在Java中,它的内存管理包括两方面:内存分配(创建Java对象的时候)和内存回收,这两方面工作都是由JVM自动完成的,降低了Java程序员的学习难度,避免了像C/C++直接操作内存的危险。但是,也正因为内存管理完全由JVM负责,所以也使Java很多程序员不再关心内存分配,导致很多程序低效,耗内存。因此就有了Java程序员到最后应该去了解JVM,才能写出更高效,充分利用有限的内存的程序。

1.Java在内存中的状态

首先我们先写一个代码为例子:

Person.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
1 package test;
 2
 3 import java.io.Serializable;
 4
 5 public class Person implements Serializable {
 6
 7     static final long serialVersionUID = 1L;
 8
 9     String name; // 姓名
10    
11     Person friend;    //朋友
12
13     public Person() {}
14    
15     public Person(String name) {
16         super();
17         this.name = name;
18     }
19 }

Test.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1 package test;
 2
 3
 4 public class Test{
 5
 6     public static void main(String[] args) {
 7         Person p1 = new Person("Kevin");
 8         Person p2 = new Person("Rain");
 9         Person p3 = new Person("Sunny");
10        
11         p1.friend = p2;
12         p3 = p2;
13         p2 = null;
14     }
15 }

把上面Test.java中main方面里面的对象引用画成一个从main方法开始的对象引用图的话就是这样的(顶点是对象和引用,有向边是引用关系):

当程序运行起来之后,把它在内存中的状态看成是有向图后,可以分为三种:

1)可达状态:在一个对象创建后,有一个以上的引用变量引用它。在有向图中可以从起始顶点导航到该对象,那它就处于可达状态。

2)可恢复状态:如果程序中某个对象不再有任何的引用变量引用它,它将先进入可恢复状态,此时从有向图的起始顶点不能再导航到该对象。在这个状态下,系统的垃圾回收机制准备回收该对象的所占用的内存,在回收之前,系统会调用finalize()方法进行资源清理,如果资源整理后重新让一个以上引用变量引用该对象,则这个对象会再次变为可达状态;否则就会进入不可达状态。

3)不可达状态:当对象的所有关联都被切断,且系统调用finalize()方法进行资源清理后依旧没有使该对象变为可达状态,则这个对象将永久性失去引用并且变成不可达状态,系统才会真正的去回收该对象所占用的资源。

上述三种状态的转换图如下:

2.Java对对象的4种引用

1)强引用 :创建一个对象并把这个对象直接赋给一个变量,eg :Person person = new Person("sunny"); 不管系统资源有么的紧张,强引用的对象都绝对不会被回收,即使他以后不会再用到。

2)软引用 :通过SoftReference类实现,eg : SoftReference<Person> p = new SoftReference<Person>(new Person("Rain"));,内存非常紧张的时候会被回收,其他时候不会被回收,所以在使用之前要判断是否为null从而判断他是否已经被回收了。

3)弱引用 :通过WeakReference类实现,eg : WeakReference<Person> p = new WeakReference<Person>(new Person("Rain"));不管内存是否足够,系统垃圾回收时必定会回收。

4)虚引用 :不能单独使用,主要是用于追踪对象被垃圾回收的状态。通过PhantomReference类和引用队列ReferenceQueue类联合使用实现,eg :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
1 package test;
 2
 3 import java.lang.ref.PhantomReference;
 4 import java.lang.ref.ReferenceQueue;
 5
 6
 7 public class Test{
 8
 9     public static void main(String[] args) {
10         //创建一个对象
11         Person person = new Person("Sunny");   
12         //创建一个引用队列   
13         ReferenceQueue<Person> rq = new ReferenceQueue<Person>();
14         //创建一个虚引用,让此虚引用引用到person对象
15         PhantomReference<Person> pr = new PhantomReference<Person>(person, rq);
16         //切断person引用变量和对象的引用
17         person = null;
18         //试图取出虚引用所引用的对象
19         //发现程序并不能通过虚引用访问被引用对象,所以此处输出为null
20         System.out.println(pr.get());
21         //强制垃圾回收
22         System.gc();
23         System.runFinalization();
24         //因为一旦虚引用中的对象被回收后,该虚引用就会进入引用队列中
25         //所以用队列中最先进入队列中引用与pr进行比较,输出true
26         System.out.println(rq.poll() == pr);
27     }
28 }

运行结果:

3.Java垃圾回收机制

其实Java垃圾回收主要做的是两件事:1)内存回收 2)碎片整理

3.1垃圾回收算法

1)串行回收(只用一个CPU)和并行回收(多个CPU才有用):串行回收是不管系统有多少个CPU,始终只用一个CPU来执行垃圾回收操作,而并行回收就是把整个回收工作拆分成多个部分,每个部分由一个CPU负责,从而让多个CPU并行回收。并行回收的执行效率很高,但复杂度增加,另外也有一些副作用,如内存碎片增加。

2)并发执行和应用程序停止 :应用程序停止(Stop-the-world)顾名思义,其垃圾回收方式在执行垃圾回收的同时会导致应用程序的暂停。并发执行的垃圾回收虽然不会导致应用程序的暂停,但由于并发执行垃圾需要解决和应用程序的执行冲突(应用程序可能在垃圾回收的过程修改对象),因此并发执行垃圾回收的系统开销比Stop-the-world高,而且执行时需要更多的堆内存。

3)压缩和不压缩和复制 :

①支持压缩的垃圾回收器(标记-压缩 = 标记清除+压缩)会把所有的可达对象搬迁到一端,然后直接清理掉端边界以外的内存,减少了内存碎片。

②不压缩的垃圾回收器(标记-清除)要遍历两次,第一次先从跟开始访问所有可达对象,并将他们标记为可达状态,第二次便利整个内存区域,对未标记可达状态的对象进行回收处理。这种回收方式不压缩,不需要额外内存,但要两次遍历,会产生碎片

③复制式的垃圾回收器:将堆内存分成两个相同空间,从根(类似于前面的有向图起始顶点)开始访问每一个关联的可达对象,将空间A的全部可达对象复制到空间B,然后一次性回收空间A。对于该算法而言,因为只需访问所有的可达对象,将所有的可达对象复制走之后就直接回收整个空间,完全不用理会不可达对象,所以遍历空间的成本较小,但需要巨大的复制成本和较多的内存。

3.2堆内存的分代回收

1)分代回收的依据:

①对象生存时间的长短:大部分对象在Young期间就被回收

②不同代采取不同的垃圾回收策略:新(生存时间短)老(生存时间长)对象之间很少存在引用

2) 堆内存的分代:

①Young代 :

Ⅰ回收机制 :因为对象数量少,所以采用复制回收。

Ⅱ组成区域 :由1个Eden区和2个Survivor区构成,同一时间的两个Survivor区,一个用来保存对象,另一个是空的;每次进行Young代垃圾回收的时候,就把Eden,From中的可达对象复制到To区域中,一些生存时间长的就复制到了老年代,接着清除Eden,From空间,最后原来的To空间变为From空间,原来的From空间变为To空间。

Ⅲ对象来源 :绝大多数对象先分配到Eden区,一些大的对象会直接被分配到Old代中。

Ⅳ回收频率 :因为Young代对象大部分很快进入不可达状态,因此回收频率高且回收速度快

②Old代 :

Ⅰ回收机制 :采用标记压缩算法回收。

Ⅱ对象来源 :1.对象大直接进入老年代。

       2.Young代中生存时间长的可达对象

Ⅲ回收频率 :因为很少对象会死掉,所以执行频率不高,而且需要较长时间来完成。

③Permanent代 :

Ⅰ用      途 :用来装载Class,方法等信息,默认为64M,不会被回收

Ⅱ对象来源 :eg:对于像hibernate,spring这类喜欢AOP动态生成类的框架,往往会生成大量的动态代理类,因此需要更多的Permanent代内存。所以我们经常在调试Hibernate,Spring的时候经常遇到java.lang.OutOfMemoryError:PermGen space的错误,这就是Permanent代内存耗尽所导致的错误。

Ⅲ回收频率 :不会被回收

3.3常见的垃圾回收器

在此之前,我们先讲一下下面将会涉及到的并发和并行两个词的解释:

1)并行:指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态;

2)并发:指用户线程与 垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序继续执行,而垃圾收集程序运行于另一个CPU上。

好啦,继续讲垃圾回收器:

1)串行回收器(只使用一个CPU):Young代采用串行复制算法;Old代使用串行标记压缩算法(三个阶段:标记mark—清除sweep—压缩compact),回收期间程序会产生暂停,

2)并行回收器:对Young代采用的算法和串行回收器一样,只是增加了多CPU并行处理; 对Old代的处理和串行回收器完全一样,依旧是单线程。

3)并行压缩回收器:对Young代处理采用与并行回收器完全一样的算法;只是对Old代采用了不同的算法,其实就是划分不同的区域,然后进行标记压缩算法:

① 将Old代划分成几个固定区域;

② mark阶段(多线程并行),标记可达对象;

③ summary阶段(串行执行),从最左边开始检验知道找到某个达到数值(可达对象密度小)的区域时,此区域及其右边区域进行压缩回收,其左端为密集区域

④ compact阶段(多线程并行),识别出需要装填的区域,多线程并行的把数据复制到这些区域中。经此过程后,Old代一端密集存在大量活动对象,另一端则存在大块空间。

4)并发标识—清理回收(CMS):对Young代处理采用与并行回收器完全一样的算法;只是对Old代采用了不同的算法,但归根待地还是标记清理算法:

① 初始标识(程序暂停):标记被直接引用的对象(一级对象);

② 并发标识(程序运行):通过一级对象寻找其他可达对象;

③ 再标记(程序暂停):多线程并行的重新标记之前可能因为并发而漏掉的对象(简单的说就是防遗漏)

④ 并发清理(程序运行)

4.内存管理小技巧

1)尽量使用直接量,eg:String javaStr = "小学徒的成长历程";

2)使用StringBuilder和StringBuffer进行字符串连接等操作;

3)尽早释放无用对象;

4)尽量少使用静态变量;

5)缓存常用的对象:可以使用开源的开源缓存实现,eg:OSCache,Ehcache;

6)尽量不使用finalize()方法;

7)在必要的时候可以考虑使用软引用SoftReference。

转载于:https://www.cnblogs.com/yechanglv/p/6923384.html

Java的内存回收机制相关推荐

  1. Java jvm 内存回收机制

    原文:Java jvm 内存回收机制 源代码下载地址:http://www.zuidaima.com/share/1782298898271232.htm 在Java中,它的内存管理包括两方面:内存分 ...

  2. JAVA的内存回收机制(快速入门版)

    java内存回收机制 内存回收,是JVM中垃圾回收器提供的一种用于在空闲时间不定时回收无任何对象引用的对象占据的内存空间的一种机制 引用 : java中什么是引用? Person xiaoi =new ...

  3. Java技术专题之JVM逻辑内存回收机制研究图解版

    一.引言 JVM虚拟机内存回收机曾迷惑了不少人,文本从JVM实现机制的角度揭示JVM内存回收的原理和机制. 一.Java平台逻辑架构 二.JVM物理结构 通过从JVM物理结构图我们可以看到: 1.JV ...

  4. 2.Java内存回收机制

    一.Java对象在内存引用状态 内存泄露:程序运行过程中,会不断分配内存空间,那些不再使用的内存空间应该即时回收它们,从而保证系统可以再次使用这些内存,如果存在无用的内存没有被回收回来,这就是内存泄漏 ...

  5. Java进阶3. 内存回收机制

    Java进阶3. 内存回收机制 20131029 前言: 学过C++的都知道,C++中内存需要程序员自己维护.说道这里,很多开发的同学就感觉很痛苦,当他转向Java的时候,就会说你看Java多好啊,程 ...

  6. java有自己的内存回收机制,但为什么还存在内存泄漏的问题?

    1.既然 Java 的垃圾回收机制能够自动的回收内存,怎么还会出现内存泄漏的情况呢? 在面试中经常会碰到这样一个问题(事实上笔者也碰到过):如何判断一个对象已经死去? 很容易想到的一个答案是:对一个对 ...

  7. Java虚拟机 —— 垃圾回收机制

    在Java虚拟机中,对象和数组的内存都是在堆中分配的,垃圾收集器主要回收的内存就是再堆内存中.如果在Java程序运行过程中,动态创建的对象或者数组没有及时得到回收,持续积累,最终堆内存就会被占满,导致 ...

  8. java的垃圾回收机制包括:主流回收算法和收集器(jvm的一个主要优化方向)

    2019独角兽企业重金招聘Python工程师标准>>> java的垃圾回收机制是java语言的一大特色,解放了开发人员对内存的复杂控制,但如果你想要一个高级java开发人员,还是需要 ...

  9. JAVA虚拟机垃圾回收机制和JAVA排错三剑客

    一.Java虚拟机逻辑回收机制 1.Java垃圾回收器 Java垃圾回收器是Java虚拟机(JVM)的三个重要模块(另外两个是解释器和多线程机制)之一,为应用程序提供内存的自动分配(Memory Al ...

最新文章

  1. 使用Python,Matplotlib显示RGB图像
  2. 新手制作bom表格教程_抖音短视频怎么制作?这里有全部最新教程+指导,新手0基础上手!...
  3. StackOverflow 上面最流行的 7 个 Java 问题!| 值得一看
  4. titanium开发教程-04-10移动rows
  5. django准备 —环境配置,及其虚拟环境安装、django安装、数据库安装、新建项目...
  6. android蓝牙设置特征属性,Android BLE蓝牙详细解读(二)
  7. 终于升级?89年的Linux内核C语言“跟上时代”转成现代C
  8. 蓝桥杯 ADV-77 算法提高 统计平均成绩
  9. 导出的excel添加水印
  10. 台式计算机品牌怎么查,教你怎么看电脑主板型号和品牌
  11. 《你就这样吧,挺好的!》 ——自由极光优美句子珍藏
  12. UE4制作插件的插件神器pluginCreator
  13. 2018_9_8 模拟题
  14. 如何简单理解集合框架和利用时空复杂度?
  15. The development history and future trend of optical fiber communication technology
  16. office2007各组件全面介绍
  17. 2.HTML+CSS制作一闪一闪亮晶晶的星星(stars)
  18. 关于QT_BEGIN_NAMESPACE宏的作用
  19. 安装wireshark显示npcap失败的解决办法
  20. Pjblog皮肤制作循序渐进教程作者:cocoa 日期:2008-12-05

热门文章

  1. 刘涵 美国 西北大学 计算机,西北大学关于表彰2010-2011学年度学生先进集体-红帆.doc...
  2. cpu线程_进程/线程上下文切换会用掉你多少CPU?
  3. java lists 引用包,在线等java【不在同一类,同一个包的两个LIst可以实现复制么?怎...
  4. 网站SEO优化介绍搜索引擎给网站排名的过程
  5. 企业做SEO优化哪些行为会被判定为作弊?
  6. mysql表误删回复_mysql 找回误删表的数据方法(必看)
  7. mysql 统计条目_mysql 统计表中条目数量的几种方法
  8. github 慢_告别github 下载慢问题,让你的github下载速度起飞
  9. 简单的PHP和MYSQL做投票系统_php mysql简单投票系统
  10. python调用动态链接库windows_用win从python ctypes调用标准windows.dll的Segfault