为何阅读本文?

无论该领域中的从业者,或是企业组织,为了运用深度学习技术,首先需要做好两个准备:

“能做什么”:了解深度学习领域的最新进展能够用来做什么。
“怎么做”:训练新模型,或将现有模型用于生产环境的技术能力。

这一系列随笔会试图解答上文提出的第一个问题:从较高层面概括谈谈深度学习技术到底能够做些什么,同时会为希望进一步了解的人提供一些资源,并 / 或通过展示代码进一步解决第二个问题。更具体来说,本文将涉及:

那些使用开源的架构和数据集所取得的最新成果。
那些促成这些成果的重要架构或其他见解。
如果要在你自己的项目中使用类似技术,着手进行前可能需要的最佳资源。

这些突破的共同之处

这些重大突破虽然涉及很多新的架构和创意,但都是从机器学习中常见的“监督式学习(Supervised Learning)”过程中涌现的。尤其是,都涉及下列步骤:

收集一个足够庞大,并且恰当的训练数据集。
搭建一个神经网络架构(一种复杂的方程组,可通过松散的方式模拟我们的大脑),网络中通常会包含数百万个名为“权重(Weight)”的参数。
将数据反复不断送入神经网络,并对每次迭代后神经网络的预测结果与正确结果进行比较,根据差异的具体程度和方向对神经网络的每个权重进行调整。

神经网络就是这样训练的:这一过程将重复很多很多次。图源。

类似的过程已经应用于很多领域,并且都已产生了非常“博学”的神经网络。每个领域我们将涉及:

训练模型所需的数据
所使用的模型架构
结果

图片分类

神经网络通过训练可以识别图片中包含的物体。

所需数据

图片分类器的训练需要用到带标签的图片,其中每张图片均属于数量有限的类别中的一种或几种。例如,CIFAR 10 数据就是训练图片分类器所用的一种标准化数据集,其中已正确添加了标签的图片共属于 10 个类别:

CIFAR-10 数据中的图片示例。图源

深度学习架构

本文涉及的所有神经网络架构都源自对人类学着解决问题的方法所进行的思考。人类是如何检测图片的?当人类看到一张图片后,我们首先会查看一些最顶层的视觉特征,例如分支、鼻子或车轮。然而为了检测出这些特征,我们需要在潜意识里确定一些底层特征,例如颜色、线条以及其他形状。实际上,为了从原始像素中识别出人类可以认出的复杂特征,例如眼睛,我们必须首先检测像素特征,随后检测像素特征的特征,以此类推。

在深度学习技术诞生前,研究人员会尝试手工提取这些特征,并将其用于预测。就在深度学习技术诞生前一刻,研究人员还在试图使用技术手段(主要是 SVM)找出这些手工提取的特征之间蕴含的复杂的非线性关系,据此才能确定图片中包含的到底是猫还是狗。

卷积神经网络(CNN)在每一层提取的特征。图源

重大突破

这些技术催生的结果在于,对于这些架构着力所要解决的问题,即图片分类,可以通过算法实现远胜于人类的效果。例如著名的 ImageNet 数据集已被广泛用作卷积架构的评测基准,经过训练的神经网络可以获得比人类更准确的图片分类效果:

早在 2015 年,计算机经过训练已可实现比人类更出色的图中物体分类能力。图源

资源

理论 :如果要深入理解 CNN 的工作原理等理论知识,可参加 Andrej Karpathy 的 Stanford 课程。如果希望从更偏重数学知识的角度进一步了解,可参考 Chris Olah 有关卷积的文章。

代码:如果希望尽快着手构建图片分类器,可以参阅 TensorFlow 文档提供的这篇介绍范例。

文本生成

神经网络通过训练可以模仿输入的内容生成文本。

所需数据

任何类型的文本均可,例如莎士比亚作品全集。

深度学习架构

神经网络可以对一系列元素中的下一个元素建模,可以查看序列中的上一个字符,并且对于指定的过往序列,还可以判断随后最有可能出现哪个字符。

解决这个问题所用的架构与图片分类所用的架构有很大差异。由于架构本身的差异,我们需要让网络学习不同的东西。之前,我们让网络学习图片中的重要特征,但现在,我们需要让网络关注字符序列并预测序列中的下一个字符。因此网络需要采取与图片分类不同的做法,通过某种方式持续追踪自己的“状态”。例如,如果看到的前序字符分别是“c-h-a-r-a-c-t-e”,此时网络应“存储”该信息,并预测下一个字符应该是“r”。

递归神经网络架构可以做到这一点:可在下一次迭代时将每个神经元的状态重新装入网络,借此学习整个序列。

递归神经网络架构图。图源

然而为了真正胜任文本生成的任务,网络还必须能决定要在序列中“回顾”到多远的位置。有时候,例如正处在某个单词中间时,网络只需要“回顾”前面的几个字符就可以确定随后出现的字符,但有时候可能需要“回顾”很多字符才能做出决定,例如正处在句子末尾时。

重大突破

简而言之:我们可以生成类似于“characature”这样的文本,不过需要解决一些拼写错误和其他问题,让生成的结果看起来是正确的英语。Andrej Karpathy 的这篇文章举了几个有趣的例子,通过莎士比亚的剧本生成了 Paul Graham 风格的随笔。

资源

理论:Chris Olah 有关 LSTM 的这篇文章是经典中的经典。同样经典的还有 Andrej Karpathy 这篇有关 RNN 的文章,此文介绍了 RNN 的功能和工作原理。

代码:这里提供了详细的指导,可以告诉我们如何着手构建端到端文本生成模型,以及数据的预处理操作。这个 GitHub 代码库可以帮助我们用训练好的 RNN-LSTM 模型生成手写文字。

语言翻译

机器翻译(翻译为另一种语言的能力) 长久以来一直是人工智能领域研究人员最大的梦想。深度学习让这个梦想距离现实更进一步。

所需数据

使用不同语言写出的词句对。例如“I am a student”和“je suis étudiant”这样成对句子组成的数据集,可以训练神经网络实现英语和法语的互译。

深度学习架构

与其他深度学习架构类似,研究人员已经从“理论上”确定了计算机学习翻译语言的最佳方式,并开发出一种可以模仿这种方式的架构。对于语言翻译,从本质上来说需要将一句话(由一系列单词编码而成)翻译为所要表达的基本“含义”,随后将翻译出来的含义翻译为使用另一种语言的单词组成的序列。

句子从单词“转换”成含义的方式必须使用能胜任序列处理的架构,也就是上文提到的“递归神经网络”。

编码器 - 解码器架构示意图。图源

重大突破

Google 的这篇博客文章介绍了这种架构在语言翻译方面所实现的效果,这一技术让其他语言翻译技术显得大为逊色。当然,毕竟 Google 有大量资源,可以将丰富的训练数据用于这种任务!

Google Sequence to Sequence 模型的表现。图源

资源

代码和理论:Google 发布了一篇非常精彩的 Sequence to Sequence 技术架构教程,可参阅这里。该教程概括介绍了 Google Sequence to Sequence 模型的大致目标和背后的理论,并介绍了 TensorFlow 编写相关代码的步骤。此外还本文还涉及“注意力”,这是对最基础的 Sequence to Sequence 架构进行的扩展,后续发布的另一篇有关 Sequence to Sequence 的文章将会详细介绍。

生成对抗网络(Generative Adversarial Network)

神经网络通过训练可以生成看似属于特定类型(例如人脸),但并非实拍结果的图片。

所需数据

特性类型的图片,例如一大批人脸图片。

深度学习架构

GAN 是一种让人惊讶并且非常重要的技术产物。 全球顶尖人工智能研究人员之一的 Yann LeCun 曾经说,这是“在他看来,机器学习领域过去十年里最有趣的创意”。借助这种技术,我们竟然可以生成看起来类似训练图片,但实际上并非训练集中实际内容的图片,例如生成看起来是人脸,但并非真正人脸的图片。这是通过同时训练两个神经网络实现的:一个网络负责生成看似逼真的假图片,一个负责检测图片是真是假。如果同时训练这两个网络,让它们“以相同速度”学习(这是 GAN 的构建过程中最困难的部分),那么负责生成假图片的网络就可以生成非常逼真的结果。

略微深入一些来看,这种技术是这样的:GAN 中,我们需要训练的主网络叫做生成器(Generator),它会学习接受随机噪音矢量,并将其转换为逼真的图片。这种网络采取了与卷积神经网络相“反转”的结构,因此可称之为“逆卷积(deconvolutional)”架构。另一个负责区分真假图片的网络是一种卷积网络,这一点与图片分类所用的架构类似,这个网络也叫做“鉴别器(Discriminator)”。

“生成器”的逆卷积架构。图源

“鉴别器”的卷积架构。图源

GAN 中的两个神经网络其实都是卷积神经网络,因为这些神经网络都很擅长从图片中提取特征。

重大突破和资源

GAN 通过名人面孔数据集生成的图片。图源

代码: 这个 GitHub 代码库提供了使用 TensorFlow 训练 GAN 的教程,同时还提供了一些由 GAN 生成的令人惊艳的结果图片,例如上图就来自该代码库。

总结

本文概括介绍了过去五年来,深度学习技术取得重大成果的几个领域。本文涉及的模型有很多开源的实现,因此任何人都可以下载一个“训练完成的”模型,并用于处理自己的数据,例如我们可以下载训练好的图片分类器,随后将其用于图片分类处理,或识别图片中框出的物体。由于大部分工作已经事先完成了,因此若要使用这些最前沿的技术,完全不需要自己成为“深度学习专家”,毕竟研究人员已经把最困难的工作搞定了,我们只需要从事最普通的“开发”工作,即可顺利使用他人创建的模型解决自己遇到的问题。

深度学习领域四个不可不知的重大突破相关推荐

  1. 深度学习领域专业词汇_深度学习时代的人文领域专业知识

    深度学习领域专业词汇 It's a bit of an understatement to say that Deep Learning has recently become a hot topic ...

  2. 系统学习深度学习(四十三)--GAN简单了解

    转自:https://www.leiphone.com/news/201706/ty7H504cn7l6EVLd.html 之前 GAN网络是近两年深度学习领域的新秀,火的不行,本文旨在浅显理解传统G ...

  3. 系统学习深度学习(四) --CNN原理,推导及实现源码分析

    之前看机器学习中,多层感知器部分,提到可以在设计多层感知器时,对NN的结构设计优化,例如结构化设计和权重共享,当时还没了解深度学习,现在看到CNN,原来CNN就是这方面的一个代表.CNN由纽约大学的Y ...

  4. 计算机视觉的深度学习实战四:图像特征提取

    更多精彩内容请关注微信公众号:听潮庭. 计算机视觉的深度学习实战四:图像特征提取 综述: 颜色特征 量化颜色直方图.聚类颜色直方图 几何特征 Edge,Corner,Blob 基于关键点的特征描述子 ...

  5. 深度学习领域有哪些瓶颈?

    来源:知乎   编辑:深度学习与计算机视觉 深度学习近年来成为计算机领域最耀眼的明星,衍生出许多实际的应用,主要是在推理与决策等方面取得了突破.然而深度学习如何在超越图像.语音及自然语言处理方面做出更 ...

  6. 学习深度学习的四个步骤

    摘要: 深度学习的四个步骤,由浅入深,并给出每个阶段的学习资源. 原文地址: https://medium.com/@vzkuma/4-steps-for-learning-deep-learning ...

  7. 从2012年到现在深度学习领域标志成果

    2006年,Hinton 发表了一篇论文<A Fast Learning Algorithm for Deep Belief Nets>,提出了降维和逐层预训练方法,该方法可成功运用于训练 ...

  8. ​2012年至今,细数深度学习领域这些年取得的经典成果!

    ↑↑↑关注后"星标"Datawhale 每日干货 & 每月组队学习,不错过 Datawhale干货 来源:AI科技评论,整理:数据派THU 本文约6000字,建议阅读10分 ...

  9. 2012年至今,细数深度学习领域这些年取得的经典成果

    点击上方"小白学视觉",选择加"星标"或"置顶" 重磅干货,第一时间送达 本文转自:计算机视觉联盟 AI博士笔记系列推荐 周志华<机器 ...

最新文章

  1. 列举一些常见的系统系能瓶颈 Common Bottlenecks
  2. AC66U-B1) 刷梅林固件教程
  3. 字符设备驱动程序之按键——同步互斥阻塞
  4. 52Exchange 2010升级到Exchange 2013-升级SH站点Ex2010到2013
  5. 浅谈MVP与Model-View-ViewModel(MVVM)设计模式
  6. 如何用Java打出a加b_Java 实现 输入 AA 输出 AB ..输入 AZ 输出 BA 一直到输出 ZZ
  7. HDU1570 A C【水题】
  8. python vars()_Python vars()
  9. y105 usb转rs232驱动
  10. linux uvc协议_linux 使用 uvc 摄像头
  11. 解决新版 Edge 浏览器无法使用 IDM 的问题
  12. python课本图片_python爬虫当当网python书籍图片
  13. 【MATLAB】NSGA-2优化算法整定PID控制器参数(四)—— 一阶带时延的被控对象
  14. 新疆旅游攻略-禾木村
  15. [转载] excel调用python编程-超简单:用Python让Excel飞起
  16. 扩展名为bat的文件的创建
  17. BZOJ-1076: [SCOI2008]奖励关 (概率期望DP 未完待续)
  18. 《你要如何衡量你的人生》笔记与感想(三)怎样平衡周密计划与偶然机会的关系
  19. Ensemble Average(系综平均)(集平均)
  20. 分布式数据库或成为新增量

热门文章

  1. 在使用import语句时
  2. 论坛报名 | 智能体系架构与芯片的下一个十年
  3. 智源研究院加入“全球人工智能伦理与抗击新冠疫情联盟”
  4. 来,我们把玩一下谢耳朵最喜欢的珠子
  5. Android开发傲娇之作
  6. NIPS 2018 迁移学习相关论文
  7. 混合密度网络(MDN)进行多元回归详解和代码示例
  8. AlphaCode到底强在哪儿?清华博士后十分钟视频详细解析
  9. 娓娓道来!那些BERT模型压缩方法
  10. 【2022新书】机器学习基础