雷霄骅分类专栏: FFMPEG FFmpeg

本文链接:https://blog.csdn.net/leixiaohua1020/article/details/14215391


FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24...)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法。
swscale主要用于在2个AVFrame之间进行转换。
下面来看一个视频解码的简单例子,这个程序完成了对"北京移动开发者大会茶歇视频2.flv"(其实就是优酷上的一个普通视频)的解码工作,并将解码后的数据保存为原始数据文件(例如YUV420,YUV422,RGB24等等)。其中略去了很多的代码。
注:完整代码在文章:100行代码实现最简单的基于FFMPEG+SDL的视频播放器
  1. //ffmpeg simple player
  2. //
  3. //媒资检索系统子系统
  4. //
  5. //2013 雷霄骅 leixiaohua1020@126.com
  6. //中国传媒大学/数字电视技术
  7. //
  8. #include "stdafx.h"
  9. int _tmain(int argc, _TCHAR* argv[])
  10. {
  11. AVFormatContext *pFormatCtx;
  12. int i, videoindex;
  13. AVCodecContext *pCodecCtx;
  14. AVCodec *pCodec;
  15. char filepath[]="北京移动开发者大会茶歇视频2.flv";
  16. av_register_all();
  17. avformat_network_init();
  18. pFormatCtx = avformat_alloc_context();
  19. if(avformat_open_input(&pFormatCtx,filepath,NULL,NULL)!=0){
  20. printf("无法打开文件\n");
  21. return -1;
  22. }
  23. ......
  24. AVFrame *pFrame,*pFrameYUV;
  25. pFrame=avcodec_alloc_frame();
  26. pFrameYUV=avcodec_alloc_frame();
  27. uint8_t *out_buffer;
  28. out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height)];
  29. avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height);
  30. /*
  31. out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height)];
  32. avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height);*/
  33. /*
  34. out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_UYVY422, pCodecCtx->width, pCodecCtx->height)];
  35. avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_UYVY422, pCodecCtx->width, pCodecCtx->height);
  36. out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_YUV422P, pCodecCtx->width, pCodecCtx->height)];
  37. avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_YUV422P, pCodecCtx->width, pCodecCtx->height);*/
  38. ......
  39. FILE *output=fopen("out.rgb","wb+");
  40. //------------------------------
  41. while(av_read_frame(pFormatCtx, packet)>=0)
  42. {
  43. if(packet->stream_index==videoindex)
  44. {
  45. ret = avcodec_decode_video2(pCodecCtx, pFrame, &got_picture, packet);
  46. if(ret < 0)
  47. {
  48. printf("解码错误\n");
  49. return -1;
  50. }
  51. if(got_picture)
  52. {
  53. /*img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_UYVY422, SWS_BICUBIC, NULL, NULL, NULL);
  54. sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameYUV->data, pFrameYUV->linesize);
  55. img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_YUV422P, SWS_BICUBIC, NULL, NULL, NULL);
  56. sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameYUV->data, pFrameYUV->linesize);*/
  57. //转换
  58. img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_RGB24, SWS_BICUBIC, NULL, NULL, NULL);
  59. sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameYUV->data, pFrameYUV->linesize);
  60. //RGB
  61. fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height)*3,1,output);
  62. /*
  63. //UYVY
  64. fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),2,output);
  65. //YUV420P
  66. fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),1,output);
  67. fwrite(pFrameYUV->data[1],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);
  68. fwrite(pFrameYUV->data[2],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);
  69. */
  70. ......
  71. }
  72. }
  73. av_free_packet(packet);
  74. }
  75. fclose(output);
  76. ......
  77. return 0;
  78. }

从代码中可以看出,解码后的视频帧数据保存在pFrame变量中,然后经过swscale函数转换后,将视频帧数据保存在pFrameYUV变量中。最后将pFrameYUV中的数据写入成文件。

在本代码中,将数据保存成了RGB24的格式。如果想保存成其他格式,比如YUV420,YUV422等,需要做2个步骤:

1.初始化pFrameYUV的时候,设定想要转换的格式:

  1. AVFrame *pFrame,*pFrameYUV;
  2. pFrame=avcodec_alloc_frame();
  3. pFrameYUV=avcodec_alloc_frame();
  4. uint8_t *out_buffer;
  5. out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height)];
  6. avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height);

只需要把PIX_FMT_***改了就可以了

2.在sws_getContext()中更改想要转换的格式:

img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_RGB24, SWS_BICUBIC, NULL, NULL, NULL); 

也是把PIX_FMT_***改了就可以了

最后,如果想将转换后的原始数据存成文件,只需要将pFrameYUV的data指针指向的数据写入文件就可以了。

例如,保存YUV420P格式的数据,用以下代码:

  1. fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),1,output);
  2. fwrite(pFrameYUV->data[1],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);
  3. fwrite(pFrameYUV->data[2],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);

保存RGB24格式的数据,用以下代码:

fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height)*3,1,output);

保存UYVY格式的数据,用以下代码:

fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),2,output);

在这里又有一个问题,YUV420P格式需要写入data[0],data[1],data[2];而RGB24,UYVY格式却仅仅是写入data[0],他们的区别到底是什么呢?经过研究发现,在FFMPEG中,图像原始数据包括两种:planar和packed。planar就是将几个分量分开存,比如YUV420中,data[0]专门存Y,data[1]专门存U,data[2]专门存V。而packed则是打包存,所有数据都存在data[0]中。

具体哪个格式是planar,哪个格式是packed,可以查看pixfmt.h文件。注:有些格式名称后面是LE或BE,分别对应little-endian或big-endian。另外名字后面有P的是planar格式。

  1. /* 雷霄骅
  2. * 中国传媒大学/数字电视技术
  3. * leixiaohua1020@126.com
  4. *
  5. */
  6. /*
  7. * copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #ifndef AVUTIL_PIXFMT_H
  26. #define AVUTIL_PIXFMT_H
  27. /**
  28. * @file
  29. * pixel format definitions
  30. *
  31. */
  32. #include "libavutil/avconfig.h"
  33. /**
  34. * Pixel format.
  35. *
  36. * @note
  37. * PIX_FMT_RGB32 is handled in an endian-specific manner. An RGBA
  38. * color is put together as:
  39. * (A << 24) | (R << 16) | (G << 8) | B
  40. * This is stored as BGRA on little-endian CPU architectures and ARGB on
  41. * big-endian CPUs.
  42. *
  43. * @par
  44. * When the pixel format is palettized RGB (PIX_FMT_PAL8), the palettized
  45. * image data is stored in AVFrame.data[0]. The palette is transported in
  46. * AVFrame.data[1], is 1024 bytes long (256 4-byte entries) and is
  47. * formatted the same as in PIX_FMT_RGB32 described above (i.e., it is
  48. * also endian-specific). Note also that the individual RGB palette
  49. * components stored in AVFrame.data[1] should be in the range 0..255.
  50. * This is important as many custom PAL8 video codecs that were designed
  51. * to run on the IBM VGA graphics adapter use 6-bit palette components.
  52. *
  53. * @par
  54. * For all the 8bit per pixel formats, an RGB32 palette is in data[1] like
  55. * for pal8. This palette is filled in automatically by the function
  56. * allocating the picture.
  57. *
  58. * @note
  59. * make sure that all newly added big endian formats have pix_fmt&1==1
  60. * and that all newly added little endian formats have pix_fmt&1==0
  61. * this allows simpler detection of big vs little endian.
  62. */
  63. enum PixelFormat {
  64. PIX_FMT_NONE= -1,
  65. PIX_FMT_YUV420P, ///< planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
  66. PIX_FMT_YUYV422, ///< packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
  67. PIX_FMT_RGB24, ///< packed RGB 8:8:8, 24bpp, RGBRGB...
  68. PIX_FMT_BGR24, ///< packed RGB 8:8:8, 24bpp, BGRBGR...
  69. PIX_FMT_YUV422P, ///< planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
  70. PIX_FMT_YUV444P, ///< planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
  71. PIX_FMT_YUV410P, ///< planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
  72. PIX_FMT_YUV411P, ///< planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
  73. PIX_FMT_GRAY8, ///< Y , 8bpp
  74. PIX_FMT_MONOWHITE, ///< Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb
  75. PIX_FMT_MONOBLACK, ///< Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb
  76. PIX_FMT_PAL8, ///< 8 bit with PIX_FMT_RGB32 palette
  77. PIX_FMT_YUVJ420P, ///< planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV420P and setting color_range
  78. PIX_FMT_YUVJ422P, ///< planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV422P and setting color_range
  79. PIX_FMT_YUVJ444P, ///< planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV444P and setting color_range
  80. PIX_FMT_XVMC_MPEG2_MC,///< XVideo Motion Acceleration via common packet passing
  81. PIX_FMT_XVMC_MPEG2_IDCT,
  82. PIX_FMT_UYVY422, ///< packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
  83. PIX_FMT_UYYVYY411, ///< packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
  84. PIX_FMT_BGR8, ///< packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
  85. PIX_FMT_BGR4, ///< packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bits
  86. PIX_FMT_BGR4_BYTE, ///< packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
  87. PIX_FMT_RGB8, ///< packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
  88. PIX_FMT_RGB4, ///< packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bits
  89. PIX_FMT_RGB4_BYTE, ///< packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
  90. PIX_FMT_NV12, ///< planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (first byte U and the following byte V)
  91. PIX_FMT_NV21, ///< as above, but U and V bytes are swapped
  92. PIX_FMT_ARGB, ///< packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
  93. PIX_FMT_RGBA, ///< packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
  94. PIX_FMT_ABGR, ///< packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
  95. PIX_FMT_BGRA, ///< packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
  96. PIX_FMT_GRAY16BE, ///< Y , 16bpp, big-endian
  97. PIX_FMT_GRAY16LE, ///< Y , 16bpp, little-endian
  98. PIX_FMT_YUV440P, ///< planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
  99. PIX_FMT_YUVJ440P, ///< planar YUV 4:4:0 full scale (JPEG), deprecated in favor of PIX_FMT_YUV440P and setting color_range
  100. PIX_FMT_YUVA420P, ///< planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
  101. PIX_FMT_VDPAU_H264,///< H.264 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
  102. PIX_FMT_VDPAU_MPEG1,///< MPEG-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
  103. PIX_FMT_VDPAU_MPEG2,///< MPEG-2 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
  104. PIX_FMT_VDPAU_WMV3,///< WMV3 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
  105. PIX_FMT_VDPAU_VC1, ///< VC-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
  106. PIX_FMT_RGB48BE, ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big-endian
  107. PIX_FMT_RGB48LE, ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as little-endian
  108. PIX_FMT_RGB565BE, ///< packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
  109. PIX_FMT_RGB565LE, ///< packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
  110. PIX_FMT_RGB555BE, ///< packed RGB 5:5:5, 16bpp, (msb)1A 5R 5G 5B(lsb), big-endian, most significant bit to 0
  111. PIX_FMT_RGB555LE, ///< packed RGB 5:5:5, 16bpp, (msb)1A 5R 5G 5B(lsb), little-endian, most significant bit to 0
  112. PIX_FMT_BGR565BE, ///< packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
  113. PIX_FMT_BGR565LE, ///< packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
  114. PIX_FMT_BGR555BE, ///< packed BGR 5:5:5, 16bpp, (msb)1A 5B 5G 5R(lsb), big-endian, most significant bit to 1
  115. PIX_FMT_BGR555LE, ///< packed BGR 5:5:5, 16bpp, (msb)1A 5B 5G 5R(lsb), little-endian, most significant bit to 1
  116. PIX_FMT_VAAPI_MOCO, ///< HW acceleration through VA API at motion compensation entry-point, Picture.data[3] contains a vaapi_render_state struct which contains macroblocks as well as various fields extracted from headers
  117. PIX_FMT_VAAPI_IDCT, ///< HW acceleration through VA API at IDCT entry-point, Picture.data[3] contains a vaapi_render_state struct which contains fields extracted from headers
  118. PIX_FMT_VAAPI_VLD, ///< HW decoding through VA API, Picture.data[3] contains a vaapi_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
  119. PIX_FMT_YUV420P16LE, ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
  120. PIX_FMT_YUV420P16BE, ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
  121. PIX_FMT_YUV422P16LE, ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
  122. PIX_FMT_YUV422P16BE, ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
  123. PIX_FMT_YUV444P16LE, ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
  124. PIX_FMT_YUV444P16BE, ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
  125. PIX_FMT_VDPAU_MPEG4, ///< MPEG4 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
  126. PIX_FMT_DXVA2_VLD, ///< HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer
  127. PIX_FMT_RGB444LE, ///< packed RGB 4:4:4, 16bpp, (msb)4A 4R 4G 4B(lsb), little-endian, most significant bits to 0
  128. PIX_FMT_RGB444BE, ///< packed RGB 4:4:4, 16bpp, (msb)4A 4R 4G 4B(lsb), big-endian, most significant bits to 0
  129. PIX_FMT_BGR444LE, ///< packed BGR 4:4:4, 16bpp, (msb)4A 4B 4G 4R(lsb), little-endian, most significant bits to 1
  130. PIX_FMT_BGR444BE, ///< packed BGR 4:4:4, 16bpp, (msb)4A 4B 4G 4R(lsb), big-endian, most significant bits to 1
  131. PIX_FMT_GRAY8A, ///< 8bit gray, 8bit alpha
  132. PIX_FMT_BGR48BE, ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big-endian
  133. PIX_FMT_BGR48LE, ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as little-endian
  134. //the following 10 formats have the disadvantage of needing 1 format for each bit depth, thus
  135. //If you want to support multiple bit depths, then using PIX_FMT_YUV420P16* with the bpp stored seperately
  136. //is better
  137. PIX_FMT_YUV420P9BE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
  138. PIX_FMT_YUV420P9LE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
  139. PIX_FMT_YUV420P10BE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
  140. PIX_FMT_YUV420P10LE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
  141. PIX_FMT_YUV422P10BE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
  142. PIX_FMT_YUV422P10LE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
  143. PIX_FMT_YUV444P9BE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
  144. PIX_FMT_YUV444P9LE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
  145. PIX_FMT_YUV444P10BE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
  146. PIX_FMT_YUV444P10LE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
  147. PIX_FMT_YUV422P9BE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
  148. PIX_FMT_YUV422P9LE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
  149. PIX_FMT_VDA_VLD, ///< hardware decoding through VDA
  150. #ifdef AV_PIX_FMT_ABI_GIT_MASTER
  151. PIX_FMT_RGBA64BE, ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian
  152. PIX_FMT_RGBA64LE, ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian
  153. PIX_FMT_BGRA64BE, ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian
  154. PIX_FMT_BGRA64LE, ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian
  155. #endif
  156. PIX_FMT_GBRP, ///< planar GBR 4:4:4 24bpp
  157. PIX_FMT_GBRP9BE, ///< planar GBR 4:4:4 27bpp, big endian
  158. PIX_FMT_GBRP9LE, ///< planar GBR 4:4:4 27bpp, little endian
  159. PIX_FMT_GBRP10BE, ///< planar GBR 4:4:4 30bpp, big endian
  160. PIX_FMT_GBRP10LE, ///< planar GBR 4:4:4 30bpp, little endian
  161. PIX_FMT_GBRP16BE, ///< planar GBR 4:4:4 48bpp, big endian
  162. PIX_FMT_GBRP16LE, ///< planar GBR 4:4:4 48bpp, little endian
  163. #ifndef AV_PIX_FMT_ABI_GIT_MASTER
  164. PIX_FMT_RGBA64BE=0x123, ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian
  165. PIX_FMT_RGBA64LE, ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian
  166. PIX_FMT_BGRA64BE, ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian
  167. PIX_FMT_BGRA64LE, ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian
  168. #endif
  169. PIX_FMT_0RGB=0x123+4, ///< packed RGB 8:8:8, 32bpp, 0RGB0RGB...
  170. PIX_FMT_RGB0, ///< packed RGB 8:8:8, 32bpp, RGB0RGB0...
  171. PIX_FMT_0BGR, ///< packed BGR 8:8:8, 32bpp, 0BGR0BGR...
  172. PIX_FMT_BGR0, ///< packed BGR 8:8:8, 32bpp, BGR0BGR0...
  173. PIX_FMT_YUVA444P, ///< planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
  174. PIX_FMT_NB, ///< number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of formats might differ between versions
  175. };
  176. #define PIX_FMT_Y400A PIX_FMT_GRAY8A
  177. #define PIX_FMT_GBR24P PIX_FMT_GBRP
  178. #if AV_HAVE_BIGENDIAN
  179. # define PIX_FMT_NE(be, le) PIX_FMT_##be
  180. #else
  181. # define PIX_FMT_NE(be, le) PIX_FMT_##le
  182. #endif
  183. #define PIX_FMT_RGB32 PIX_FMT_NE(ARGB, BGRA)
  184. #define PIX_FMT_RGB32_1 PIX_FMT_NE(RGBA, ABGR)
  185. #define PIX_FMT_BGR32 PIX_FMT_NE(ABGR, RGBA)
  186. #define PIX_FMT_BGR32_1 PIX_FMT_NE(BGRA, ARGB)
  187. #define PIX_FMT_0RGB32 PIX_FMT_NE(0RGB, BGR0)
  188. #define PIX_FMT_0BGR32 PIX_FMT_NE(0BGR, RGB0)
  189. #define PIX_FMT_GRAY16 PIX_FMT_NE(GRAY16BE, GRAY16LE)
  190. #define PIX_FMT_RGB48 PIX_FMT_NE(RGB48BE, RGB48LE)
  191. #define PIX_FMT_RGB565 PIX_FMT_NE(RGB565BE, RGB565LE)
  192. #define PIX_FMT_RGB555 PIX_FMT_NE(RGB555BE, RGB555LE)
  193. #define PIX_FMT_RGB444 PIX_FMT_NE(RGB444BE, RGB444LE)
  194. #define PIX_FMT_BGR48 PIX_FMT_NE(BGR48BE, BGR48LE)
  195. #define PIX_FMT_BGR565 PIX_FMT_NE(BGR565BE, BGR565LE)
  196. #define PIX_FMT_BGR555 PIX_FMT_NE(BGR555BE, BGR555LE)
  197. #define PIX_FMT_BGR444 PIX_FMT_NE(BGR444BE, BGR444LE)
  198. #define PIX_FMT_YUV420P9 PIX_FMT_NE(YUV420P9BE , YUV420P9LE)
  199. #define PIX_FMT_YUV422P9 PIX_FMT_NE(YUV422P9BE , YUV422P9LE)
  200. #define PIX_FMT_YUV444P9 PIX_FMT_NE(YUV444P9BE , YUV444P9LE)
  201. #define PIX_FMT_YUV420P10 PIX_FMT_NE(YUV420P10BE, YUV420P10LE)
  202. #define PIX_FMT_YUV422P10 PIX_FMT_NE(YUV422P10BE, YUV422P10LE)
  203. #define PIX_FMT_YUV444P10 PIX_FMT_NE(YUV444P10BE, YUV444P10LE)
  204. #define PIX_FMT_YUV420P16 PIX_FMT_NE(YUV420P16BE, YUV420P16LE)
  205. #define PIX_FMT_YUV422P16 PIX_FMT_NE(YUV422P16BE, YUV422P16LE)
  206. #define PIX_FMT_YUV444P16 PIX_FMT_NE(YUV444P16BE, YUV444P16LE)
  207. #define PIX_FMT_RGBA64 PIX_FMT_NE(RGBA64BE, RGBA64LE)
  208. #define PIX_FMT_BGRA64 PIX_FMT_NE(BGRA64BE, BGRA64LE)
  209. #define PIX_FMT_GBRP9 PIX_FMT_NE(GBRP9BE , GBRP9LE)
  210. #define PIX_FMT_GBRP10 PIX_FMT_NE(GBRP10BE, GBRP10LE)
  211. #define PIX_FMT_GBRP16 PIX_FMT_NE(GBRP16BE, GBRP16LE)
  212. #endif /* AVUTIL_PIXFMT_H */

转载于:https://www.cnblogs.com/schips/p/11521453.html

(转)FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)相关推荐

  1. ffmpeg 保存图片 将rgb数据_FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)...

    FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24...)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法. swscale主 ...

  2. FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)

    FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24...)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法. swscale主 ...

  3. android FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)

    FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24-)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法. swscale主要用 ...

  4. 三维视觉基础之世界坐标系、相机坐标系、图像坐标系和像素坐标系之间的转换关系

    三维视觉基础之世界坐标系.相机坐标系.图像坐标系和像素坐标系之间的转换关系 一.各坐标系介绍 二.世界坐标系和相机坐标系之间的转换 三.相机坐标系和图像坐标系之间的转换 四.图像坐标系和像素坐标系之间 ...

  5. 使用C++实现YUV格式图像与RGB格式图像之间相互转换

    使用C++实现YUV格式图像与RGB格式图像之间相互转换 一.RGB与YUV转换公式 1.RGB转YUV 1)RGB转换亮度与色差信号公试: 2)归一化为YUV的转化公试为: 2.YUV转RGB 二. ...

  6. FFmpeg基础: YUV像素格式介绍和使用

    文章目录 YUV像素格式 YUV采样 YUV格式分类 YUV存储模式 FFmpeg读取YUV数据 YUV和RGB转换 YUV像素格式 在图片中我们一般都是通过RGB(红-绿-蓝)格式来表示一个像素点. ...

  7. 转:YUV RGB 常见视频格式解析

    转: http://www.cnblogs.com/qinjunni/archive/2012/02/23/2364446.html YUV RGB 常见视频格式解析 I420是YUV格式的一种,而Y ...

  8. YUV / RGB 格式及快速转换

    YUV是指亮度参量和色度参量分开表示的像素格式,而这样分开的好处就是不但可以避免相互干扰,还可以降低色度的采样率而不会对图像质量影响太大. YUV是一个比较笼统地说法,针对它的具体排列方式,可以分为很 ...

  9. YUV / RGB 格式及快速转换算法

    1 前言 自然界的颜色千变万化,为了给颜色一个量化的衡量标准,就需要建立色彩空间模型来描述各种各样的颜色,由于人对色彩的感知是一个复杂的生理和心理联合作用 的过程,所以在不同的应用领域中为了更好更准确 ...

最新文章

  1. android .9图片使用和一些技巧
  2. Tomcat_7.x压缩版_环境变量配置(亲测有效)
  3. int数组转化为字符数组 java_Java 将int数组转换为字符串
  4. 【MATLAB】三维图形绘制 ( 绘制网格 + 等高线 | meshc 函数 | 绘制平面 + 等高线 | surfc 函数 )
  5. 这个免费的交互式课程在一小时内学习JavaScript
  6. vue通过数据驱动实现表格行的增加与删除
  7. MOSS 2018 回顾:向 40 余个开源项目捐赠 97 万美元
  8. ajax返回数据类型为XML数据的处理
  9. 解决“warning #188-D enumerated type mixed with another type”告警
  10. 彻底解决Android 8.0启动服务问题
  11. 百度富文本编辑器Ueditor图片上传的注意点
  12. 达内php第一次月考题,五年级英语下册第一次月考题
  13. 计算机搜索功能关闭,提高电脑性能关闭Windows Search搜索功能设置技巧
  14. 关于提取百度文库无法复制的正文内容方法
  15. Win10 Rational Rose 安装教程
  16. CAD开发:DWG合并,dwg转换为dxf
  17. 如何按页拆分PDF文档
  18. 第三届长沙 · 中国 1024 程序员节:共迎算力新时代,开源新未来!
  19. 计算机杨梅老师,第十届全国中学生作文大赛:与杨梅老师一起走过的日子
  20. 聪明人遇到两难选择,总有这么几个套路

热门文章

  1. 尚硅谷web前端工程师1000集学习笔记11
  2. 微信,找回好友、群聊用户撤回的消息
  3. java如何利用rotate旋转图片_JAVA对图片的任意角度旋转,以及镜像操作
  4. 【分享】基于单片机嵌入式的家用智能节水淋浴控制器的设计-基于单片机的电子贺卡控制系统设计-基于单片机的倒计时牌控制系统设计-基于单片机的彩灯控制器系统设计-多模式彩灯-单片机的八路路数字电压表控制设计
  5. 幼儿园计算机培训心得,幼儿园心得体会范文
  6. IBM或将再次“瘦身”,谁才是Watson Health的“掘墓人”?
  7. 基于Pycharm运行李沐老师的深度学习课程代码
  8. ubuntu安装android应用程序,Anbox将使Ubuntu手机能运行Android应用程序
  9. ORA-03113 end-of-file on communication channel 问题解决
  10. CVECWE概念及其关系