• Hinge Loss 解释

  SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法。这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 ERM ,即构建假设函数为输入输出间的映射,然后采用损失函数来衡量模型的优劣。求得使损失最小化的模型即为最优的假设函数,采用不同的损失函数也会得到不同的机器学习算法,比如这里的主题 SVM 采用的是 Hinge Loss ,Logistic Regression 采用的则是负 $\log$ 损失,

\[L(Y,P(Y|X)) = - \log P(Y|X)\]

  从二项分布的角度来考虑 Logistic 回归:

\begin{aligned}
P(Y=1|X) &= \frac{1}{1 + e^{- \theta x}}\\
P(Y=0|X) &= 1- P(Y=1|X)
\end{aligned}

  这里另 $z = \theta^Tx$ ,  $\delta$ 为 sigmod 映射,则:

\[E(z) = - \log (\delta(z)) \]

  $E(z)$ 的图形如下图的红色曲线,可见 $z$ 越接近 1 , $E(z)$ 的取值越小,即损失越小。反之另:

\[E(z) = 1- \log (\delta(z)) \]

  此时得到的图像应该为关于 $E(z)$ 对称的红色的线(没画出),此时 $z$ 越接近 -1,$E(z)$ 的取值越小,即损失越小。

  注: 图中绿色的线为 square loss ,蓝色的线为 hinge loss, 红的的线为负 log 损失。

  • 二分类问题

  给定数据集  $T = \left \{ (x_i,y_i)\right \}_{i=1}^N $ , 要用这些数据做一个线性分类器,即求得最优分离超平面 $w\cdot x + b = 0$ 来将样本分为正负两类,给定数据集后只需求得最优的参数  $w , b$ 即可,为了解决这个问题,首先做出如下线性映射函数

\[y = w \cdot x + b\]

  根据经验风险最小化原则, 这里引入二分类的 Hinge Loss :

\[max(0, 1- y_i(w \cdot x_i + b))\]

  上图中对应的 $E(z) = max(0,1-z)$ ,所以SVM可以通过直接最小化如下损失函数二求得最优的分离超平面:

\[ \min_{w,b} \sum_{i=1}^N max(0, 1- y_i(w \cdot x_i + b)) + \lambda ||w||^2 \]

  • 多分类问题

对于多分类问题,现在要用这些数据做一个 k 类的线性分类器 ,现在需要优化的参数变为 $W ,b$ , 此时的 $W \in \mathbb{R} ^{k \times n}$,为一个 $k \times n$ 的矩阵,$b \in \mathbb{R}^k$ 为一个向量,现在的映射关系如下 :$s =W x_i +b$,此时有 $s \in \mathbb{R}^k$  ,$s$ 中的每个分量代表分类器在该类别的得分,样本 $x_i$ 的标签  $y_i \in \mathbb{R}^k$ , 这里若 $x_i$ 属于类别 $k$ ,则 $y_i$ 中除了第 $k$ 个分量外其余元素全为 0 ,比如 5 分类问题, $x_i$  属于第 3 类,则有  $y_i = [0,0,1,0,0]$  , 用 $s_j$ 表示得分向量 $s$ 中的第 $j$ 个分量 , $s_{y_i}$ 表示对应 $y_i = 1$ 的分量,则单个样本多分类的Hinge Loss可表示为:

\[\sum_{j \ne y_i} max(0,s_j - s_{y_i} + 1)\],

所以 $k$ 分类线性分类SVM 的 Hinge Loss表示为:

\[\min_{W,b} \sum_{i=1}^N\sum_{j \ne y_i} max(0,s_j - s_{y_i} + 1) + \lambda \sum_k \sum_nW_{k,n}^2\]

转载于:https://www.cnblogs.com/guoyaohua/p/9436237.html

SVM(支持向量机)之Hinge Loss解释相关推荐

  1. 'int' object has no attribute 'backward'报错 使用Pytorch编写 Hinge loss函数

    在编写SVM中的Hinge loss函数的时候报错"'int' object has no attribute 'backward'" for epoch in range(50) ...

  2. 【机器学习】SVM支持向量机在手写体数据集上进行二分类、采⽤ hinge loss 和 cross-entropy loss 的线性分类模型分析和对比、网格搜索

    2022Fall 机器学习 1. 实验要求 考虑两种不同的核函数:i) 线性核函数; ii) ⾼斯核函数 可以直接调⽤现成 SVM 软件包来实现 ⼿动实现采⽤ hinge loss 和 cross-e ...

  3. 多分类svm的hinge loss公式推导_损失函数—深度学习常见损失函数总结【图像分类|下】...

    点击蓝字关注我们 AI研习图书馆,发现不一样的精彩世界 学习 笔记 常见损失函数总结-图像分类下篇 一.前言 在深度学习中,损失函数扮演着至关重要的角色.通过最小化损失函数,使模型达到收敛状态,减少模 ...

  4. Hinge Loss

    Hinge Loss 作者:陈雕 链接:https://www.zhihu.com/question/47746939/answer/286432586 来源:知乎 著作权归作者所有.商业转载请联系作 ...

  5. 机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)

    https://blog.csdn.net/u010976453/article/details/78488279 1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f( ...

  6. 机器学习中的损失函数(交叉熵损失、Hinge loss)

    损失函数 文章目录 损失函数 1 交叉熵损失 1.1 从最大似然估计到交叉熵损失 概率论中的MLE 机器学习中的MLE 交叉熵损失 1.2 多分类的交叉熵损失函数 1.3 比较 2. Hinge lo ...

  7. SVM支持向量机通俗导论(理解SVM的三层境界)

    神文 转自july:http://blog.csdn.net/v_july_v/article/details/7624837 支持向量机通俗导论(理解SVM的三层境界) 作者:July .致谢:pl ...

  8. 惊呼——SVM支持向量机三重境界!

    转载自:原文 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个 ...

  9. SVM支持向量机原理(二) 线性支持向量机的软间隔最大化模型

    在支持向量机原理(一) 线性支持向量机中,我们对线性可分SVM的模型和损失函数优化做了总结.最后我们提到了有时候不能线性可分的原因是线性数据集里面多了少量的异常点,由于这些异常点导致了数据集不能线性可 ...

最新文章

  1. tensorflow deep_speech2 神经网络结构代码分析
  2. 复盘无人业态的三点心得:起于共享单车,止于何?
  3. Virtools 3D行为编程系列(一)
  4. 05 Python - Python运行
  5. Microsoft宣布.NET Core支持计划
  6. 【spider】Tesseract机器视觉实现验证码识别
  7. 8月份比亚迪纯电动汽车产销量双双超过3万辆 是去年同期3倍多
  8. VB6中的面向对象编程---实现类继承
  9. 第一次冲刺-个人总结05
  10. Window平台编译log4cpp使用方法记录 (一)
  11. 扫描问题 无法识别计算机,我的扫描枪插进去显示无法识别怎么办
  12. 常见图片存储格式文件简介
  13. [转]让搜索跨越语言的鸿沟—谈跨语言信息检索技术
  14. 小程序服务器装rsshub,RssHub 部署
  15. 致我们终将远离的子女
  16. Incorrect string value: '\xF0\x9F\x91\x93\xF0\x9F...' for column 'xxx' at row 1
  17. 2021.11_Coggle组队学习_Linux命令
  18. 纯字母域名批量注册的详细步骤
  19. Java 在Windows上通过代码开启和关闭exe程序
  20. 【无标题】如何在C#中使用Dapper ORM学习通http://www.bdgxy.com/

热门文章

  1. Waymo无人出租车加州上线一个月,日均156单,还有真·自动驾驶服务
  2. 首届清华智班30人名单公布:贵校第一批AI本科生,状元金牌云集,与姚班“抢人”...
  3. 项目管理心得——你为啥会觉得自己很忙?
  4. VS2010 出现打开关联文档错误的解决方案
  5. 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)
  6. 【Android】自定义listview快速滚动条
  7. Git 学习笔记 —— 常用命令
  8. Win8.1 “运行”在Ipad Mini上
  9. IBM X System ServerGuide 8.41 服务器 系统安装引导盘
  10. stl string常用函数