[Y. Li, C. Tang, S. Peeta and Y. Wang, “Nonlinear Consensus-Based Connected Vehicle Platoon Control Incorporating Car-Following Interactions and Heterogeneous Time Delays,” in IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 6, pp. 2209-2219, June 2019, doi: 10.1109/TITS.2018.2865546.]

文章目录

  • 2 Preliminaries and Problem Statement
    • 2.1 Graph Theory
    • 2.2 Mathematical Preliminaries
    • 2.3 Consensus Problem Statement
  • 3 Nonlinear Consensus Algorithm
    • Remark 1
  • 4 Convergence Analysis
    • 4.1 Convergence Analysis
    • 4.2 Convergence Speed Analysis
  • 5 Numerical Experiments
    • 5.1 Simulation Setting
    • 5.2 Discussion of Results
    • 5.3 Comparison to Existing Approaches
  • ZGC Codes
    • zgc.1 Leader's states
    • zgc.2 Leader and some followers' states
    • zgc.3 Leader and all followers' states (no time delays)
    • zgc.4 Leader and all followers' states (heterogeneous time delays)
    • zgc.5 Leader and all followers' states (homogeneous time delays)

2 Preliminaries and Problem Statement

2.1 Graph Theory

为了有效地利用通信容量,我们提出了在连通环境下车辆之间的连通性特征的上届领导拓扑(PLF)。也就是说,每一辆后面的车辆都可以通过V2V通信链路,从前面一辆车和领导者获取实时信息(如位置和速度)。

2.2 Mathematical Preliminaries

观察图可知,每个车子仅由 Leader 和前车 follower 影响。

2.3 Consensus Problem Statement

系统采用的是二阶积分器模型:
{x˙i(t)=vi(t)v˙i(t)=ui(t),i=L,1,2,⋯,n,(9)\left\{\begin{aligned} &\dot{x}_i(t) = v_i(t) \\ &\dot{v}_i(t) = u_i(t), ~~~ i=L,1,2,\cdots, n, \\ \end{aligned}\right.\tag{9}{​x˙i​(t)=vi​(t)v˙i​(t)=ui​(t),   i=L,1,2,⋯,n,​(9)

控制目标是保持安全距离 hch_chc​ 的一字型 Leader 编队控制

3 Nonlinear Consensus Algorithm

分布式非线性时滞控制算法为
ui(t)=∑j=1nai,j[α(Vi(hi,j(t))−vi(t))+β(vj(t−τij(t))−vi(t))+γ(xj(t−τij(t))−xi(t))+vL(t−τiL(t))τij(t)−ri,j)]+ki,L[β(vL(t−τiL(t))−vi(t))+γ(xL(t−τiL(t))+vL(t−τiL)τiL(t)−xi(t)−ri,L)](13)\begin{aligned} u_i(t) =& \sum_{j=1}^{n} \red{a_{i,j}} [ \green{\alpha} (~V_i(h_{i,j}(t)) - v_i(t)~) \\ & ~~~~~~~~~+ \green{\beta} (~\blue{v_j(t-\tau_{ij}(t))} - v_i(t)~) \\ & ~~~~~~~~~+ \green{\gamma} (~\blue{x_j(t-\tau_{ij}(t))} - x_i(t)~) \\ & ~~~~~~~~~+ \textcolor{#9932CC}{v_L (t-\tau_{iL}(t)) \tau_{ij}(t)} - \textcolor{#FF8C00}{r_{i,j}}) ~] \\ &+ \red{k_{i,L}} [ ~ \green{\beta} ( ~ \blue{v_L(t-\tau_{iL}(t))} - v_i(t) ~ ) \\ & ~~~~~~~~~ +\green{\gamma} ( ~ \blue{x_L(t-\tau_{iL}(t))} + \textcolor{#9932CC}{v_L(t-\tau_{iL}) \tau_{iL}(t)} - x_i(t) - \textcolor{#FF8C00}{r_{i,L}} ~ ) ~ ] \end{aligned}\tag{13}ui​(t)=​j=1∑n​ai,j​[α( Vi​(hi,j​(t))−vi​(t) )         +β( vj​(t−τij​(t))−vi​(t) )         +γ( xj​(t−τij​(t))−xi​(t) )         +vL​(t−τiL​(t))τij​(t)−ri,j​) ]+ki,L​[ β( vL​(t−τiL​(t))−vi​(t) )         +γ( xL​(t−τiL​(t))+vL​(t−τiL​)τiL​(t)−xi​(t)−ri,L​ ) ]​(13)

先分解这个控制协议。

ai,j\red{a_{i,j}}ai,j​ : 是 follower 之间通信链接。
ki,L\red{k_{i,L}}ki,L​ : 是follower 与 leader 的通信链接。
α,β,γ\green{\alpha, \beta, \gamma}α,β,γ : 控制增益常数。
ri,L=i⋅(lc+hc)\textcolor{#FF8C00}{r_{i,L}} = i \cdot (l_c + h_c)ri,L​=i⋅(lc​+hc​) : 节点 iii 与 leader 的期望距离
ri,j=riL−rjL=(i−j)(lc+hc)\textcolor{#FF8C00}{r_{i,j}} = r_{iL} - r_{jL} = (i-j)(l_c + h_c)ri,j​=riL​−rjL​=(i−j)(lc​+hc​) : 节点 iii 与 jjj 的期望距离
τij(t)\tau_{ij}(t)τij​(t) : 信息由 jjj 到 iii 的传输时滞
τiL(t)\tau_{iL}(t)τiL​(t) : 信息由 leader 到 iii 的传输时滞

Remark 1

vL(t−τiL(t))τij(t)\textcolor{#9932CC}{v_L(t-\tau_{iL}(t)) \tau_{ij}(t)}vL​(t−τiL​(t))τij​(t) : 间隔补偿项
(13c) denotes the position difference between vehicles iii and jjj with respect to the desired gap ri,jr_{i,j}ri,j​

vL(t−τiL(t))τiL(t)\textcolor{#9932CC}{v_L(t-\tau_{iL}(t)) \tau_{iL}(t)}vL​(t−τiL​(t))τiL​(t) : 间隔补偿项

具体原文中的 Remark 1 如下


代入数值并展开(因为节点 1 只受到 leader 的影响,因此只有协议的第二项):
u1(t)=β(vL(t−τ1L(t))−v1(t))+γ(xL(t−τ1L(t))+vL(t−τ1L)τ1L(t)−x1(t)−r1,L)u_1(t) = \green{\beta} ( ~ \blue{v_L(t-\tau_{1L}(t))} - v_1(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau_{1L}(t))} + \textcolor{#9932CC}{v_L(t-\tau_{1L}) \tau_{1L}(t)} - x_1(t) - \textcolor{#FF8C00}{r_{1,L}} ~ )u1​(t)=β( vL​(t−τ1L​(t))−v1​(t) )+γ( xL​(t−τ1L​(t))+vL​(t−τ1L​)τ1L​(t)−x1​(t)−r1,L​ )u2(t)=1[α(V2(h2,1(t))−v2(t))+β(v1(t−τ21(t))−v2(t))+γ(x1(t−τ21(t))−x2(t))+vL(t−τ2L(t))τ21(t)−r2,1)]+1[β(vL(t−τ2L(t))−v2(t))+γ(xL(t−τ2L(t))+vL(t−τ2L)τ2L(t)−x2(t)−r2,L)]\begin{aligned} u_2(t) =& \red{1} [ \green{\alpha} (~V_2(h_{2,1}(t)) - v_2(t)~) \\ & + \green{\beta} (~\blue{v_1(t-\tau_{21}(t))} - v_2(t)~) \\ & + \green{\gamma} (~\blue{x_1(t-\tau_{21}(t))} - x_2(t)~) \\ & + \textcolor{#9932CC}{v_L (t-\tau_{2L}(t)) \tau_{21}(t)} - \textcolor{#FF8C00}{r_{2,1}}) ~] \\ +& \red{1} [ ~ \green{\beta} ( ~ \blue{v_L(t-\tau_{2L}(t))} - v_2(t) ~ ) \\ & +\green{\gamma} ( ~ \blue{x_L(t-\tau_{2L}(t))} + \textcolor{#9932CC}{v_L(t-\tau_{2L}) \tau_{2L}(t)} - x_2(t) - \textcolor{#FF8C00}{r_{2,L}} ~ ) ~ ] \end{aligned}u2​(t)=+​1[α( V2​(h2,1​(t))−v2​(t) )+β( v1​(t−τ21​(t))−v2​(t) )+γ( x1​(t−τ21​(t))−x2​(t) )+vL​(t−τ2L​(t))τ21​(t)−r2,1​) ]1[ β( vL​(t−τ2L​(t))−v2​(t) )+γ( xL​(t−τ2L​(t))+vL​(t−τ2L​)τ2L​(t)−x2​(t)−r2,L​ ) ]​u3(t)=⋯u_3(t) =\cdots u3​(t)=⋯⋮\vdots ⋮


先分析没有时滞时,协议可以简化为
u1(t)=β(vL(t−τ1L(t))−v1(t))+γ(xL(t−τ1L(t))+vL(t−τ1L)τ1L(t)−x1(t)−r1,L)=β(vL(t)−v1(t))+γ(xL(t)−x1(t)−r1,L)\begin{aligned} u_1(t) =& \green{\beta} ( ~ \blue{v_L(t-\tau_{1L}(t))} - v_1(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau_{1L}(t))} + \textcolor{#9932CC}{v_L(t-\tau_{1L}) \tau_{1L}(t)} - x_1(t) - \textcolor{#FF8C00}{r_{1,L}} ~ ) \\ =& \green{\beta} ( ~ \blue{v_L(t)} - v_1(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t)} - x_1(t) - \textcolor{#FF8C00}{r_{1,L}} ~ ) \end{aligned}u1​(t)==​β( vL​(t−τ1L​(t))−v1​(t) )+γ( xL​(t−τ1L​(t))+vL​(t−τ1L​)τ1L​(t)−x1​(t)−r1,L​ )β( vL​(t)−v1​(t) )+γ( xL​(t)−x1​(t)−r1,L​ )​u2(t)=α(V2(h2,1(t))−v2(t))+β(v1(t−τ21(t))−v2(t))+γ(x1(t−τ21(t))−x2(t))+vL(t−τ2L(t))τ21(t)−r2,1)+β(vL(t−τ2L(t))−v2(t))+γ(xL(t−τ2L(t))+vL(t−τ2L)τ2L(t)−x2(t)−r2,L)=α(V2(h2,1(t))−v2(t))+β(v1(t)−v2(t))+γ(x1(t)−x2(t))−r2,1)+β(vL(t)−v2(t))+γ(xL(t)−x2(t)−r2,L)\begin{aligned} u_2(t) =& \green{\alpha} (~V_2(h_{2,1}(t)) - v_2(t)~) + \green{\beta} (~\blue{v_1(t-\tau_{21}(t))} - v_2(t)~) + \green{\gamma} (~\blue{x_1(t-\tau_{21}(t))} - x_2(t)~) + \textcolor{#9932CC}{v_L (t-\tau_{2L}(t)) \tau_{21}(t)} - \textcolor{#FF8C00}{r_{2,1}}) \\ &+ \green{\beta} ( ~ \blue{v_L(t-\tau_{2L}(t))} - v_2(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau_{2L}(t))} + \textcolor{#9932CC}{v_L(t-\tau_{2L}) \tau_{2L}(t)} - x_2(t) - \textcolor{#FF8C00}{r_{2,L}} ~ ) \\ =& \green{\alpha} (~V_2(h_{2,1}(t)) - v_2(t)~) +\green{\beta} (~\blue{v_1(t)} - v_2(t)~) +\green{\gamma} (~\blue{x_1(t)} - x_2(t)~) -\textcolor{#FF8C00}{r_{2,1}}) \\ &+\green{\beta} ( ~ \blue{v_L(t)} - v_2(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t)} - x_2(t) - \textcolor{#FF8C00}{r_{2,L}} ~ ) \end{aligned}u2​(t)==​α( V2​(h2,1​(t))−v2​(t) )+β( v1​(t−τ21​(t))−v2​(t) )+γ( x1​(t−τ21​(t))−x2​(t) )+vL​(t−τ2L​(t))τ21​(t)−r2,1​)+β( vL​(t−τ2L​(t))−v2​(t) )+γ( xL​(t−τ2L​(t))+vL​(t−τ2L​)τ2L​(t)−x2​(t)−r2,L​ )α( V2​(h2,1​(t))−v2​(t) )+β( v1​(t)−v2​(t) )+γ( x1​(t)−x2​(t) )−r2,1​)+β( vL​(t)−v2​(t) )+γ( xL​(t)−x2​(t)−r2,L​ )​u3(t)=α(V3(h3,2(t))−v3(t))+β(v2(t)−v3(t))+γ(x2(t)−x3(t))−r3,2)+β(vL(t)−v3(t))+γ(xL(t)−x3(t)−r3,L)\begin{aligned} u_3(t) =& \green{\alpha} (~V_3(h_{3,2}(t)) - v_3(t)~) +\green{\beta} (~\blue{v_2(t)} - v_3(t)~) +\green{\gamma} (~\blue{x_2(t)} - x_3(t)~) -\textcolor{#FF8C00}{r_{3,2}}) \\ &+\green{\beta} ( ~ \blue{v_L(t)} - v_3(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t)} - x_3(t) - \textcolor{#FF8C00}{r_{3,L}} ~ ) \end{aligned}u3​(t)=​α( V3​(h3,2​(t))−v3​(t) )+β( v2​(t)−v3​(t) )+γ( x2​(t)−x3​(t) )−r3,2​)+β( vL​(t)−v3​(t) )+γ( xL​(t)−x3​(t)−r3,L​ )​u4(t)=⋯u_4(t) = \cdotsu4​(t)=⋯⋮\vdots⋮


再分析具有不同时滞时,协议为(注意因为 leader 速度是个常量,因此不受时滞影响,这一点在文章中也有体现)
u1(t)=β(vL(t−τ1L(t))−v1(t))+γ(xL(t−τ1L(t))+vL(t−τ1L)τ1L(t)−x1(t)−r1,L)=β(vL(t)−v1(t))+γ(xL(t−τ1L(t))+vL(t)τ1L(t)−x1(t)−r1,L)\begin{aligned} u_1(t) &= \green{\beta} ( ~ \blue{v_L(t-\tau_{1L}(t))} - v_1(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau_{1L}(t))} + \textcolor{#9932CC}{v_L(t-\tau_{1L}) \tau_{1L}(t)} - x_1(t) - \textcolor{#FF8C00}{r_{1,L}} ~ ) \\ &= \green{\beta} ( ~ \blue{v_L(t)} - v_1(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau_{1L}(t))} + \textcolor{#9932CC}{v_L(t) \tau_{1L}(t)} - x_1(t) - \textcolor{#FF8C00}{r_{1,L}} ~ ) \end{aligned}u1​(t)​=β( vL​(t−τ1L​(t))−v1​(t) )+γ( xL​(t−τ1L​(t))+vL​(t−τ1L​)τ1L​(t)−x1​(t)−r1,L​ )=β( vL​(t)−v1​(t) )+γ( xL​(t−τ1L​(t))+vL​(t)τ1L​(t)−x1​(t)−r1,L​ )​

u2(t)=α(V2(h2,1(t))−v2(t))+β(v1(t−τ21(t))−v2(t))+γ(x1(t−τ21(t))−x2(t))+vL(t−τ2L(t))τ21(t)−r2,1)+β(vL(t−τ2L(t))−v2(t))+γ(xL(t−τ2L(t))+vL(t−τ2L)τ2L(t)−x2(t)−r2,L)=α(V2(h2,1(t))−v2(t))+β(v1(t−τ21(t))−v2(t))+γ(x1(t−τ21(t))−x2(t))+vL(t)τ21(t)−r2,1)+β(vL(t)−v2(t))+γ(xL(t−τ2L(t))+vL(t)τ2L(t)−x2(t)−r2,L)\begin{aligned} u_2(t) =& \green{\alpha} (~V_2(h_{2,1}(t)) - v_2(t)~) + \green{\beta} (~\blue{v_1(t-\tau_{21}(t))} - v_2(t)~) + \green{\gamma} (~\blue{x_1(t-\tau_{21}(t))} - x_2(t)~) + \textcolor{#9932CC}{v_L (t-\tau_{2L}(t)) \tau_{21}(t)} - \textcolor{#FF8C00}{r_{2,1}}) \\ &+ \green{\beta} ( ~ \blue{v_L(t-\tau_{2L}(t))} - v_2(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau_{2L}(t))} + \textcolor{#9932CC}{v_L(t-\tau_{2L}) \tau_{2L}(t)} - x_2(t) - \textcolor{#FF8C00}{r_{2,L}} ~ ) \\ =& \green{\alpha} (~V_2(h_{2,1}(t)) - v_2(t)~) + \green{\beta} (~\blue{v_1(t-\tau_{21}(t))} - v_2(t)~) + \green{\gamma} (~\blue{x_1(t-\tau_{21}(t))} - x_2(t)~) + \textcolor{#9932CC}{v_L (t) \tau_{21}(t)} - \textcolor{#FF8C00}{r_{2,1}}) \\ &+ \green{\beta} ( ~ \blue{v_L(t)} - v_2(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau_{2L}(t))} + \textcolor{#9932CC}{v_L(t) \tau_{2L}(t)} - x_2(t) - \textcolor{#FF8C00}{r_{2,L}} ~ ) \end{aligned}u2​(t)==​α( V2​(h2,1​(t))−v2​(t) )+β( v1​(t−τ21​(t))−v2​(t) )+γ( x1​(t−τ21​(t))−x2​(t) )+vL​(t−τ2L​(t))τ21​(t)−r2,1​)+β( vL​(t−τ2L​(t))−v2​(t) )+γ( xL​(t−τ2L​(t))+vL​(t−τ2L​)τ2L​(t)−x2​(t)−r2,L​ )α( V2​(h2,1​(t))−v2​(t) )+β( v1​(t−τ21​(t))−v2​(t) )+γ( x1​(t−τ21​(t))−x2​(t) )+vL​(t)τ21​(t)−r2,1​)+β( vL​(t)−v2​(t) )+γ( xL​(t−τ2L​(t))+vL​(t)τ2L​(t)−x2​(t)−r2,L​ )​

u3(t)=⋯u_3(t) =\cdots u3​(t)=⋯⋮\vdots ⋮


剩下一个具有相同时滞的,就比较简单了
u1(t)=β(vL(t−τ1L(t))−v1(t))+γ(xL(t−τ1L(t))+vL(t−τ1L)τ1L(t)−x1(t)−r1,L)=β(vL(t)−v1(t))+γ(xL(t−τ)+vL(t)τ−x1(t)−r1,L)\begin{aligned} u_1(t) &= \green{\beta} ( ~ \blue{v_L(t-\tau_{1L}(t))} - v_1(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau_{1L}(t))} + \textcolor{#9932CC}{v_L(t-\tau_{1L}) \tau_{1L}(t)} - x_1(t) - \textcolor{#FF8C00}{r_{1,L}} ~ ) \\ &= \green{\beta} ( ~ \blue{v_L(t)} - v_1(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau)} + \textcolor{#9932CC}{v_L(t) \tau} - x_1(t) - \textcolor{#FF8C00}{r_{1,L}} ~ ) \end{aligned}u1​(t)​=β( vL​(t−τ1L​(t))−v1​(t) )+γ( xL​(t−τ1L​(t))+vL​(t−τ1L​)τ1L​(t)−x1​(t)−r1,L​ )=β( vL​(t)−v1​(t) )+γ( xL​(t−τ)+vL​(t)τ−x1​(t)−r1,L​ )​

u2(t)=α(V2(h2,1(t))−v2(t))+β(v1(t−τ21(t))−v2(t))+γ(x1(t−τ21(t))−x2(t))+vL(t−τ2L(t))τ21(t)−r2,1)+β(vL(t−τ2L(t))−v2(t))+γ(xL(t−τ2L(t))+vL(t−τ2L)τ2L(t)−x2(t)−r2,L)=α(V2(h2,1(t))−v2(t))+β(v1(t−τ)−v2(t))+γ(x1(t−τ)−x2(t))+vL(t)τ−r2,1)+β(vL(t)−v2(t))+γ(xL(t−τ)+vL(t)τ−x2(t)−r2,L)\begin{aligned} u_2(t) =& \green{\alpha} (~V_2(h_{2,1}(t)) - v_2(t)~) + \green{\beta} (~\blue{v_1(t-\tau_{21}(t))} - v_2(t)~) + \green{\gamma} (~\blue{x_1(t-\tau_{21}(t))} - x_2(t)~) + \textcolor{#9932CC}{v_L (t-\tau_{2L}(t)) \tau_{21}(t)} - \textcolor{#FF8C00}{r_{2,1}}) \\ &+ \green{\beta} ( ~ \blue{v_L(t-\tau_{2L}(t))} - v_2(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau_{2L}(t))} + \textcolor{#9932CC}{v_L(t-\tau_{2L}) \tau_{2L}(t)} - x_2(t) - \textcolor{#FF8C00}{r_{2,L}} ~ ) \\ =& \green{\alpha} (~V_2(h_{2,1}(t)) - v_2(t)~) + \green{\beta} (~\blue{v_1(t-\tau)} - v_2(t)~) + \green{\gamma} (~\blue{x_1(t-\tau)} - x_2(t)~) + \textcolor{#9932CC}{v_L (t) \tau} - \textcolor{#FF8C00}{r_{2,1}}) \\ &+ \green{\beta} ( ~ \blue{v_L(t)} - v_2(t) ~ ) +\green{\gamma} ( ~ \blue{x_L(t-\tau)} + \textcolor{#9932CC}{v_L(t) \tau} - x_2(t) - \textcolor{#FF8C00}{r_{2,L}} ~ ) \end{aligned}u2​(t)==​α( V2​(h2,1​(t))−v2​(t) )+β( v1​(t−τ21​(t))−v2​(t) )+γ( x1​(t−τ21​(t))−x2​(t) )+vL​(t−τ2L​(t))τ21​(t)−r2,1​)+β( vL​(t−τ2L​(t))−v2​(t) )+γ( xL​(t−τ2L​(t))+vL​(t−τ2L​)τ2L​(t)−x2​(t)−r2,L​ )α( V2​(h2,1​(t))−v2​(t) )+β( v1​(t−τ)−v2​(t) )+γ( x1​(t−τ)−x2​(t) )+vL​(t)τ−r2,1​)+β( vL​(t)−v2​(t) )+γ( xL​(t−τ)+vL​(t)τ−x2​(t)−r2,L​ )​

u3(t)=⋯u_3(t) =\cdots u3​(t)=⋯⋮\vdots ⋮


接下来继续往下看。
Vi(hi,j(t))=V1+V2tanh(C1(hi,j(t))−C2)(14)V_i(h_{i,j}(t)) = V_1 + V_2 ~ \text{tanh}(C_1 (h_{i,j}(t)) - C_2) \tag{14}Vi​(hi,j​(t))=V1​+V2​ tanh(C1​(hi,j​(t))−C2​)(14)

hi,j(t)=(xj(t)−xi(t)−(i−j)lc)/(i−j)(15)h_{i,j}(t) = (x_j(t) - x_i(t) - (i-j)l_c) / (i-j) \tag{15}hi,j​(t)=(xj​(t)−xi​(t)−(i−j)lc​)/(i−j)(15)

代入文章中的仿真部分的参数,我们可以得到:

h2,1=(x1(t)−x2(t)−(2−1)lc)/(2−1)h_{2,1} = ( x_1(t)-x_2(t) - (2-1) l_c ) / (2-1) h2,1​=(x1​(t)−x2​(t)−(2−1)lc​)/(2−1)V2(h2,1(t))=V1+V2∗tanh(C1∗h2,1(t)−C2)V_2(\red{h_{2,1}(t)}) = V_1 + V_2 * \text{tanh}(C_1 * \red{h_{2,1}(t)} - C_2)V2​(h2,1​(t))=V1​+V2​∗tanh(C1​∗h2,1​(t)−C2​)

h3,2=(x2(t)−x3(t)−(3−2)lc)/(3−2)h_{3,2} = ( x_2(t)-x_3(t) - (3-2) l_c ) / (3-2) h3,2​=(x2​(t)−x3​(t)−(3−2)lc​)/(3−2)V3(h3,2(t))=V1+V2∗tanh(C1∗h3,2(t)−C2)V_3(\red{h_{3,2}(t)}) = V_1 + V_2 * \text{tanh}(C_1 * \red{h_{3,2}(t)} - C_2)V3​(h3,2​(t))=V1​+V2​∗tanh(C1​∗h3,2​(t)−C2​)

4 Convergence Analysis

4.1 Convergence Analysis

4.2 Convergence Speed Analysis

5 Numerical Experiments

Nodes:

  1. one leader
  2. nine follower

Three conditions:

  1. no time delays
  2. heterogeneous time delays
  3. homogeneous time delays

5.1 Simulation Setting

Sampling interval Δt=0.01s\Delta t = 0.01sΔt=0.01s

The initial positions are x(0)=[01020.531.5435567.580.594108]Tx(0) = \left[\begin{matrix} 0 & 10 & 20.5 & 31.5 & 43 & 55 & 67.5 & 80.5 & 94 & 108 \end{matrix}\right]^\text{T}x(0)=[0​10​20.5​31.5​43​55​67.5​80.5​94​108​]T m on a lane.

The initial velocities are set as =[7777777777]T= \left[\begin{matrix} 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \end{matrix}\right]^\text{T}=[7​7​7​7​7​7​7​7​7​7​]T m/s.

The heterogeneous time delays are selected as τ=[00.150.180.190.200.210.220.230.270.30]T\tau = \left[\begin{matrix} 0 & 0.15 & 0.18 & 0.19 & 0.20 & 0.21 & 0.22 & 0.23 & 0.27 & 0.30 \end{matrix}\right]^\text{T}τ=[0​0.15​0.18​0.19​0.20​0.21​0.22​0.23​0.27​0.30​]T.

The homogeneous time delays are set as 0.20s0.20s0.20s.

The desired gaps between the followers and the leader are set as [45403530252015105]T\left[\begin{matrix} 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 \end{matrix}\right]^\text{T}[45​40​35​30​25​20​15​10​5​]T.

relevant parameters: α=3.5s−1\alpha = 3.5 s^{-1}α=3.5s−1

5.2 Discussion of Results

5.3 Comparison to Existing Approaches


ZGC Codes

zgc.1 Leader’s states

zgc.2 Leader and some followers’ states

zgc.3 Leader and all followers’ states (no time delays)

zgc.4 Leader and all followers’ states (heterogeneous time delays)

zgc.5 Leader and all followers’ states (homogeneous time delays)


【Paper】2018_Nonlinear Consensus-Based Connected Vehicle Platoon Control Incorporating Car-Following相关推荐

  1. 【Paper】2018_Nonlinear finite-time consensus-based connected vehicle platoon control under fixed and sw

    Li Y, Tang C, Li K, et al. Nonlinear finite-time consensus-based connected vehicle platoon control u ...

  2. 【Paper】2021_Distributed Consensus Tracking of Networked Agent Systems Under Denial-of-Service Attack

    Y. Wan, G. Wen, X. Yu and T. Huang, "Distributed Consensus Tracking of Networked Agent Systems ...

  3. 【Paper】2013_Event-triggering Sampling Based Leader-following Consensus in Second-order Multi-agent S

    Event-triggering Sampling Based Leader-following Consensus in Second-order Multi-agent Systems 文章目录 ...

  4. 【Paper】2018_Group Consensus for Discrete-Time Heterogeneous Multiagent Systems with Input and Commun

    Jiang Y, Ji L, Pu X, et al. Group consensus for discrete-time heterogeneous multiagent systems with ...

  5. 【Paper】2017_Limit-Cycle-Based Decoupled Design of Circle Formation Control with Collision Avoidance

    C. Wang and G. Xie, "Limit-Cycle-Based Decoupled Design of Circle Formation Control with Collis ...

  6. 【Paper】2003_Consensus Problems in Networks of Agents with Switching Topology and Time-Delays

    此篇文章主要在于仿真代码,关于文献的解释请参考 [Paper]2003_Murr_Consensus Problems in Networks of Agents with Switching Top ...

  7. 【Paper】2019_Consensus Control of Multiple AUVs Recovery System Under Switching Topologies and Time D

    Zhang W, Zeng J, Yan Z, et al. Consensus control of multiple AUVs recovery system under switching to ...

  8. 【Paper】2015_El H_Decentralized Control Architecture for UAV-UGV Cooperation

    Decentralized Control Architecture for UAV-UGV Cooperation 1 Introduction 2 Problem Statement and Ar ...

  9. 【Paper】2017_水下潜航器编队海洋勘测的协调控制方法研究

    友情链接:[paper]2019_Consensus Control of Multiple AUVs Recovery System Under Switching Topologies and T ...

最新文章

  1. 不改文件名的情况下上传突破
  2. 秒秒钟揪出张量形状错误,这个工具能防止ML模型训练白忙一场
  3. Copy修饰的NSArray
  4. char类型是多少 mat_opencv之Mat数据类型
  5. java模拟时间_使用生成器模拟时间分片
  6. redis 配置以及缓存(javaconfig)
  7. 怎样填充潘通颜色_怎样判定润滑脂,锂基脂的好坏?
  8. VS2017和VS2019(社区版)离线激活方式
  9. Cartoon CG:卡通渲染(开篇)
  10. 深度学习常用框架和基础模型
  11. 约瑟夫问题(Josephus problem)详解
  12. 盘点下玩过的解谜游戏
  13. 产品经理—怎么用KANO模型给众多需求进行优先级排序?
  14. 计算机系统删除一点会怎么样,怎么样清理C盘的多余文件?
  15. 简单好用、且永久免费的内网穿透工具
  16. app消息推送服务器端,系统服务:APP消息推送服务
  17. 领英:全球人工智能人才25万 我国人才潜能不输欧美
  18. SIEMENS/西门子1214 PID/通信模板 西门子P SIEMENS/西门子1214 PID/通信模板
  19. java调用插件_从任何java应用程序调用自己的eclipse插件方法
  20. 研究语音和音频编解码的相关大学和链接

热门文章

  1. SpringMVC访问静态资源的三种方式
  2. 【转载】表单中 Readonly 和 Disabled 的区别
  3. java day07第七课静态的和单例设计模式
  4. 2008-2013年写的10个小软件
  5. [zhuan]二叉树遍历算法实现(C#2.0)
  6. 聚簇索引与非聚簇索引学习总结
  7. JAVA 调用Web Service
  8. 5 网络层----IP协议相关技术
  9. mxonline实战3,编写首页及用户登录页面1
  10. Mac下通过homebrew安装maven