【 声明:版权所有,欢迎转载,请勿用于商业用途。  联系信箱:feixiaoxing @163.com】

按照ldd的说法,linux的设备驱动包括了char,block,net三种设备。char设备是比较简单的,只要分配了major、minor号,就可以进行读写处理了。相对而言,block和net要稍微复杂些。net设备姑且按下不谈,我们在以后的博文中会有涉及。今天,我们可以看看一个简单的block是怎么设计的。

为了将block和fs分开,kernel的设计者定义了request queue这一种形式。换一句话说,所有fs对block设备的请求,最终都会转变为request的形式。所以,对于block设备驱动开发的朋友来说,处理好了request queue就掌握了block设备的一半。当然,block设备很多,hd、floppy、ram都可以这么来定义,有兴趣的朋友可以在drivers/block寻找相关的代码来阅读。兴趣没有那么强的同学,可以看看我们这篇博文,基本上也能学个大概。有个基本的概念,再加上一个简单浅显的范例,对于一般的朋友来说,已经足够了。

闲话不多说,我们看看一个ramdisk代码驱动是怎么写的,代码来自《深入linux 设备驱动程序内核机制》,

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#define RAMHD_NAME "ramhd"
#define RAMHD_MAX_DEVICE 2
#define RAMHD_MAX_PARTITIONS 4
#define RAMHD_SECTOR_SIZE 512
#define RAMHD_SECTORS 16
#define RAMHD_HEADS 4
#define RAMHD_CYLINDERS 256
#define RAMHD_SECTOR_TOTAL (RAMHD_SECTORS * RAMHD_HEADS *RAMHD_CYLINDERS)
#define RAMHD_SIZE (RAMHD_SECTOR_SIZE * RAMHD_SECTOR_TOTAL) //8mb
typedef struct {
unsigned char* data;
struct request_queue* queue;
struct gendisk* gd;
}RAMHD_DEV;
static char* sdisk[RAMHD_MAX_DEVICE] = {NULL};
static RAMHD_DEV* rdev[RAMHD_MAX_DEVICE] = {NULL};
static dev_t ramhd_major;
static int ramhd_space_init(void)
{
int i;
int err = 0;
for(i = 0; i < RAMHD_MAX_DEVICE; i++){
sdisk[i] = vmalloc(RAMHD_SIZE);
if(!sdisk[i]){
err = -ENOMEM;
return err;
}
memset(sdisk[i], 0, RAMHD_SIZE);
}
return err;
}
static void ramhd_space_clean(void)
{
int i;
for(i = 0; i < RAMHD_MAX_DEVICE; i++){
vfree(sdisk[i]);
}
}
static int ramhd_open(struct block_device* bdev, fmode_t mode)
{
return 0;
}
static int ramhd_release(struct gendisk*gd, fmode_t mode)
{
return 0;
}
static int ramhd_ioctl(struct block_device* bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
{
int err;
struct hd_geometry geo;
switch(cmd)
{
case HDIO_GETGEO:
err = !access_ok(VERIFY_WRITE, arg, sizeof(geo));
if(err)
return -EFAULT;
geo.cylinders = RAMHD_CYLINDERS;
geo.heads = RAMHD_HEADS;
geo.sectors = RAMHD_SECTORS;
geo.start = get_start_sect(bdev);
if(copy_to_user((void*)arg, &geo, sizeof(geo)))
return -EFAULT;
return 0;
}
return -ENOTTY;
}
static struct block_device_operations ramhd_fops = {
.owner = THIS_MODULE,
.open = ramhd_open,
.release = ramhd_release,
.ioctl = ramhd_ioctl,
};
static int ramhd_make_request(struct request_queue* q, struct bio* bio)
{
char* pRHdata;
char* pBuffer;
struct bio_vec* bvec;
int i;
int err = 0;
struct block_device* bdev = bio->bi_bdev;
RAMHD_DEV* pdev = bdev->bd_disk->private_data;
if(((bio->bi_sector * RAMHD_SECTOR_SIZE) + bio->bi_size) > RAMHD_SIZE){
err = -EIO;
return err;
}
pRHdata = pdev->data + (bio->bi_sector * RAMHD_SECTOR_SIZE);
bio_for_each_segment(bvec, bio, i){
pBuffer = kmap(bvec->bv_page) + bvec->bv_offset;
switch(bio_data_dir(bio)){
case READ:
memcpy(pBuffer, pRHdata, bvec->bv_len);
flush_dcache_page(bvec->bv_page);
break;
case WRITE:
flush_dcache_page(bvec->bv_page);
memcpy(pRHdata, pBuffer, bvec->bv_len);
break;
default:
kunmap(bvec->bv_page);
goto out;
}
kunmap(bvec->bv_page);
pRHdata += bvec->bv_len;
}
out:
bio_endio(bio, err);
return 0;
}
static int alloc_ramdev(void)
{
int i;
for(i = 0; i < RAMHD_MAX_DEVICE; i++){
rdev[i] = kzalloc(sizeof(RAMHD_DEV), GFP_KERNEL);
if(!rdev[i]){
return -ENOMEM;
}
}
return 0;
}
static void clean_ramdev(void)
{
int i;
for(i = 0; i < RAMHD_MAX_DEVICE; i++){
if(rdev[i])
kfree(rdev[i]);
}
}
static int __init ramhd_init(void)
{
int i;
ramhd_space_init();
alloc_ramdev();
ramhd_major = register_blkdev(0, RAMHD_NAME);
for(i = 0; i < RAMHD_MAX_DEVICE; i++){
rdev[i]->data = sdisk[i];
rdev[i]->queue = blk_alloc_queue(GFP_KERNEL);
blk_queue_make_request(rdev[i]->queue, ramhd_make_request);
rdev[i]->gd = alloc_disk(RAMHD_MAX_PARTITIONS);
rdev[i]->gd->major = ramhd_major;
rdev[i]->gd->first_minor = i * RAMHD_MAX_PARTITIONS;
rdev[i]->gd->fops = &ramhd_fops;
rdev[i]->gd->queue = rdev[i]->queue;
rdev[i]->gd->private_data = rdev[i];
sprintf(rdev[i]->gd->disk_name, "ramhd%c", 'a' +i);
rdev[i]->gd->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
set_capacity(rdev[i]->gd, RAMHD_SECTOR_TOTAL);
add_disk(rdev[i]->gd);
}
return 0;
}
static void __exit ramhd_exit(void)
{
int i;
for(i = 0; i < RAMHD_MAX_DEVICE; i++){
del_gendisk(rdev[i]->gd);
put_disk(rdev[i]->gd);
blk_cleanup_queue(rdev[i]->queue);
}
clean_ramdev();
ramhd_space_clean();
unregister_blkdev(ramhd_major, RAMHD_NAME);
}
module_init(ramhd_init);
module_exit(ramhd_exit);
MODULE_AUTHOR("dennis__chen@ AMDLinuxFGL");
MODULE_DESCRIPTION("The ramdisk implementation with request function");
MODULE_LICENSE("GPL");

为了大家方便,顺便也把Makefile放出来,看过前面blog的朋友都知道,这其实很简单,

ifneq ($(KERNELRELEASE),)
obj-m := ramdisk.o
else
PWD  := $(shell pwd)
KVER := $(shell uname -r)
KDIR := /lib/modules/$(KVER)/build
all:
$(MAKE) -C $(KDIR) M=$(PWD) modules
clean:
rm -rf .*.cmd *.o *.mod.c *.ko .tmp_versions modules.*  Module.*
endif

这段代码究竟有没有用呢?可以按照下面的步骤来做,

a)make 一下,生成ramdisk.ko;

b)编译好了之后,就可以安装驱动了,在linux下是这么做的,sudo insmod ramdisk.ko;

c)安装好了,利用ls /dev/ramhd*, 就会发现在/dev下新增两个结点,即/dev/ramhda和/dev/ramhdb;

d)不妨选择其中一个节点进行分区处理, sudo fdisk /dev/ramhda,简单处理的话就建立一个分区, 生成/dev/ramhda1;

e)创建文件系统,sudo mkfs.ext3 /dev/ramhda1;

f)有了上面的文件系统,就可以进行mount处理,不妨sudo mount /dev/ramhda1 /mnt;

g)上面都弄好了,大家就可以copy、delete文件试试了,是不是很简单。

Linux驱动编写(块设备驱动代码)相关推荐

  1. Linux驱动开发|块设备驱动

    块设备驱动 块设备驱动是 Linux 三大驱动类型之一,块设备驱动比字符设备驱动复杂得多,不同类型的存储设备又对应不同的驱动子系统,下面介绍块设备驱动框架及使用 一.块设备介绍 块设备是针对存储设备的 ...

  2. linux内核的块设备驱动框架详解

    1.块设备和字符设备的差异 (1)块设备只能以块为单位接受输入和返回输出,而字符设备则以字节为单位.大多数设备是字符设备,因为它们不需要缓冲而且不以固定块大小进行操作; (2)块设备对于 I/O 请求 ...

  3. linux中流设备_[快速上手Linux设备驱动]之块设备驱动流程详解一

    [快速上手Linux设备驱动]之块设备驱动流程详解一 walfred已经在[快速上手Linux设备驱动]之我看字符设备驱动一 文中详细讲解了linux下字符设备驱动,并紧接着用四篇文章描述了Linux ...

  4. linux块设备驱动编写,Linux内核学习笔记 -49 工程实践-编写块设备驱动的基础

    块设备可以随机存储.字符设备,比如键盘,只能按照输入顺序存取,不可随机,打乱输入的字节流. 文件系统层,包括常见的文件系统,以及虚拟文件系统层VFS,字符设备可以直接用应用程序打开.块设备不会在应用程 ...

  5. 十六、Linux驱动之块设备驱动

    1. 基本概念 块设备是Linux三大设备之一,其驱动模型主要针对磁盘,Flash等存储类设备,块设备(blockdevice)是一种具有一定结构的随机存取设备,对这种设备的读写是按块(所以叫块设备) ...

  6. Linux驱动开发---块设备驱动

    块设备驱动(Linux kernel 4.9.x) 主要结构 gendisk结构体:表示一个独立的磁盘设备(或分区) 1.1 定义如下: struct gendisk {/* major, first ...

  7. Linux块设备驱动-MTD子系统

    Linux块设备驱动 块设备驱动 块设备驱动的引入 1. 简单字符驱动程序思想 2. 块设备驱动程序思想 块设备驱动框架 1. 层次框架 2. 分析ll_rw_block 块设备驱动程序编写 1.分配 ...

  8. Linux块设备驱动总结

    <Linux设备驱动程序>第十六章 块设备驱动程序读书笔记 简介 一个块设备驱动程序主要通过传输固定大小的随机数据来访问设备 Linux内核视块设备为与字符设备相异的基本设备类型 Linu ...

  9. STM32MP157驱动开发——Linux块设备驱动

    STM32MP157驱动开发--Linux块设备驱动 一.简介 二.驱动开发 1.使用请求队列的方式 2.测试① 3.不使用请求队列的方式 4.测试② 参考文章:[正点原子]I.MX6U嵌入式Linu ...

  10. 【linux驱动之字符设备驱动基础】

    linux驱动之字符设备驱动基础 文章目录 linux驱动之字符设备驱动基础 前言 一.开启驱动学习之路 二.驱动预备知识 三.什么是驱动? 3.1 驱动概念 3.2 linux 体系架构 3.3 模 ...

最新文章

  1. 使用 spring 的 IOC 解决程序耦合——获取spring的Ioc核心容器,并根据id获取对象、核心容器的两个接口(ApplicationContext、BeanFactory)引发出的问题
  2. linux32安装pgsql,Linux安装pgsql
  3. python 分离整数与小数_Python编程:离不开算术运算符的顺序结构
  4. 组队瓜分百万奖金池,资深算法工程师带你挑战飞桨论文复现赛!
  5. Android studio的布局总结
  6. 第六章 自动测试实施(上)
  7. centos6.5 mysql5.6主从复制
  8. StreamInsight 浅入浅出(三)—— 适配器
  9. 管理新语:年龄经验并不能让一个医生律师厉害,而是他本来就厉害
  10. 传智播客-刘意-java深入浅出精华版学习笔记Day02
  11. calibre怎么把HTML转换mobi,calibre:mobi格式转换成pdf格式 | 求索阁
  12. 光伏发电系统及其MPPT控制
  13. 电脑关机同步服务器信息失败,电脑同步,更新时间失败,怎么处理?
  14. 皮亚诺的数概念起点和算术公理1-2告诉我们什么?—— 皮亚诺读后之四
  15. “清洁地球日”看AI与碳中和:百度OCR成无纸化办公利器
  16. CSS3悬浮动画效果
  17. Charles抓包遇到Not allowed POST https://xxxxxxxxxxx/xxxxxxxxxx connection dropped
  18. 【计算机网络】频带和频段(图解易懂)
  19. IT信息技术-1.1 信息系统与信息化
  20. 使用素描图像识别人脸

热门文章

  1. M283-bsp包问题
  2. 深入理解JVM--类的执行机制
  3. 基于ASP.NET MVC(C#)和Quartz.Net组件实现的定时执行任务调度
  4. IE6下兼容CSS属性min-height的解决办法
  5. layer.prompt添加多个输入框
  6. [转] new 和delete
  7. js img转换base64
  8. epoll, NIO,AIO
  9. systemtap notes
  10. Linux内核设计第四周——扒开系统调用三层皮