奇异值分解(Singular Value Decomposition,SVD)是一种矩阵分解(Matrix Decomposition)的方法。除此之外,矩阵分解还有很多方法,例如特征分解(Eigendecomposition)、LU分解(LU decomposition)、QR分解(QR decomposition)和极分解(Polar decomposition)等。这篇文章主要说下奇异值分解,这个方法在机器学习的一些算法里占有重要地位。

相关概念
参考自维基百科。

正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等。两个向量正交的意思是两个向量的内积为 0
正定矩阵:如果对于所有的非零实系数向量 zz,都有 zTAz>0zTAz>0,则称矩阵 AA 是正定的。正定矩阵的行列式必然大于 0, 所有特征值也必然 > 0。相对应的,半正定矩阵的行列式必然 ≥ 0。
定义
下面引用 SVD 在维基百科中的定义。

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It is the generalization of the eigendecomposition of a positive semidefinite normal matrix (for example, a symmetric matrix with positive eigenvalues) to any m×nm×n matrix via an extension of polar decomposition.

也就是说 SVD 是线代中对于实数矩阵和复数矩阵的分解,将特征分解从 半正定矩阵 推广到任意 m×nm×n 矩阵。

注意:本篇文章内如未作说明矩阵均指实数矩阵。

假设有 m×nm×n 的矩阵 AA ,那么 SVD 就是要找到如下式的这么一个分解,将 AA 分解为 3 个矩阵的乘积:

Am×n=Um×mΣm×nVTn×n
Am×n=Um×mΣm×nVn×nT
其中,UU 和 VV 都是正交矩阵 (Orthogonal Matrix),在复数域内的话就是酉矩阵(Unitary Matrix),即

UTU=Em×m
UTU=Em×m
VTV=En×n
VTV=En×n
换句话说,就是说 UU 的转置等于 UU 的逆,VV 的转置等于 VV 的逆:

UT=U−1
UT=U−1
VT=V−1
VT=V−1
而 ΣΣ 就是一个非负实对角矩阵。

那么 UU 和 VV 以及 ΣΣ 是如何构成的呢?

求解
UU 和 VV 的列分别叫做 AA 的 左奇异向量(left-singular vectors)和 右奇异向量(right-singular vectors),ΣΣ 的对角线上的值叫做 AA 的奇异值(singular values)。

其实整个求解 SVD 的过程就是求解这 3 个矩阵的过程,而求解这 3 个矩阵的过程就是求解特征值和特征向量的过程,问题就在于 求谁的特征值和特征向量。

UU 的列由 AATAAT 的单位化过的特征向量构成
VV 的列由 ATAATA 的单位化过的特征向量构成
ΣΣ 的对角元素来源于 AATAAT 或 ATAATA 的特征值的平方根,并且是按从大到小的顺序排列的
知道了这些,那么求解 SVD 的步骤就显而易见了:

求 AATAAT 的特征值和特征向量,用单位化的特征向量构成 UU
求 ATAATA 的特征值和特征向量,用单位化的特征向量构成 VV
将 AATAAT 或者 ATAATA 的特征值求平方根,然后构成 ΣΣ
举例
假设

A=⎛⎝⎜⎜⎜21004300⎞⎠⎟⎟⎟
A=(24130000)
那么可以计算得到

AAT=⎛⎝⎜⎜⎜20140014100000000000⎞⎠⎟⎟⎟
AAT=(20140014100000000000)
接下来就是求这个矩阵的特征值和特征向量了

AATx=λx
AATx=λx
(AAT−λE)x=0
(AAT−λE)x=0
要想该方程组有非零解(即非零特征值),那么系数矩阵 AAT−λEAAT−λE 的行列式必须为 0

∣∣∣∣∣∣20−λ14001410−λ0000−λ0000−λ∣∣∣∣∣∣=0
|20−λ14001410−λ0000−λ0000−λ|=0
求解这个行列式我就不再赘述了,这个直接使用行列式展开定理就可以了,可以得到 λ1≈29.86606875,λ2≈0.13393125,λ3=λ4=0λ1≈29.86606875,λ2≈0.13393125,λ3=λ4=0,有 4 个特征值,因为特征多项式 |AAT−λE||AAT−λE| 是一个 4 次多项式。对应的单位化过的特征向量为

⎛⎝⎜⎜⎜0.817415560.5760484400−0.576048440.817415560000100001⎞⎠⎟⎟⎟
(0.81741556−0.57604844000.576048440.817415560000100001)
这就是矩阵 UU 了。

同样的过程求解 ATAATA 的特征值和特征向量,求得 λ1≈0.13393125,λ2≈29.86606875λ1≈0.13393125,λ2≈29.86606875,将特征值降序排列后对应的单位化过的特征向量为

(0.404553580.9145143−0.91451430.40455358)
(0.40455358−0.91451430.91451430.40455358)
这就是矩阵 VV 了。

而矩阵 ΣΣ 根据上面说的为特征值的平方根构成的对角矩阵

⎛⎝⎜⎜⎜5.464985700000.3659661900⎞⎠⎟⎟⎟
(5.4649857000.365966190000)
到此,SVD 分解就结束了,原来的矩阵 AA 就被分解成了 3 个矩阵的乘积。

A4×2=U4×4Σ4×2VT2×2
A4×2=U4×4Σ4×2V2×2T
⎛⎝⎜⎜⎜21004300⎞⎠⎟⎟⎟=⎛⎝⎜⎜⎜0.817415560.5760484400−0.576048440.817415560000100001⎞⎠⎟⎟⎟⎛⎝⎜⎜⎜5.464985700000.3659661900⎞⎠⎟⎟⎟(0.404553580.9145143−0.91451430.40455358)T
(24130000)=(0.81741556−0.57604844000.576048440.817415560000100001)(5.4649857000.365966190000)(0.40455358−0.91451430.91451430.40455358)T
Numpy 实现
Python 中可以使用 numpy 包的 linalg.svd() 来求解 SVD。

import numpy as np

A = np.array([[2, 4], [1, 3], [0, 0], [0, 0]])
print(np.linalg.svd(A))
1
2
3
4
输出

(array([[-0.81741556, -0.57604844, 0. , 0. ],
[-0.57604844, 0.81741556, 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]]),
array([ 5.4649857 , 0.36596619]),
array([[-0.40455358, -0.9145143 ],
[-0.9145143 , 0.40455358]]))
1
2
3
4
5
6
7
END
---------------------
作者:secondsilverman
来源:CSDN
原文:https://blog.csdn.net/u010099080/article/details/68060274
版权声明:本文为博主原创文章,转载请附上博文链接!

奇异值分解 SVD 的数学解释相关推荐

  1. 主成份(PCA)与奇异值分解(SVD)的通俗解释

    主成份(PCA)与奇异值分解(SVD)的通俗解释 1. 问题描述 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量观测,收集大量数据以便进行分析,寻找规律.多变量大样本无疑会为研究和应用 ...

  2. 奇异值分解SVD数学原理及代码(Python)

    奇异值分解SVD数学原理及代码(Python) 首先简单介绍一下什么是正交矩阵(酉矩阵) 如果 或 其中,E为单位矩阵,或,则n阶实矩阵A称为正交矩阵.正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩 ...

  3. 奇异值分解(SVD) --- 几何意义2

    在这篇文章中,我们以几何的视角去观察矩阵奇异值分解的过程,并且列举一些奇异值分解的应用. 介绍 矩阵奇异值分解是本科数学课程中的必学部分,但往往被大家忽略.这个分解除了很直观,更重要的是非常具有实用价 ...

  4. 矩阵论基础知识4——强大的矩阵奇异值分解(SVD)及其应用

    强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如 ...

  5. 关于奇异值以及奇异值分解SVD的思考

    前言: SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手.SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也 ...

  6. 主成分分析(PCA)与矩阵奇异值分解(SVD)

    1 矩阵奇异值分解SVD 1.1 矩阵奇异值分解的数学原理 在关于SVD(Singular Value Decomposition)的讲解中将涉及稍微多一点的数学推导. 定义:设 A A A是秩为 r ...

  7. 矩阵特征值分解与奇异值分解(SVD)含义解析及应用

    原文链接:http://blog.csdn.net/xiahouzuoxin/article/details/41118351 特征值与特征向量的几何意义 矩阵的乘法是什么,别只告诉我只是" ...

  8. 机器学习-Sklearn(第三版)Day4 主成分分析PCA与奇异值分解SVD

    目录 一.简介 什么是维度 sklearn中的降维算法 二.PCA与SVD 0.如何实现降维算法 思考:PCA和特征选择技术都是特征工程的一部分,它们有什么不同? 1.重要参数n_components ...

  9. 稀疏学习、稀疏表示、稀疏自编码神经网络、字典学习、主成分分析PCA、奇异值分解SVD 等概念的梳理,以及常用的特征降维方法

    稀疏学习.稀疏表示.稀疏自编码神经网络.字典学习.主成分分析PCA.奇异值分解SVD 等概念的梳理,以及常用的特征降维方法 关于稀疏 稀疏编码 Sparse Coding 与字典学习 神经网络的正则化 ...

最新文章

  1. 5300亿参数,SOTA屠榜!最大NLP预训练模型新王登基,微软英伟达联手称霸
  2. LinkedList插入元素一定比ArrayList快吗
  3. 熟悉linux的安全与优化
  4. 燕赵志愿云如何认证_人物|志愿者讲解员王静雅:用心讲好河北历史故事
  5. 【02】koala编译中文出错(已放弃不用)
  6. 第 2 章 MybatisPlus 通用 CRUD
  7. ae制作小球轨迹运动_关于3D建筑漫游动画制作流程及技术详解
  8. win10 中的系统变量 windir、userProfile 等
  9. java 判断是否base64_判断一个字符串是否进行了base64加密
  10. linux中lsattr命令,Linux命令(16)——chattr与lsattr命令
  11. sql的内连接、左连接、右连接
  12. 四阶行列式计算_通过考试01 / 行列式的计算
  13. java中执行ddl语句,DDL(数据定义语言)
  14. Android中的颜色设置和常见RGB颜色表
  15. 一些前端大牛都在学习的github库
  16. 2022年顶会accepted papers list
  17. word2013插入excel对象报错_excel插入对象文件夹 Excel2013中插入对象文件的方法
  18. 线性回归模型的公式推导
  19. MDX的实例讲解(排名前15的小例子)
  20. 2019各大互联网公司产品校招笔试

热门文章

  1. 力扣1002.查找常用字符
  2. 使用ajax不刷新页面获取、操作数据
  3. 2022-2028年中国硅质原料行业全景调研及投资前景展望报告
  4. 2022-2028年中国玻璃纤维毡热塑性塑料(GMT)行业市场研究及前瞻分析报告
  5. Python 标准库之 os (获取当前目录、读取/设置环境变量、重命名文件、运行shell命令、创建/删除/查看目录文件、判断目录/文件/存在、获取绝对路径、获取文件名、获取换行符、获取路径分隔符)
  6. mybatis的资源过滤错误及xml文件编码错误
  7. 交情来自一系列的交易
  8. 梯度下降理解和梯度下降计算检查斯坦福
  9. python中使用指定GPU
  10. FinFET与2nm晶圆工艺壁垒