在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结。GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multiple Additive Regression Tree),其实都是指的同一种算法,本文统一简称GBDT。GBDT在BAT大厂中也有广泛的应用,假如要选择3个最重要的机器学习算法的话,个人认为GBDT应该占一席之地。

1. GBDT概述

    GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。

    GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。

    从上面的例子看这个思想还是蛮简单的,但是有个问题是这个损失的拟合不好度量,损失函数各种各样,怎么找到一种通用的拟合方法呢?

2. GBDT的负梯度拟合

    在上一节中,我们介绍了GBDT的基本思路,但是没有解决损失函数拟合方法的问题。针对这个问题,大牛Freidman提出了用损失函数的负梯度来拟合本轮损失的近似值,进而拟合一个CART回归树。第t轮的第i个样本的损失函数的负梯度表示为

    通过损失函数的负梯度来拟合,我们找到了一种通用的拟合损失误差的办法,这样无轮是分类问题还是回归问题,我们通过其损失函数的负梯度的拟合,就可以用GBDT来解决我们的分类回归问题。区别仅仅在于损失函数不同导致的负梯度不同而已。

3. GBDT回归算法

    好了,有了上面的思路,下面我们总结下GBDT的回归算法。为什么没有加上分类算法一起?那是因为分类算法的输出是不连续的类别值,需要一些处理才能使用负梯度,我们在下一节讲。

4. GBDT分类算法

    这里我们再看看GBDT分类算法,GBDT的分类算法从思想上和GBDT的回归算法没有区别,但是由于样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。

    为了解决这个问题,主要有两个方法,一个是用指数损失函数,此时GBDT退化为Adaboost算法。另一种方法是用类似于逻辑回归的对数似然损失函数的方法。也就是说,我们用的是类别的预测概率值和真实概率值的差来拟合损失。本文仅讨论用对数似然损失函数的GBDT分类。而对于对数似然损失函数,我们又有二元分类和多元分类的区别。

4.1 二元GBDT分类算法

    对于二元GBDT,如果用类似于逻辑回归的对数似然损失函数,则损失函数为:

    除了负梯度计算和叶子节点的最佳负梯度拟合的线性搜索,二元GBDT分类和GBDT回归算法过程相同。

4.2 多元GBDT分类算法

    多元GBDT要比二元GBDT复杂一些,对应的是多元逻辑回归和二元逻辑回归的复杂度差别。假设类别数为K,则此时我们的对数似然损失函数为:

    除了负梯度计算和叶子节点的最佳负梯度拟合的线性搜索,多元GBDT分类和二元GBDT分类以及GBDT回归算法过程相同。

5. GBDT常用损失函数

    这里我们再对常用的GBDT损失函数做一个总结。

    对于分类算法,其损失函数一般有对数损失函数和指数损失函数两种:

 

    对于Huber损失和分位数损失,主要用于健壮回归,也就是减少异常点对损失函数的影响。

6. GBDT的正则化

    和Adaboost一样,我们也需要对GBDT进行正则化,防止过拟合。GBDT的正则化主要有三种方式。

 

    第二种正则化的方式是通过子采样比例(subsample)。取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间。

    使用了子采样的GBDT有时也称作随机梯度提升树(Stochastic Gradient Boosting Tree, SGBT)。由于使用了子采样,程序可以通过采样分发到不同的任务去做boosting的迭代过程,最后形成新树,从而减少弱学习器难以并行学习的弱点。

    第三种是对于弱学习器即CART回归树进行正则化剪枝。在决策树原理篇里我们已经讲过,这里就不重复了。

7. GBDT小结 

    GBDT终于讲完了,GDBT本身并不复杂,不过要吃透的话需要对集成学习的原理,决策树原理和各种损失函树有一定的了解。由于GBDT的卓越性能,只要是研究机器学习都应该掌握这个算法,包括背后的原理和应用调参方法。目前GBDT的算法比较好的库是xgboost。当然scikit-learn也可以。

    最后总结下GBDT的优缺点。

    GBDT主要的优点有:

    1) 可以灵活处理各种类型的数据,包括连续值和离散值。

    2) 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。

    3)使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

    GBDT的主要缺点有:

    1)由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。

转自:https://www.cnblogs.com/pinard/p/6117515.html

【机器学习】梯度提升树(GBDT)的原理小结相关推荐

  1. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  2. sklearn梯度提升树(GBDT)调参小结

    原文链接 1. sklearn GBDT类库概述 \qquad 在sklearn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegr ...

  3. 基于scikit-learn的梯度提升树GBDT调参学习

    写在前面 昨天学习了GBDT的基本原理及算法,关键是考虑了损失函数为一般函数的时候采用了负梯度下降的策略,并引入了残差拟合来学习叶子结点,最终得到一颗回归树.当然,纸上谈兵是没有用的,最重要的还是要把 ...

  4. 梯度提升树(GBDT)原理小结(转载)

    在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boos ...

  5. 【机器学习】集成学习之梯度提升树GBDT

    Boosting方法的核心思想是对错分类的样本给予更高关注度,也就是样本权重,在提升树中与之对应的就是残差,在梯度提升树中就是梯度了. Regression Decision Tree:回归树 回归树 ...

  6. 梯度提升树(GBDT)相关知识

    文章目录 前向分步算法 负梯度拟合 损失函数 分类问题 回归问题 回归问题 分类 二分类 多分类 正则化 优缺点 优点 缺点 GBDT(Gradient Boosting Decision Tree) ...

  7. 梯度提升树GBDT的理论学习与细节补充

    1. 写在前面 今天是梯度提升树GBDT的理论学习和细节补充, 之前整理过XGBOOST和Lightgbm, 在那里面提到了GBDT, 但是只是简单的一过, 并没有关注太多GBDT的细节, 所以这次借 ...

  8. 梯度提升树(GBDT)算法超详细版本

    一.引言部分 梯度提升树(GBDT)的全称是Gradient Boosting Decision Tree,是 Boosting 算法的一种. 1. 和 AdaBoost 算法的区别: AdaBoos ...

  9. 随机森林(Random Forest)和梯度提升树(GBDT)有什么区别?

    随机森林(Random Forest)和梯度提升树(GBDT)有什么区别? 随机森林属于 集成学习 中的 Bagging(Bootstrap AGgregation 的简称) 方法. 随机森林是由很多 ...

最新文章

  1. 网页HTTP协议 get和post请求区别?(HTTP中Get、Post、Put与Delete的区别)
  2. linux查看发ftp的ip地址,linux常用命令及学习小结(4)--IP设置、samba、ftp
  3. finite state machine drawer online
  4. python把dict转为dataframe,将python OrderedDict转换为datafram
  5. 超70家影视传媒单位联合500余位艺人倡议:立即清理未经授权短视频
  6. keil uvisoin软件出现闪退和打开工程以前添加的c文件上面出现黄色感叹号
  7. java easing_p5.js入门教程之平滑过渡(Easing)
  8. 一步一步重构柔性数组和智能指针
  9. 2017年上半年软件设计师试题-04
  10. WEB应用程序--概述
  11. java zip_Java压缩技术(二) ZIP压缩——Java原生实现
  12. Excel解析的几种实现方式
  13. 如何在pe里加载阵列卡驱动_PE中RAID卡驱动的添加办法
  14. C#字符串解析成16进制,并计算校验和
  15. python爬取百思不得姐视频代码
  16. Redhat 7.9安装db2 11.1.4.6 DBT3514错误
  17. Rockchip开发系列 - 3.Pin-Ctrl 开发指南
  18. vs2019写html网页视频,最新Visual Studio 2019基础使用图文视频教程
  19. HTTP 协议简单理解与总结
  20. 【贪心】605. 种花问题

热门文章

  1. angular 模板
  2. mysql cluster自动安装_MySQL Cluster 安装
  3. alpha beta 滤波_不同Alpha-Beta滤波算法的精度分析及改进
  4. oracle 工单查so,查询工单列表
  5. linux设置关闭省电模式
  6. 微服务架构下分布式事务解决方案——阿里GTS
  7. webpack入门--前端必备
  8. Spring AOP详细介绍
  9. Mysql 多表联合查询效率分析及优化
  10. mysql dba系统学习(20)mysql存储引擎MyISAM