正则化在机器学习当中是十分常见的,本次就来比较完整地总结一下~

首先列一下本篇文章所包含的内容目录,方便各位查找:

  • LP范数

  • L1范数

  • L2范数

  • L1范数和L2范数的区别

  • Dropout

  • Batch Normalization

  • 归一化、标准化 & 正则化

正则化

在总结正则化(Regularization)之前,我们先谈一谈正则化是什么,为什么要正则化。

其实正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到某种特定目的的一种手段或操作。在算法中使用正则化的目的是防止模型出现过拟合。一提到正则化,很多同学可能马上会想到常用的L1范数和L2范数,在汇总之前,我们先看下LP范数是什么鬼

1

LP范数

范数简单可以理解为用来表征向量空间中的距离,而距离的定义很抽象,只要满足非负、自反、三角不等式就可以称之为距离。

LP范数不是一个范数,而是一组范数,其定义如下:

pp的范围是[1,∞)[1,∞)。pp在(0,1)(0,1)范围内定义的并不是范数,因为违反了三角不等式。

根据pp的变化,范数也有着不同的变化,借用一个经典的有关P范数的变化图如下:

上图表示了pp从0到正无穷变化时,单位球(unit ball)的变化情况。在P范数下定义的单位球都是凸集,但是当0<p<10<p<1时,在该定义下的unit ball并不是凸集(这个我们之前提到,当0<p<10<p<1时并不是范数)。

那问题来了,L0范数是啥玩意?

L0范数表示向量中非零元素的个数,用公式表示如下:

我们可以通过最小化L0范数,来寻找最少最优的稀疏特征项。但不幸的是,L0范数的最优化问题是一个NP hard问题(L0范数同样是非凸的)。因此,在实际应用中我们经常对L0进行凸松弛,理论上有证明,L1范数是L0范数的最优凸近似,因此通常使用L1范数来代替直接优化L0范数。

2

L1范数

根据LP范数的定义我们可以很轻松的得到L1范数的数学形式:

通过上式可以看到,L1范数就是向量各元素的绝对值之和,也被称为是"稀疏规则算子"(Lasso regularization)。那么问题来了,为什么我们希望稀疏化?稀疏化有很多好处,最直接的两个:

  • 特征选择

  • 可解释性

3

L2范数

L2范数是最熟悉的,它就是欧几里得距离,公式如下:

L2范数有很多名称,有人把它的回归叫“岭回归”(Ridge Regression),也有人叫它“权值衰减”(Weight Decay)。以L2范数作为正则项可以得到稠密解,即每个特征对应的参数ww都很小,接近于0但是不为0;此外,L2范数作为正则化项,可以防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。

4

L1范数和L2范数的区别

引入PRML一个经典的图来说明下L1和L2范数的区别,如下图所示:

如上图所示,蓝色的圆圈表示问题可能的解范围,橘色的表示正则项可能的解范围。而整个目标函数(原问题+正则项)有解当且仅当两个解范围相切。从上图可以很容易地看出,由于L2范数解范围是圆,所以相切的点有很大可能不在坐标轴上,而由于L1范数是菱形(顶点是凸出来的),其相切的点更可能在坐标轴上,而坐标轴上的点有一个特点,其只有一个坐标分量不为零,其他坐标分量为零,即是稀疏的。所以有如下结论,L1范数可以导致稀疏解,L2范数导致稠密解。

从贝叶斯先验的角度看,当训练一个模型时,仅依靠当前的训练数据集是不够的,为了实现更好的泛化能力,往往需要加入先验项,而加入正则项相当于加入了一种先验。

  • L1范数相当于加入了一个Laplacean先验;

  • L2范数相当于加入了一个Gaussian先验。

如下图所示:

5

Dropout

Dropout是深度学习中经常采用的一种正则化方法。它的做法可以简单的理解为在DNNs训练的过程中以概率pp丢弃部分神经元,即使得被丢弃的神经元输出为0。Dropout可以实例化的表示为下图:

我们可以从两个方面去直观地理解Dropout的正则化效果:

  • 在Dropout每一轮训练过程中随机丢失神经元的操作相当于多个DNNs进行取平均,因此用于预测时具有vote的效果。

  • 减少神经元之间复杂的共适应性。当隐藏层神经元被随机删除之后,使得全连接网络具有了一定的稀疏化,从而有效地减轻了不同特征的协同效应。也就是说,有些特征可能会依赖于固定关系的隐含节点的共同作用,而通过Dropout的话,就有效地组织了某些特征在其他特征存在下才有效果的情况,增加了神经网络的鲁棒性。

6

Batch Normalization

批规范化(Batch Normalization)严格意义上讲属于归一化手段,主要用于加速网络的收敛,但也具有一定程度的正则化效果。

这里借鉴下魏秀参博士的知乎回答中对covariate shift的解释:

https://www.zhihu.com/question/38102762

大家都知道在统计机器学习中的一个经典假设是“源空间(source domain)和目标空间(target domain)的数据分布(distribution)是一致的”。如果不一致,那么就出现了新的机器学习问题,如transfer learning/domain adaptation等。而covariate shift就是分布不一致假设之下的一个分支问题,它是指源空间和目标空间的条件概率是一致的,但是其边缘概率不同。大家细想便会发现,的确,对于神经网络的各层输出,由于它们经过了层内操作作用,其分布显然与各层对应的输入信号分布不同,而且差异会随着网络深度增大而增大,可是它们所能“指示”的样本标记(label)仍然是不变的,这便符合了covariate shift的定义。

BN的基本思想其实相当直观,因为神经网络在做非线性变换前的激活输入值(X=WU+BX=WU+B,UU是输入)随着网络深度加深,其分布逐渐发生偏移或者变动(即上述的covariate shift)。之所以训练收敛慢,一般是整体分布逐渐往非线性函数的取值区间的上下限两端靠近(对于Sigmoid函数来说,意味着激活输入值X=WU+BX=WU+B是大的负值或正值),所以这导致后向传播时低层神经网络的梯度消失,这是训练深层神经网络收敛越来越慢的本质原因。而BN就是通过一定的规范化手段,把每层神经网络任意神经元这个输入值的分布强行拉回到均值为0方差为1的标准正态分布,避免因为激活函数导致的梯度弥散问题。所以与其说BN的作用是缓解covariate shift,倒不如说BN可缓解梯度弥散问题。

7

归一化、标准化 & 正则化

正则化我们以及提到过了,这里简单提一下归一化和标准化

归一化(Normalization):归一化的目标是找到某种映射关系,将原数据映射到[a,b][a,b]区间上。一般a,b会取[−1,1],[0,1][−1,1],[0,1]这些组合。

一般有两种应用场景:

  • 把数变为(0, 1)之间的小数

  • 把有量纲的数转化为无量纲的数

常用min-max normalization:

标准化(Standardization):用大数定理将数据转化为一个标准正态分布,标准化公式为:

归一化和标准化的区别:

我们可以这样简单地解释:归一化的缩放是“拍扁”统一到区间(仅由极值决定),而标准化的缩放是更加“弹性”和“动态”的,和整体样本的分布有很大的关系。

值得注意:归一化:缩放仅仅跟最大、最小值的差别有关。

标准化:缩放和每个点都有关系,通过方差(variance)体现出来。与归一化对比,标准化中所有数据点都有贡献(通过均值和标准差造成影响)。

为什么要标准化和归一化?

  • 提升模型精度:归一化后,不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。

  • 加速模型收敛:标准化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。如下图所示:

转自:

http://www.cnblogs.com/maybe2030/

彻底搞懂机器学习中的正则化相关推荐

  1. 收藏 | 彻底搞懂机器学习中的正则化

    点上方蓝字计算机视觉联盟获取更多干货 在右上方 ··· 设为星标 ★,与你不见不散 仅作学术分享,不代表本公众号立场,侵权联系删除 转载于:http://www.cnblogs.com/maybe20 ...

  2. 一文读懂机器学习中的正则化

    来源:Poll的笔记 本文约2600字,建议阅读5分钟 还在被正则化困扰?本文为你答疑解惑! 目录 LP范数 L1范数 L2范数 L1范数和L2范数的区别 Dropout Batch Normaliz ...

  3. 收藏 | 一文读懂机器学习中的正则化

    点上方蓝字计算机视觉联盟获取更多干货 在右上方 ··· 设为星标 ★,与你不见不散 仅作学术分享,不代表本公众号立场,侵权联系删除 转载于:作者丨Poll的笔记 来源丨数据派THU 编辑丨极市平台 A ...

  4. 【机器学习基础】一文搞懂机器学习里的L1与L2正则化

    文章来源于SAMshare,作者flora 特征锦囊:今天一起搞懂机器学习里的L1与L2正则化 今天我们来讲讲一个理论知识,也是老生常谈的内容,在模型开发相关岗位中出场率较高的,那就是L1与L2正则化 ...

  5. 一文读懂机器学习中奇异值分解SVD

    点击上方"小白学视觉",选择加"星标"或"置顶" 重磅干货,第一时间送达 目录: 矩阵分解 1.1 矩阵分解作用 1.2 矩阵分解的方法一文 ...

  6. 帮你彻底搞懂JS中的prototype、__proto__与constructor(图解)

    帮你彻底搞懂JS中的prototype.__proto__与constructor(图解) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文 ...

  7. 这一篇彻底搞懂JS中的prototype、__proto__与constructor真的很好

    文章目录 1. 前言 2. _ _ proto _ _ 属性 3. prototype属性 4. constructor属性 5. 总结 提示:不要排斥,静下心来,认真读完,你就搞懂了!(可以先看一下 ...

  8. 一文读懂机器学习中的模型偏差

    一文读懂机器学习中的模型偏差 http://blog.sina.com.cn/s/blog_cfa68e330102yz2c.html 在人工智能(AI)和机器学习(ML)领域,将预测模型参与决策过程 ...

  9. 彻底搞懂 JS 中 this 机制

    彻底搞懂 JS 中 this 机制 摘要:本文属于原创,欢迎转载,转载请保留出处:https://github.com/jasonGeng88/blog 目录 this 是什么 this 的四种绑定规 ...

最新文章

  1. Java入门培训班怎么选择
  2. 使用html测试数据库连接与操作(含界面) 第一步界面设计
  3. 证明并推导汉诺塔(河内之塔)问题公式
  4. 初步认识pg_control文件之一
  5. c语言函数用指针传递参数问题
  6. tbb flow graph node types
  7. TCP握手/挥手的过程分析
  8. 数据、数据元素、数据项、数据对象、数据结构、逻辑结构、存储结构、抽象数据类型的概念
  9. Mysql8.0可以使用解压版 这个比较快 好像现在都是解压版了
  10. 分布分析和分组分析_如何通过群组分析对用户进行分组并获得可行的见解
  11. OCR系列——总体概述
  12. 苹果邮箱收发件服务器
  13. mysql拆分英文数字_MySQL中的REGEX仅显示由连字符分隔的数字。
  14. java reduce 分组_使用JAVA8 stream中三个参数的reduce方法对List进行分组统计
  15. JS基础入门篇(二十)—事件对象以及案例(二)
  16. pcb 理论阻值、 过孔_PCB设计中过孔常用的处理方式
  17. 荔枝派zero编译rtl8723bs驱动并连接WiFi
  18. Typora标题增加序号
  19. 开源生态研究与实践| ChinaOSC
  20. 360视频简介及ERP投影

热门文章

  1. Matlab编程与数据类型 -- continue、break和return语句
  2. Matlab与线性代数--广义逆矩阵
  3. 【Java】字符串(一)
  4. 超棒整理 | Python 关键字知识点大放送
  5. 从腾讯实时音视频发家史,看爆发中的 RTC 将何去何从
  6. 为什么校招面试中总被问“线程与进程的区别”?我该如何回答?
  7. 如何用Jupyter Notebook制作新冠病毒疫情追踪器?
  8. 多数编程语言里的0.1+0.2≠0.3?
  9. 腾讯优图开源业界首个3D医疗影像大数据预训练模型
  10. Java跌落神坛,Python继续夺冠....凭啥?