导读:本文将介绍京东搜索场景中的两块技术,语义检索与商品排序。在业界检索算法基础上,我们提出一系列更适用于电商场景的检索排序算法,在业务上取得了显著收益。其中的多篇论文已被 KDD/SIGIR 等收录。

01

背景介绍

电子商务搜索是京东等电商重要组成部分,用户通过搜索找到自己需要的商品,然后下单购买。一个典型电商搜索引擎的架构,包括三个重要组成部分:query 理解、召回和排序。

  • Query 理解:包括 query 的纠错、改写、扩展、分词等。

  • 召回阶段:给定一个查询词,从商品库中召回有效正确的商品候选集,并将结果返回给排序。召回方式有很多种,这里我们只介绍基于向量检索的召回。

  • 排序阶段:给定召回商品的候选集合,根据众多因子对这些商品进行排序,挑选出最好的候选商品展示给用户。

下面我们分别介绍,基于向量检索召回和商品排序:

02

向量召回

向量检索作为一种信息检索方式在工业界已经被广泛应用,它能解决传统倒排检索不能解决的问题。倒排通过字面匹配方式召回商品,这种方式存在一种缺陷,不能召回字面不匹配但语义层面相近的商品, 如 query='2-3周岁宝宝玩具'是无法召回 sku='托马斯小火车'的。

通俗的讲就是训练一个模型,该模型通过将 query 和 sku 映射到统一维度空间,在该空间中,相似的商品距离近,不相近的商品距离较远。如上图例子,query=奶粉,在高纬空间里,相对鞋子、服装、手机,奶粉商品距离 query 更近。这是建模过程,生成 query 和 sku 的向量数据。

我们得到了 query 和 sku 的向量,接下来就是做检索,返回与 query 距离近的 topK 个 sku。而数据库的商品量非常多,通常是十亿级,不可能做线性遍历,考虑到时效性,会引入快速向量近似检索方法,如 KDTree、TDM、LSH、PQ、HNSW 等等,我们采用的是 PQ 算法,这里不再赘述,网上有很多材料介绍其算法。下面重点介绍我们的模型及在线检索框架。

模型方面不仅要考虑 query-sku 的相关性,我们也对用户行为进行建模,同一 query 针对不同用户、同一用户不同时刻检索出更具有个性化的商品。我们使用的是 DPSR ( Deep Personalized and Semantic Retrieval ) 算法,模型融合个性化和搜索语义信息,我们的论文已被 SIGIR2020 收录。

1. 检索系统 overview

从整体看,离线模型是一个双塔模型结构,query 和 sku 分别有一个 model tower。Query 端包括了 query 包括 query tokens、user profile、user history events 等特征。Sku 端包括 title tokens、brand、category、shopid 等特征。

离线索引 ( offline indexing ),使用的是 sku tower,导出 sku 的 embedding 构建 QP 索引。

在线服务 ( online serving ) 使用的是 query tower,模型加载在 tensorflow service,在线 predict query 的 embedding。

2. 模型详细设计

① Two tower model architecture

上面介绍了模型结构,一个 query tower Q,一个 sku tower S,对于给定的 query=q, sku=s,模型计算过程为:

f(q,s)=G(Q(q),S(s))

Q(q)∈Rd×m 表示 query 的 embedding

S(s)∈Rd×m 表示 sku 的 embedding

G 表示打分计算函数,比如 inner product、L2 distance 等

双塔模型训练完后,query 和 sku 的模型相对独立,我们可以分别计算他们。所有的 sku embedding 都在离线计算,以便快速构建向量检索索引。虽然 model 是相互独立的,但 query 和 sku 之间使用简单的点积计算,理论上 query 和 sku embedding 仍然在同一个几何空间中,具有可比性。

② Query tower with multi heads

我们看到左侧的 tower 和右侧有两点不一样:Projection layer 和 mutli heads,目的是为了丰富 query 侧的信息。如下图所示,不同的 head 可以捕获 query 不同的语义 ( query=苹果,语义可以是手机和水果 ),捕获不同的品牌属性 ( query=手机,品牌可以是华为、小米 ),捕获不同的产品属性 ( query=三星,产品属性可以是笔记本、手机 ) 等等。

③ Attention Loss

Multi heads 让 query 可以生成多个 embedding 与 sku embedding 计算 score。我们采用 attenion loss 做模型优化。

我们标记 query 的多个 embeding 为 Q(q)={e1,e2,...,em},其中 ei∈Rd,Sku 的 embedding 为 S(s)=g,g∈Rd,Query 和 sku 的打分计算如下:

其中 β 是 softmax heat 参数。假设 D 表示训练预料,r(qi,si+) 为正样本,r(qi,si-) 为负样本,模型优化的 loss 可表示为:

④ Negative Sampling

我们采用的是用户点击数据,数据量在10亿级作为正样本。负样本并未使用同 session 未点击的样本,因为搜索手机,展示了小米和华为手机,不能说未点击就是不相关商品。负例分为两部分:random negatives、batch negatives。我们增加了一组超参来调整两者的比例,观察发现 random negatives 越多,召回商品的 popularity 越高,更能吸引用户点击下单,但会降低商品与检索 query 的相关性。

模型训练算法具体如下:

3. 训练优化

我们也尝试过更强大的神经网络,如 RNN、transform 等,得到的效果类似或稍好一些。然而一个短延时的模型更适用于工业生产建模,这样可以使用更少的服务器做有效的离线训练和在线服务。

模型系统方面,我们也做了一系列训练优化,简单描述其中的几点:

  • 实现 c++ tokenizer,以 custom operator 方式加载到 tensorflow,离线训练和在线服务共用,保证 token 的一致性。

  • 训练数据压缩,修改训练数据格式,把共用的特征数据加载内存,训练时展开从而降低数据存储。也便于训练时做负例采样。

  • 可伸缩分布式,切分大的 embedding,并将 sum up 放到 ps 以解决 worker/ps 带宽瓶颈。

  • 模型 servable 服务,我们将向量检索和 tfs 合成一个服务,不仅减少一次网络访问,降低系统 3-5ms 的平响,而且将模型分片部署,从而可以支持上百个模型同时服务或者 A/B 实验。同时 servable 服务是 cpu 和 gpu 混合部署。

4. 语义检索效果展示

语义检索上线后获得了很好的体验效果,不仅提升了转化,长尾流量降低了近10%的 query 改写率,也就是说用户不需要多次改写 query,就能获得想要的商品结果。

03

商品排序

下面介绍下商品排序:

商品排序主要是根据用户的输入对商品进行打分排序。商品排序的传统方法使用 xgboost 等基于决策树的方法从数据中进行学习,但是这些模型通常有成百乃至上千的数值型人工特征,不能有效的从原始特征比如用户历史点击购买数据、商品文本和图像中直接学习。近年来,深度学习在各种应用中验证了从原始特征中学习的有效性,在业界被广泛使用,比如 wide&Deep、DIN 等。下面介绍一个我们在商品搜索排序中尝试的方法。

1. 双胞胎网络

我们的训练数据来自于用户的搜索日志,通过将同一个 session 中用户购买的商品 ( 商品a ) 和没有购买的商品 ( 商品b ) 配对起来,并把购买未购买作为最终学习的 label,从而构造了用户查询-商品对训练集。

根据训练数据,我们首先设计了双胞胎网络结构:

双胞胎网络结构有两个共享参数的模块,每个模块分别输入用户、查询和商品特征,每个模块采用 ReLU 作为激活函数,最终层的输出一个分数,两个模块的差值和数据 label 作为交叉熵损失函数的输入。

在特征方面,我们使用以下几种不同类型的特征:

  • 数值型特征:包括商品销量、用户购买力和用户是否点过、购买过商品等。

  • 文本特征:包括用户输入的查询和商品名称等。

  • 用户历史行为:包括历史点击、购买、加购商品 list 等

  • 商品、用户 id 等

文本特征可以学习到一定的相关性信息,用户历史行为可以学习到个性化信息,id 类特征我们做了 pretrain。

2. 个性化升级

在第一版双胞胎模型中,我们简单的对用户的历史行为做 sum pooling,但是这样缺乏和搜索商品的交互,无法精准的表示用户的兴趣;为了加强用户的交互,我们升级了模型的结构,用候选商品和用户历史商品做 attention,从而将静态的 user embedding 升级为随 query 和当前商品变化的 user embedding。

我们还加入了 Graph 学习方法对 id 类特征 embedding 进行 pretrain,然后加入到模型训练中。具体方法使用用户的高质量点击行为生成商品 graph,通过 Random Walk 生成训练数据,然后利用 Skip-gram 进行训练,加入 id embedding 可以提高模型离线指标和收敛速度。

3. 时效性优化

值得一提的是,为了增强排序捕捉变化的能力,提升排序的流动性,我们从三个方面:特征时效性、模型时效性、线上预估校准进行了优化。

  • 提升特征时效性:接入商品小时级的点击加购订单等实时信号,训练模型学习实时变化

  • 实时在线校准:根据商品全站的点击订单等实时反馈信号,对模型原来的预测分数及时校准

  • 提升模型的更新频率:优化训练数据生产流程,推动训练平台升级,提升模型训练速度

搜索排序是商品检索最重要的模块之一,我们在个性化、时效性、多目标等方向不断迭代,提升了排序体验,也提升了商品成交量。

04

总结

我们介绍了语义检索召回和商品排序,在京东搜索服务上部署并取得了良好效果。我们还在尝试一些业内其他流行的方法,比如 GNN、KG、MMoE 等方向,也获得了不错的成绩。

文章作者:

王松林、唐国瑜,京东算法工程师。

特别推荐一个分享架构+算法的优质内容,还没关注的小伙伴,可以长按关注一下:长按订阅更多精彩▼如有收获,点个在看,诚挚感谢

京东电商搜索中的语义检索与商品排序相关推荐

  1. 多类目MoE模型在京东电商搜索中的应用

    文章作者:肖茁建博士 京东 算法工程师 编辑整理:Hoh 出品平台:DataFunTalk 导读:商品搜索引擎是电商平台满足用户购物需求的一个重要系统,它根据用户输入的搜索词,返回个性化的排序列表,以 ...

  2. 关于电商搜索中Elasticsearch的正确使用姿势--检索篇

    文章目录 前言 检索的前一步 检索 分数 sort operator 二次召回 改变权重 组合查询 归因问题(functionScore) 聚合 结语 前言 书接上文,我们为电商项目做了个性化的索引配 ...

  3. 关于电商搜索中Elasticsearch的正确使用姿势--配置篇

    文章目录 前言 什么是Elasticsearch ES快在哪里 创建索引 索引的基本配置 分片 分析器 Field分析器应用 copy_to multi-fields 结语 更新 前言 过年放假啦,总 ...

  4. 跨境电商ERP中的自动化 2.平台商品和本地单品自动绑定

    今天继续讲解跨境电商ERP中的自动化,这篇主要讲解平台商品和本地单品如何绑定,从而实现对本地单品库存的管理. 博客搬家啦,新地址: https://www.navisoft.com.cn 平台商品有个 ...

  5. 电商搜索全链路(PART I)Overview

    大家好,我是kaiyuan.好久没码字了,趁着五一在家整理整理,毕竟北京这疫情哪儿也别想去 虽然我们之前分享过很多 #搜索推荐广告 方面的文章,但是发现很难有一个系统的框架,无法串联成完整的链路.于是 ...

  6. 【原创】使用Golang的电商搜索技术架构实现

    作者:黑夜路人 时间:2022年11月 一.背景: 现在搜索技术已经是非常主流的应用技术,各种优秀的索引开源软件已经很普遍了,比如 Lucene/Solr/Elasticsearch 等等主流搜索索引 ...

  7. 用Elasticsearch构建电商搜索平台(有赞)

    随着互联网数据规模的爆炸式增长,如何从海量的历史,实时数据中快速获取有用的信息,变得越来越有挑战性. 电商数据系统主要类型 一个中等的电商平台,每天都要产生百万条原始数据,上亿条用户行为数据.一般来说 ...

  8. 陈宏申:浅谈京东电商商品文案挖掘难点与优化实践

    导读: 在电商推荐中,除了推送商品的图片和价格信息外,文案也是商品非常重要的维度.基于编码器解码器范式的序列文本生成模型是文案挖掘的核心,但该种方法面临着两大技术挑战:一是文案生成结果不可靠和生成质量 ...

  9. 用Elasticsearch构建电商搜索平台,一个极有代表性的基础技术架构和算法实践案例

    转自:http://www.sohu.com/a/114545287_116235 电商数据系统主要类型 一个中等的电商平台,每天都要产生百万条原始数据,上亿条用户行为数据.一般来说,电商数据一般有3 ...

最新文章

  1. 第七篇:使用 CUDA 进行计算优化的两种思路
  2. 低代码发展专访系列之二:两三年内会出现“现象级”低代码产品吗?
  3. 结构与算法(02):队列和栈结构
  4. centos 下端口开放设置
  5. Linux服务器安装JavaWeb环境(二) Redis,MySql,Zookeeper,Keepalive
  6. position之属性
  7. itools 苹果录屏大师 java_itools录屏大师
  8. webService CXF框架
  9. 英语演讲计算机ppt模板,英语ppt演讲稿
  10. 11.构建Ubuntu系统
  11. word 图片导入不翻转_如何在Microsoft Word中翻转图片
  12. 错误的英语提示翻译 以及经常犯的无错误
  13. App Store上架之邓白氏编码申请
  14. 获取json中数组的length
  15. 项目管理专业英语-项目预测
  16. visual studio 2008微软教程
  17. 一个优秀IT专家的成长历程-献给所有的颓废或即将颓废的人们
  18. 弱酸阳离子树脂去除硫酸锂溶液中的钙镁离子技术
  19. 勒索软件对企业的重大威胁分析
  20. Lanius大数据治理平台

热门文章

  1. LightOJ1245-Harmonic Number (II) 【数学调和级数】
  2. 筛指定区间的素数[区间偏移二次筛法]
  3. 两张照片重叠处半透明_手机可以“抛起来”拍照,给你的照片换个角度
  4. c++语言static作用,详解c++中的 static 关键字及作用
  5. 【动态规划】背包模型
  6. mysql 修改表卡死_MySQL表不能修改、删除等操作,卡死、锁死情况的处理办法。...
  7. 怎么安装linux系统 硬盘,如何实现硬盘安装linux系统
  8. 查看文件命令cat,more,less,tail,tac,nl,od---linux学习笔记
  9. 关于owner group others的测试
  10. MacOS 下使用 intellij IDEA 将git上传项目到 Github