Python之建模规划篇--线性规划

  • 基本介绍
  • 线性规划的实例与定义
  • 线性规划问题的解的概念
  • 求解线性规划的Matlab 解法
  • Python解法
    • Python Scipy库实现
    • Python plup库实现
    • 一个十分有趣的例子

基本介绍

在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

线性规划的实例与定义

例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。生产甲机床需用 A、B机器加工,加工时间分别为每台 2 小时和 1 小时;生产乙机床需用 A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?
上述问题的数学模型:设该厂生产x1 台甲机床和x2 乙机床时总利润最大,则 x1,x2应满足

这里变量x1, x2 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。

线性规划问题的解的概念


可行解 满足约束条件(4)的解 x=(x1 ,x2 ,… ,xn ) ,称为线性规划问题的可行解,而使目标函数(3)达到最大值的可行解叫最优解。
可行域 所有可行解构成的集合称为问题的可行域,记为R 。

图解法简单直观,有助于了解线性规划问题求解的基本原理。我们先应用图解法来求解例1。对于每一固定的值z ,使目标函数值等于z 的点构成的直线称为目标函数等位线,当z 变动时,我们得到一族平行直线。对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。不难看出,本例的最优解为x* = (2,6)T ,最优目标值z* = 26。

求解线性规划的Matlab 解法

Matlab 中线性规划的标准型为

基本函数形式为 linprog(c,A,b),它的返回值是向量x 的值。还有其它的一些函数调用形式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如:
[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X0,OPTIONS)
这里fval 返回目标函数的值,LB 和UB 分别是变量x 的下界和上界, x0 是x 的初始值,OPTIONS 是控制参数。

现在给个例子

f=[-2; -3; 5];
a=[-2,5,-1;1,3,1]; b=[-10;12];
aeq=[1,1,1];
beq=7;
[x,y]=linprog(f,a,b,aeq,beq,zeros(3,1));
x, y=-y

执行后便可得到结果

Python解法

Python Scipy库实现

同样的问题,我也可以用python实现
首先,我可以用Scipy库进行求解
大概的模板如下

# Scipy 库求解
from scipy import optimize
import numpy as npres =
optimize.linprog(c,A,b,Aeq,beq,LB,UB,X0,OPTIOS)
# 目标最小值
print(res.fun)
# 最优解
print(rea.x)

如果针对上面的那题,他的正确解法应该是

from scipy import optimize
import numpy as np
c = np.array([2,3,-5])
A = np.array([[-2,5,-1],[1,3,1]])
B = np.array([-10,12])
Aeq = np.array([[1,1,1]])
Beq = np.array([7])res = optimize.linprog(-c,A,B,Aeq,Beq)
print(res)

会出现以下结果

Python plup库实现

除此之外,还可以利用plup库求解

# pulp库求解
import pulp
# 目标函数的系数
z = [2,3,1]
#约束
a = [[1,4,2],[3,2,0]]
b = [8, 6]
#确定最大化最小化问题,最大化只要把Min改成Max即可
m = pulp.LpProblem(sense=pulp.LpMinimize)
#定义三个变量放到列表中
x = [pulp.LpVariable(f'x{i}', lowBound=0) for i in [1,2,3]]
#定义目标函数,lpDot可以将两个列表的对应位相乘再加和
#相当于z[0]*x[0]+z[1]*x[1]+z[2]*x[2]
m += pulp.lpDot(z, x)
#设置约束条件
for i in range(len(a)):m += (pulp.lpDot(a[i], x) >= b[i])
#求解
m.solve()
#输出结果
print(f'优化结果:{pulp.value(m.objective)}')
print(f'参数取值:{[pulp.value(var) for var in x]}')

依然可以得到正确的结果

一个十分有趣的例子

最后我看到了一个十分十分有趣的例子,是二维的线性规划问题,依旧用python实现

import pulp
import numpy as np
from pprint import pprint
def transportation_problem(costs, x_max, y_max):row = len(costs)col = len(costs[0])prob = pulp.LpProblem('Transportation Problem',sense = pulp.LpMaximize)var = [[pulp.LpVariable(f'x{i}{j}', lowBound=0,cat=pulp.LpInteger) for j in range(col)] for i in range(row)]flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]prob += pulp.lpDot(flatten(var), costs.flatten())for i in range(row):prob += (pulp.lpSum(var[i]) <= x_max[i])for j in range(col):prob += (pulp.lpSum([var[i][j] for i in range(row)]) <= y_max[j])
#     print(prob)prob.solve()return {'objective':pulp.value(prob.objective),'var':[[pulp.value(var[i][j])for j in range(col)]for i in range(row)]}if __name__ == '__main__':costs = np.array([[500, 550, 630, 1000, 800, 700],[800, 700, 600, 950, 900, 930],[1000, 960, 840, 650, 600, 700],[1200, 1040, 980, 860, 880, 780]])max_plant = [76, 88, 96, 40]max_cultivation = [42, 56, 44, 39, 60, 59]res = transportation_problem(costs, max_plant,max_cultivation)print(f'最大值为{res["objective"]}')print('各变量的取值为:')pprint(res['var'])

就这样,我们可以得到最优方案

插一句,如果你把prob打印出来,你可以看到太他的内部是这样的

每日一句
Giving is a reward in itself.(给予本身就是一个奖赏)

Python之建模规划篇--线性规划相关推荐

  1. Python之建模规划篇--整数规划

    Python之建模规划篇--整数规划 基本介绍 整数规划的分类 整数规划的特点 求解方法分类 0 - 1 型整数规划 蒙特卡洛法 (随机取样法) 整数线性规划的计算机求解 分枝定界法 Python 实 ...

  2. python非线性规划求解_Python之建模规划篇--非线性规划

    Python之建模规划篇--非线性规划 基本介绍 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问 题.一般说来,解非线性规划要比解线性规划问题困难得多.而且,也不象线性规划有 ...

  3. Python之建模数值逼近篇–最小二乘拟合

    Python之建模数值逼近篇–最小二乘拟合 介绍 系数ak的确定 函数rk(x)r_k(x)rk​(x)的选取 理解和区别 样例 介绍 曲线拟合问题的提法是,已知一组(二维)数据,即平面上的n个点(x ...

  4. Python之建模数值逼近篇--一维插值

    Python之建模数值逼近篇--一维插值 基本介绍 拉格朗日插值 分段插值 样条插值 概念 二次样条函数 三次样条函数 线性插值与样条插值 样例 1 高阶样条插值 样例2: 基本介绍 首先介绍一下插值 ...

  5. python数学建模

    1.python之建模规划篇 1.1 scipy库 例如:from scipy import 想导入的模块名 scipy具体模块如下: scipy.cluster向量量化 scipy.constant ...

  6. Python小白的数学建模课-03.线性规划

    线性规划是很多数模培训讲的第一个算法,算法很简单,思想很深刻. 要通过线性规划问题,理解如何学习数学建模.如何选择编程算法. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛 ...

  7. python数学建模(二)线性规划2.实战(思路清晰\过程完整、详细)

    文章目录 (一)简单陈述本文章的内容 (二)线性规划例题(实战) 2.1 实战题目 2.2 符号规定和基本假设 2.3 模型的分析 2.4 模型的建立 2.5 模型一的求解和分析 2.5.1 (代码) ...

  8. 数学建模——规划问题

    文章目录 线性规划 整数规划 一般的整数线性规划问题 0-1整数规划 广义指派问题 非线性规划 二次规划 线性规划  运筹学对于线性规划问题直接使用图解法,单纯形法利用求解.在python中可以直接使 ...

  9. Python数学建模系列(五):微分方程

    文章目录 前言 往期文章 1.微分方程分类 2.微分方程解析解 3.微分方程数值解 3.1 场线图与数值解 3.2 洛伦兹曲线与数值解 4.传染病模型 模型一:SI-Model 模型二:SIS mod ...

最新文章

  1. 你会不会用mysql查询近7个月的数据?没有记录默认为空
  2. C 家族程序设计语言发展史
  3. 安全的加强的linux:SELinux
  4. poj 3020 Antenna Placement(二分图最大匹配)
  5. 对代码生成器的一点想法
  6. 零基础带你快速入门consul-难道consul还能这样用?
  7. VTK:可视化算法之IceCream
  8. 1.计算机语言发展史
  9. Android 4.0 ICS SystemUI浅析——SystemUI启动流程
  10. 工业大数据发展面临四方面挑战
  11. 操作系统(秋招整理)
  12. MySQL实验作业_数据库实验四作业及答案
  13. 成都拓嘉辰丰:拼多多商家是否可以代销
  14. gimp 架构_[翻译]如何编写GIMP插件(二)
  15. java fillrect_Java的graphics2D fillRect不能正常工作与半透明的颜色
  16. centos查询 硬盘序列号查询_CentOS查看主板型号、CPU、显卡、硬盘等信息
  17. 荧光定量PCR:基因相对表达量计算方法
  18. QQ邮箱不显示图片解决方案
  19. formData上传Excel文件[object object ]数据库接收不到数据
  20. 北京大学软微学院计算机技术,北京大学软件与微电子学院计算机技术(专业学位)保研夏令营...

热门文章

  1. Linux【shell】 shell编程
  2. 阿里巴巴淘系技术部拍卖部-春招提前批
  3. 时频分析:短时傅里叶变换
  4. 数组(初识、创建数组、数组的元素、数组的变量)
  5. 计算机英文缩写ISA,计算机中的英文缩写
  6. 上海交通大学python期末考试样题加解析_上海交通大学python期末考试样题加解析...
  7. 关于dvb 基本知识
  8. 淘宝客小程序制作(4)-小程序(微信支付宝)
  9. MPEG2还是H264?
  10. 房产抵押贷款必须搞懂的七个问题