPIX_FMT_RGBA64LE,  ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as little-endianPIX_FMT_BGRA64BE,  ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as big-endianPIX_FMT_BGRA64LE,  ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian
#endifPIX_FMT_0RGB=0x123+4,      ///< packed RGB 8:8:8, 32bpp, 0RGB0RGB...PIX_FMT_RGB0,      ///< packed RGB 8:8:8, 32bpp, RGB0RGB0...PIX_FMT_0BGR,      ///< packed BGR 8:8:8, 32bpp, 0BGR0BGR...PIX_FMT_BGR0,      ///< packed BGR 8:8:8, 32bpp, BGR0BGR0...PIX_FMT_YUVA444P,  ///< planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)PIX_FMT_NB,        ///< number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of formats might differ between versions
};#define PIX_FMT_Y400A PIX_FMT_GRAY8A
#define PIX_FMT_GBR24P PIX_FMT_GBRP#if AV_HAVE_BIGENDIAN
#   define PIX_FMT_NE(be, le) PIX_FMT_##be
#else
#   define PIX_FMT_NE(be, le) PIX_FMT_##le
#endif#define PIX_FMT_RGB32   PIX_FMT_NE(ARGB, BGRA)
#define PIX_FMT_RGB32_1 PIX_FMT_NE(RGBA, ABGR)
#define PIX_FMT_BGR32   PIX_FMT_NE(ABGR, RGBA)
#define PIX_FMT_BGR32_1 PIX_FMT_NE(BGRA, ARGB)
#define PIX_FMT_0RGB32  PIX_FMT_NE(0RGB, BGR0)
#define PIX_FMT_0BGR32  PIX_FMT_NE(0BGR, RGB0)#define PIX_FMT_GRAY16 PIX_FMT_NE(GRAY16BE, GRAY16LE)
#define PIX_FMT_RGB48  PIX_FMT_NE(RGB48BE,  RGB48LE)
#define PIX_FMT_RGB565 PIX_FMT_NE(RGB565BE, RGB565LE)
#define PIX_FMT_RGB555 PIX_FMT_NE(RGB555BE, RGB555LE)
#define PIX_FMT_RGB444 PIX_FMT_NE(RGB444BE, RGB444LE)
#define PIX_FMT_BGR48  PIX_FMT_NE(BGR48BE,  BGR48LE)
#define PIX_FMT_BGR565 PIX_FMT_NE(BGR565BE, BGR565LE)
#define PIX_FMT_BGR555 PIX_FMT_NE(BGR555BE, BGR555LE)
#define PIX_FMT_BGR444 PIX_FMT_NE(BGR444BE, BGR444LE)#define PIX_FMT_YUV420P9  PIX_FMT_NE(YUV420P9BE , YUV420P9LE)
#define PIX_FMT_YUV422P9  PIX_FMT_NE(YUV422P9BE , YUV422P9LE)
#define PIX_FMT_YUV444P9  PIX_FMT_NE(YUV444P9BE , YUV444P9LE)
#define PIX_FMT_YUV420P10 PIX_FMT_NE(YUV420P10BE, YUV420P10LE)
#define PIX_FMT_YUV422P10 PIX_FMT_NE(YUV422P10BE, YUV422P10LE)
#define PIX_FMT_YUV444P10 PIX_FMT_NE(YUV444P10BE, YUV444P10LE)
#define PIX_FMT_YUV420P16 PIX_FMT_NE(YUV420P16BE, YUV420P16LE)
#define PIX_FMT_YUV422P16 PIX_FMT_NE(YUV422P16BE, YUV422P16LE)
#define PIX_FMT_YUV444P16 PIX_FMT_NE(YUV444P16BE, YUV444P16LE)#define PIX_FMT_RGBA64 PIX_FMT_NE(RGBA64BE, RGBA64LE)
#define PIX_FMT_BGRA64 PIX_FMT_NE(BGRA64BE, BGRA64LE)
#define PIX_FMT_GBRP9     PIX_FMT_NE(GBRP9BE ,    GBRP9LE)
#define PIX_FMT_GBRP10    PIX_FMT_NE(GBRP10BE,    GBRP10LE)
#define PIX_FMT_GBRP16    PIX_FMT_NE(GBRP16BE,    GBRP16LE)#endif /* AVUTIL_PIXFMT_H */

FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)相关推荐

  1. ffmpeg 保存图片 将rgb数据_FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)...

    FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24...)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法. swscale主 ...

  2. android FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)

    FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24-)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法. swscale主要用 ...

  3. (转)FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)

    雷霄骅分类专栏: FFMPEG FFmpeg 本文链接:https://blog.csdn.net/leixiaohua1020/article/details/14215391 FFMPEG中的sw ...

  4. 三维视觉基础之世界坐标系、相机坐标系、图像坐标系和像素坐标系之间的转换关系

    三维视觉基础之世界坐标系.相机坐标系.图像坐标系和像素坐标系之间的转换关系 一.各坐标系介绍 二.世界坐标系和相机坐标系之间的转换 三.相机坐标系和图像坐标系之间的转换 四.图像坐标系和像素坐标系之间 ...

  5. 使用C++实现YUV格式图像与RGB格式图像之间相互转换

    使用C++实现YUV格式图像与RGB格式图像之间相互转换 一.RGB与YUV转换公式 1.RGB转YUV 1)RGB转换亮度与色差信号公试: 2)归一化为YUV的转化公试为: 2.YUV转RGB 二. ...

  6. FFmpeg基础: YUV像素格式介绍和使用

    文章目录 YUV像素格式 YUV采样 YUV格式分类 YUV存储模式 FFmpeg读取YUV数据 YUV和RGB转换 YUV像素格式 在图片中我们一般都是通过RGB(红-绿-蓝)格式来表示一个像素点. ...

  7. 转:YUV RGB 常见视频格式解析

    转: http://www.cnblogs.com/qinjunni/archive/2012/02/23/2364446.html YUV RGB 常见视频格式解析 I420是YUV格式的一种,而Y ...

  8. YUV / RGB 格式及快速转换

    YUV是指亮度参量和色度参量分开表示的像素格式,而这样分开的好处就是不但可以避免相互干扰,还可以降低色度的采样率而不会对图像质量影响太大. YUV是一个比较笼统地说法,针对它的具体排列方式,可以分为很 ...

  9. 最简单的视音频播放示例2:GDI播放YUV, RGB

    ===================================================== 最简单的视音频播放示例系列文章列表: 最简单的视音频播放示例1:总述 最简单的视音频播放示例 ...

最新文章

  1. cocos2d-x 3.0游戏实例学习笔记 《跑酷》 第五步--button控制主角Jumpamp;Crouch
  2. CCNA培训课总结笔记--配置OSPF实验(十一)
  3. 7个建议帮你完成更多的工作
  4. tensorflow量化感知训练_tensorflow模型量化实例
  5. php为什么获取不到id,微信小程序无法获取到unionId怎么办
  6. c语言中循环结构的作用,C语言中对于循环结构优化的一些入门级方法简介
  7. Android如何关闭Application
  8. windows media services 2008外网无法访问
  9. 怎么样才算是精通 JavaScript?
  10. python列表切片和推导式思维导图_Python列表推导式使用
  11. Linux命令行上传本地文件到服务器 、 下载服务器文件到本地
  12. 快速开发和设计的8个黄金法则
  13. 智能优化算法:蜻蜓优化算法-附代码
  14. android json解析歌词,网易云歌词获取
  15. 使用linux的MTD tests support测试flash性能
  16. 十六、that的用法汇总
  17. 2005冬季转会名单-PS
  18. keychron机械键盘使用感受
  19. ligerui 表格中设置单元格不可编辑,添加行,删除行
  20. android多个悬浮窗口的实现,android实现桌面移动悬浮窗口

热门文章

  1. CCF201803-4 棋局评估(100分)【博弈+DFS】
  2. Bailian2716 全局变量【字符流】
  3. Bailian2946 玩游戏【模拟】
  4. Linux shell —— 数组与关联数组
  5. 常见空指针异常及其避免
  6. 强悍的命令行 —— less(与 more、cat 的区别)
  7. Git 与 Github 的使用 —— 下载单个图像或单个文件夹
  8. 面试中的智力题及编程实践(二)
  9. 工具的使用——Photoshop
  10. Python基础——NaN(Not a Number)