自闭症是广告敏感词?

In Spring 2018, I conducted a pilot study of a robot teaching sign language to children with autism. This blog post reflects on the results of the study, and our team’s process of designing the robot.

在2018年Spring,我进行了一项针对自闭症儿童教授手语的机器人的试点研究。 这篇博客文章反映了研究结果以及我们团队设计机器人的过程。

机器人技术,手语和自闭症儿童 (Robotics, Sign Language, and Children with Autism)

To start with, let’s answer the first big question: Why use a robot in autism therapy? People with autism have an attention preference to objects over people, and children with autism have shown more interest toward therapy when it involves technological or robotic components. Additionally, a robot’s operation can be strictly controlled, which can make therapy less overwhelming for autistic people.

首先,让我们回答第一个大问题: 为什么要在自闭症治疗中使用机器人? 自闭症患者对物体的注意力要比对人的偏爱 ,自闭症儿童在涉及技术或机器人成分时对治疗表现出更多的兴趣 。 另外, 可以严格控制机器人的操作,这可以使自闭症患者的治疗减少 。

Then, the second big question: Why teach sign language to children with autism? People with Autism Spectrum Disorder (ASD) experience problems with communication: 40–50% of people with ASD are functionally mute in adulthood. To mitigate this, they use Augmentative and Alternative Communication (AAC) methods. Assistive sign language — a simplified form of sign language — is the most common form of AAC. Other common AAC forms are symbolic pictures and photographs.

然后,第二个大问题: 为什么要为自闭症儿童教授手语? 自闭症谱系障碍(ASD) 的人在交流方面会遇到问题: 40-50%的ASD人在成年后会在功能上变得沉默寡言 。 为了减轻这种情况,他们使用增强和替代沟通(AAC)方法。 辅助手语(一种简化的手语形式)是AAC的最常见形式 。 其他常见的AAC形式是符号图片和照片。

The idea to combine these two domains — robotics for children with ASD, and sign language for children with ASD — originally came from Satakunta health care district. Satakunta is a small region in South-Western Finland, with a population of 225 000 people. The quality manager at the district had read about a robot being used to teach sign language to neurotypical children, and wanted to investigate the same method with autistic children.

结合这两个领域(针对ASD儿童的机器人技术和针对ASD儿童的手语)的想法最初来自Satakunta卫生保健区 。 Satakunta是芬兰西南部的一个小区域,人口为225 000。 该地区的质量经理已经了解了一个机器人,该机器人用于为神经性典型儿童讲授手语 ,并希望对自闭症儿童研究同样的方法。

Satakunta found out that the company I work for (Futurice) had built a humanoid robot. They reached out, and we assembled a cross-disciplinary team that would re-design and modify Futurice’s humanoid robot to fit this purpose. Our team had three roboticists from Futurice, and three experts of autism treatment from Satakunta: a neuropsychologist, a speech therapist, and the quality manager.

萨塔昆塔(Satakunta)发现我工作的公司( Futurice )建造了人形机器人。 他们伸出援手,我们组建了一个跨学科的团队,将重新设计和修改Futurice的类人机器人以适应这一目的。 我们的团队有3位来自Futurice的机器人专家和3位来自Satakunta的自闭症治疗专家:神经心理学家,言语治疗师和质量经理。

我们应该如何设计机器人? (How Should We Design the Robot?)

The humanoid robot Futurice had built was an InMoov robot. The InMoov is designed by French sculptor Gaël Langevin. He has made the schematics and software of the robot open source and available to anyone online.

Futurice建造的人形机器人是InMoov机器人。 InMoov由法国雕塑家GaëlLangevin设计 。 他已经公开了机器人的原理图和软件,并可供在线的任何人使用。

Using these, Futurice built its own InMoov. Satakunta wanted to use the InMoov due to its nimble hands that enable it to sign. Its human-like appearance was also an advantage: one of Satakunta’s neuropsychologists thought that a human-resembling robot would be best for this solution.

利用这些,Futurice构建了自己的InMoov。 Satakunta希望使用InMoov,因为它的手灵巧,可以签名。 它具有类似人的外观也是一个优势:Satakunta的一位神经心理学家认为,类似于人的机器人将是解决方案的最佳选择。

However, the InMoov was not ready as it was. To make the robot be suitable for children with autism, we needed to modify its form, behaviour, interactions and environment.

但是,InMoov尚未准备就绪。 为了使该机器人适合自闭症儿童,我们需要修改其形式,行为,相互作用和环境。

My job was to design these four dimensions of the robot. I also needed to design the human-robot interaction study where children would meet and sign with the robot. Luckily, the open source nature of the robot’s software and hardware would make it relatively easy to make the necessary modifications.

我的工作是设计机器人的这四个尺寸。 我还需要设计人机交互研究,让孩子们见面并与机器人签名。 幸运的是,机器人软件和硬件的开源特性使其相对容易地进行必要的修改。

We wanted to take the characteristics of ASD into account while designing the robot. ASD is characterized by problems with communication and language, problems with social behaviour, inflexibility of routines, and problems forming a holistic perception of surroundings. However, autism is a spectrum, so these characteristics present differently in different people. Due to different presentations, we knew we couldn’t design a robot that would benefit everyone. Nevertheless, we wanted to find the best solution that would serve the most children with ASD.

我们在设计机器人时要考虑ASD的特性。 ASD的特点是沟通和语言方面的问题,社交行为方面的问题,套路不灵活以及对周围环境形成整体认识的问题。 但是,自闭症是一个频谱,因此这些特征在不同的人群中呈现出不同的方式。 由于演示方式不同,我们知道我们无法设计出能够使所有人受益的机器人。 但是,我们希望找到能为大多数ASD儿童提供服务的最佳解决方案。

During the project, the team created five design guidelines for the robot, which would tailor its design for autistic children. For example, the concern that a child might get distracted during the experiment was brought up by the autism specialists. The team agreed that to avoid confusing the child, the robot’s behaviour should be consistent and structured. This was defined as the guideline: “consistent, structured, simple behaviour”. To follow the guideline, the speech therapist and I created strict script of the robot’s and child’s interaction. All five guidelines were formulated in a similar manner in co-design discussions.

在项目期间,团队为机器人创建了五项设计指南,可以针对自闭症儿童量身定制其设计。 例如,自闭症专家对孩子在实验过程中可能会分心的担忧引起了关注。 研究小组同意,为避免混淆儿童,机器人的行为应保持一致和结构​​化。 这被定义为准则:“一致,结构化,简单的行为”。 为了遵循该准则,我和言语治疗师创建了关于机器人与孩子互动的严格脚本。 在共同设计讨论中,所有五项准则都是以类似的方式制定的。

与自闭症儿童一起使用的机器人的设计准则: (Design guidelines for a robot to be used with autistic children:)

  1. Simple form
    简单的形式
  2. Consistent, structured, simple behaviour
    一致,结构化,简单的行为
  3. Positive, supportive, rewarding experience and environment
    积极,支持,有益的经验和环境
  4. Modular complexity
    模块化复杂度
  5. Modularity specific to child’s preferences
    特定于孩子偏好的模块化

The design guidelines helped the team maintain a logical and uniform design for the robot, and formed a baseline for all decisions made during the design process.

设计指南帮助团队维护了机器人的逻辑和统一设计,并为设计过程中做出的所有决策奠定了基准。

内在道德 (Embedded Ethics)

While the team was discussing the design of the robot and the experiments, several ethical considerations were raised. These ethical considerations were embedded into the finalized robot.

在小组讨论机器人的设计和实验时,提出了一些道德方面的考虑。 这些道德考量已嵌入最终的机器人中。

Physical safety — Users can be potentially pinched or crushed by a robot. To mitigate this concern, we decided to stop the children from touching the robot during interactions. To accomplish this, we decided to have the speech therapist in the room with the child to stop them from approaching the robot, if need be.

人身安全 -机器人可能会挤压或挤压用户。 为了减轻这种担忧,我们决定在互动过程中阻止孩子接触机器人。 为此,我们决定在必要时让语音治疗师和孩子一起在房间里,以阻止他们接近机器人。

Data security — It is paramount that the user’s data stay secure, especially in health care applications. Here, we decided to keep all data of the children attending the study encrypted. We also did not record any unnecessary data.

数据安全性 -用户数据保持安全至关重要,尤其是在医疗保健应用程序中。 在这里,我们决定对参加研究的孩子的所有数据进行加密。 我们也没有记录任何不必要的数据。

Appropriate behaviour enforcement — People can learn bad manners from robots. For example, children have forgotten to use polite language such as “please” and “thank you” after interacting with the voice agent Alexa. Alexa does not explicitly ask for polite language, causing people to behave badly toward it. In this case, we didn’t want children to learn to treat the robot badly, and potentially generalize that bad behaviour to people. We decided that the therapist would intervene in all bad behaviour toward the robot.

适当的行为执行 -人们可以从机器人那里学坏礼貌。 例如, 在与语音代理Alexa互动后 , 孩子们忘记使用礼貌语言,例如“请”和“谢谢” 。 Alexa并未明确要求礼貌用语,从而导致人们对此表现不良。 在这种情况下,我们不希望孩子学习对机器人的恶劣对待,并可能将这种不良行为泛化为人们。 我们决定,治疗师将干预机器人的所有不良行为。

Equality across users — Artificial intelligence algorithms have been shown to be racist or sexist in the past (e.g. COMPAS, a recidivism rate prediction algorithm used in USA, was biased toward African-Americans). If a robot uses algorithms to function, designers of the algorithm need to be careful. Another thing to consider is the robot’s form. Robot designs have been shown to reinforce gender stereotypes, with “genius” robots often labeled as male, and “service” robots as female. In our case, we wanted to design a robot that was gender neutral, so that each child participating in the study could feel welcome. To do this, the robot was given no gender signifiers.

使用者之间的平等 -过去,人工智能算法已被证明是种族主义或性别歧视(例如, COMPAS ( 美国使用的累犯率预测算法)偏向非裔美国人 )。 如果机器人使用算法来运行,则算法的设计者需要小心。 要考虑的另一件事是机器人的形式。 机器人的设计已经证明可以加强性别定型观念,“天才”机器人通常被标记为男性,而“服务”机器人通常被标记为女性。 在我们的案例中,我们想设计一个性别不分性别的机器人,这样每个参加研究的孩子都会感到宾至如归。 为此,没有为机器人分配性别标记。

Transparency — If the user understands how the robot operates and makes decisions, they can calibrate their trust level in it. In our case, we decided to inform the children and their companions of the robot’s teleoperated nature at the end of the study. This way they could avoid forming false assumptions about the state of robotics today, and how it can be applied to autism therapy.

透明度 -如果用户了解机器人的操作方式和决策方式,则可以在其中校准信任级别。 在我们的案例中,我们决定在研究结束时告知孩子们及其同伴机器人的遥控操作特性。 这样,他们就可以避免对当今机器人技术的状态以及如何将其应用于自闭症治疗做出错误的假设。

Emotional consideration — Research has shown that humans treat robots as is they were alive, even when they clearly aren’t. People form emotional bonds with robots. This should be taken into account in the design: how strong a bond is desirable for this use case? In this case, we didn’t want the child or their companions to think that the robot was replacing the bond between the child and the therapist. To ensure this, the speech therapist would stay in the room with the child the entire time.

情感上的考虑 -研究表明,即使机器人显然不是生命体,他们也会像对待生命一样对待机器人。 人们与机器人形成情感纽带。 在设计中应考虑到这一点:对于这种用例,需要多强的结合力? 在这种情况下,我们不希望孩子或他们的同伴认为机器人取代了孩子与治疗师之间的纽带。 为了确保这一点,言语治疗师将一直陪伴孩子在房间里。

平衡法 (A Balancing Act)

Building complex technology (robotics) for a complex domain (autism therapy) is difficult. The problem space was unintuitive to both sides of the team: the autism specialists weren’t familiar with technical limitations, and the roboticists had no knowledge of the user group.

为复杂领域(自闭症治疗)建立复杂技术(机器人技术)是困难的。 问题空间对于团队双方都不是直觉的:自闭症专家对技术局限性并不熟悉,而机器人专家对用户群一无所知。

Designing was a balancing act: a seemingly small tweak in the design could result in a high amount of technical work. And vice versa, some changes that were significant design-wise could be easy to implement technically.

设计是一种平衡行为:设计中似乎很小的调整可能会导致大量的技术工作。 反之亦然,在设计上很重要的一些更改在技术上可能很容易实现。

This is where I spent most of my time — harmonizing the team’s different viewpoints into a good design that would be realistic to execute in our time frame of 6 months. Together we made a series of decisions balancing user experience and technical complexity.

这是我大部分时间的地方-将团队的不同观点协调成一个好的设计,可以在6个月的时间内执行。 我们共同做出了一系列决定,以平衡用户体验和技术复杂性。

When designing a social robot, there are a lot of moving parts (both literally and figuratively). The robot’s features all affect each other. The robot’s operation context affects how it behaves, which affects how it interacts with the user, which affects what its form is like. Prying these design considerations apart and crystallizing them into distinct and implementable technical tasks was challenging.

在设计社交机器人时,有很多运动部件(无论是字面上还是图形上)。 机器人的功能相互影响。 机器人的操作上下文会影响其行为,从而影响其与用户的交互方式,并会影响其形式。 将这些设计考虑分开,并将其明确化为独特且可实施的技术任务是具有挑战性的。

Modifying the robot from its original form took 4.5 months (the original build had been assembled in 9 months). All our modifications followed the design guidelines: for example, we changed the robot’s human-like voice to robotic, to give it a “simple form” (guideline 1).

从原始形式修改机器人需要4.5个月的时间(原始版本在9个月内组装完毕)。 我们所做的所有修改均遵循设计准则:例如,我们将机器人类似人的声音更改为机器人声音,以使其具有“简单的形式”(准则1)。

To make the InMoov a better sign language teacher, we made a few big adjustments. We gave it new Ada hands, designed by Open Bionics, and built by Metropolia University of Applied Sciences. We also embedded a screen into its chest, and lights onto its arms. The screen was added to provide another mode of communication (photographs are often used in AAC), and lights were added to capture the child’s attention.

为了使InMoov成为更好的手语老师,我们进行了一些大的调整。 我们给了它新的Ada手,它由Open Bionics设计 ,并由Metropolia Applied Sciences大学建造。 我们还将屏幕嵌入其胸部,并在其手臂上照明。 添加了屏幕以提供另一种交流方式(照片经常用于AAC中),并添加了灯光以吸引孩子的注意力。

10个孩子和一个机器人 (10 Children and a Robot)

10 children took part in the experiments. Some came with their parents, some came with other support people. Two roboticists (me included) were in the room adjacent to the experiment room, operating the robot and observing the experiment through a camera feed. A third roboticist was present to solve any problems that might emerge. The speech therapist was in the experiment room with each child, facilitating the interaction between the child and the robot, and intervening when needed.

10名儿童参加了实验。 有些是和父母一起来的,有些是和其他支持者一起来的。 两名机器人专家(包括我在内)在实验室附近的房间里,他们操作机器人并通过摄像机进给观察实验。 第三位机器人专家出席了会议,以解决可能出现的任何问题。 言语治疗师与每个孩子一起在实验室里,促进孩子和机器人之间的互动,并在需要时进行干预。

The robot performed 9 signs. With ⅓ of the signs, it also flashed the lights on its arm. With another ⅓ of the signs, it displayed an image corresponding to the sign on its screen. These 3 different design conditions were examined to see which was most effective.

机器人执行了9个标志。 带有⅓的标志,它也使手臂上的灯闪烁。 带有另外1/3的标志,它在屏幕上显示了与该标志相对应的图像。 检查了这3种不同的设计条件,以了解哪种方法最有效。

I was surprised by how differently each child interacted with the robot. A few of the children signed with near-perfect accuracy throughout the entire experiment, imitating all the robot’s signs in a mere 6 minutes. Some took as long as 28 minutes, struggling with each sign. One particular child — who was not too keen on signing — could not stop laughing at the robot. The child kept attempting to either hug or lunge at the robot throughout the experiment, with the speech therapist and neuropsychologist lunging after him to stop him in time.

每个孩子与机器人互动的方式都不同,令我感到惊讶。 在整个实验过程中,有几个孩子以接近完美的准确性签名,仅用6分钟就模仿了机器人的所有手势。 有些人花了长达28分钟的时间,每个标志都在挣扎。 一个不那么热衷于签名的孩子无法停止嘲笑机器人。 在整个实验过程中,孩子一直试图拥抱或向机器人冲刺,言语治疗师和神经心理学家不断向他扑来,以及时阻止他。

儿童模仿并全神贯注于机器人 (Children Imitated and Paid Attention to the Robot)

I measured the children’s signing accuracy and attention focus. Children and their companions also completed surveys where they gave their opinions on the robot.

我测量了孩子们的签名准确性和注意力集中度。 孩子们和他们的同伴还完成了调查,他们对机器人发表了意见。

我们学到了什么: (What we learned:)

1. Children could imitate the robot, and paid attention to it

1.孩子们可以模仿机器人,并注意它

7 out of 10 children successfully imitated the robot at least once. 70% of the time, they kept their gaze on the robot, indicating attention focus. 8 out of 8 companions who filled the survey also noted that the children had a connection with the robot.

每10名儿童中有7名成功至少一次模仿了机器人。 70%的时间,他们将视线停留在机器人上,表示注意力集中。 参与调查的8位同伴中有8位还指出,孩子们与机器人有联系。

2. The image on the robot’s screen was good

2.机器人屏幕上的图像很好

The robot displayed an image on its screen simultaneously to signing 1/3 of the time. Children’s companions found the images useful, and thought they could help the children learn.

机械手在屏幕上显示图像的时间为签名时间的1/3。 孩子们的同伴发现图像很有用,并认为它们可以帮助孩子学习。

3. The robot was seen as good, but a bit scary

3.机器人虽然不错,但有点吓人

Both children and their companions rated the children’s experiences with the robot as good. However, some children and their companions noted that the children felt the robot was scary. Factors that create scariness should be identified and reduced in future designs.

孩子们和他们的同伴都对孩子在机器人上的体验表示满意。 但是,一些孩子及其同伴指出,孩子们感到机器人很恐怖。 在未来的设计中应识别并减少造成恐惧的因素。

4. Performance of the signs needs to be better

4.迹象的表现需要更好

Both the speech therapist and children’s companions noted that the robot did not sign all words well, which might affect the children’s understanding of them.

言语治疗师和孩子们的同伴都指出,机器人不能对所有单词都正确签名,这可能会影响孩子对它们的理解。

尚需学习的内容: (Things still to learn:)

1. Are children understanding the signs?

1.孩子们明白这些迹象吗?

For this experiment, I only measured whether children imitated the signs. Future experiments are needed to verify if children are understanding them.

对于本实验,我仅测量孩子是否模仿了体征。 需要进行进一步的实验,以验证儿童是否理解它们。

2. Who best benefits from the robot?

2.谁最能从机器人中受益?

Not all children responded similarly to the robot. It is unlikely that this type of robot-based sign language therapy is useful to all children with autism. Future experiments should examine who this therapy is suitable for. This varying benefit is supported by companions’ survey results: 6 out of 8 companions thought the robot could potentially be beneficial as a sign language tutor.

并非所有孩子对机器人的React都类似。 这种基于机器人的手语疗法不太可能对所有自闭症儿童有用。 未来的实验应检查该疗法适合谁。 同伴的调查结果证明了这种不同的好处:8个同伴中有6个认为该机器人作为手语辅导员可能会受益。

3. How to input speech therapist’s commands?

3.如何输入言语治疗师的命令?

To use the robot in the future, the therapist needs to be able to independently control the robot. For future implementations, a remote control or UI for programming the robot’s behaviour and interactions may be useful.

为了将来使用机器人,治疗师需要能够独立控制机器人。 对于将来的实现,用于对机器人的行为和交互进行编程的遥控器或UI可能会有用。

4. How will guidelines 4 and 5 affect the design?

4.准则4和准则5将如何影响设计?

For this experiment, I used a static design of the robot. Only its interactions changed (using its screen and lights at different points). Future research is needed to examine the design guidelines “modularity of complexity” (guideline 4) and “modularity specific to children’s preferences” (guideline 5). These could help adapt the robot to different users.

在本实验中,我使用了机器人的静态设计。 只有其交互发生了变化(在不同点使用屏幕和灯光)。 需要进行进一步的研究,以检查设计准则“复杂性的模块化”(准则4)和“针对儿童喜好的模块化”(准则5)。 这些可以帮助使机器人适应不同的用户。

机器人手语教师的未来 (The Future of Robotic Sign Language Tutors)

People interacting closely with robots can induce criticism. The most prominent concern is that of robots replacing humans. In this case, the robot is not intended to replace human care — rather augment and support human care.

与机器人紧密互动的人会引起批评。 最主要的担忧是机器人取代了人类。 在这种情况下,机器人无意替代人类护理,而是增强和支持人类护理。

Therapy sessions are demanding for therapists. They need to plan and conduct the session, while dealing with a potentially uncooperative participant. In the future, technological tools could be used to reduce the cognitive load of the therapist. The robot perform the signs, while the therapist could focus on encouraging, tutoring and managing the child. With reduced cognitive load, sessions could be longer and thus more in-depth.

治疗会议对治疗师的要求很高。 他们需要在与可能不合作的参与者打交道的同时计划和进行会议。 将来,可以使用技术工具来减轻治疗师的认知负担。 机器人执行标志,而治疗师则可以专注于鼓励,辅导和管理孩子。 随着认知负荷的降低,会议时间可能会更长,从而更深入。

The same effect could potentially be achieved if the robot were situated in the child’s home: the child would get a consistent tool to practice signs with, and the robot would not be bored or frustrated by repetitive practice.

如果将机器人放在孩子的家中,则可能会达到相同的效果:孩子将获得一致的工具来练习标志,并且机器人不会因重复练习而感到无聊或沮丧。

To my knowledge, this was the first instance of using a robot to teach sign language to children with autism. I hope this research is continued further. I hope our pilot can shed some light onto how to develop this application in the future.

据我所知,这是第一次使用机器人为自闭症儿童教授手语。 我希望这项研究能继续下去。 我希望我们的飞行员将来可以阐明如何开发此应用程序。



The entire study is available as:

整个研究可作为:

Axelsson, M., Racca, M., Weir, D., Kyrki, V. (2019). A Participatory Design Process of a Robotic Tutor of Assistive Sign Language for Children with Autism. In 2019 28th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE. Accepted.

Axelsson,M.,Racca,M.,Weir,D.,Kyrki,V.(2019年)。 自闭症儿童辅助手语机器人导师的参与式设计过程。 在2019年第28届IEEE国际机器人与人机交互通信研讨会(RO-MAN)上 。 IEEE。 公认。

The study is based on my master’s thesis at Aalto University, available here.

这项研究基于我在阿尔托大学的硕士学位论文, 可以在这里找到 。

The project was funded by Prizztech’s Robocoast and ERDF-fund, and Futurice.

该项目由Prizztech的Robocoast和ERDF基金以及Futurice资助。

翻译自: https://www.freecodecamp.org/news/could-robots-teach-sign-language-to-children-with-autism/

自闭症是广告敏感词?

自闭症是广告敏感词?_我帮助建立了一个向自闭症儿童教授手语的机器人。 这是我学到的。...相关推荐

  1. python爬取整个网站的广告敏感词_Python实现敏感词过滤的4种方法

    在我们生活中的一些场合经常会有一些不该出现的敏感词,我们通常会使用*去屏蔽它,例如:尼玛 -> **,一些骂人的敏感词和一些政治敏感词都不应该出现在一些公共场合中,这个时候我们就需要一定的手段去 ...

  2. 检查mysql敏感词_拼多多违禁词怎么查 拼多多敏感词违规词检测

    我们都知道拼 违禁词带来的危害 有违禁词的商品会被下架,店铺极大的概率会被扣分罚款,甚至于职业打假人也会关注这些问题商品,对有违禁词商品进行投诉赔款等事项.所以在店铺运营过程中,对店铺内商品不定时进行 ...

  3. python广告营销平台_荐用Python写一个营销号垃圾视频生成器

    用Python写一个营销号垃圾视频生成器 可能是闲着太无聊,然而复习是不可能复习的,就做了一个这个玩意儿,改天进军UC和百家号(不会真有人用吧) 先看看效果:(1:20以后) 用Python做的营销号 ...

  4. python广告营销平台_如何用 Python 开发一个【视频营销号】生成器?

    ​之前小帅b在网上看到一个营销号文案生成器,把我给乐的: 其实这个用 Python 实现非常简单,根据用户输入的内容,简单替换一下关键字就可以了,我随手写了一下生成方法: 调用一波: 是不是老小编了? ...

  5. 关于java中敏感词检测的一些总结

    之前项目里客户提出一个需求,需要对系统中使用文本转化成语音发送的功能进行敏感词检测,禁止用户提交有敏感词的语音.通过查询各方面资料,整理了大概几种方案: 项目启动时对载入敏感词库作为缓存(一个大map ...

  6. 广告发布内容审核与广告违禁词检测工具的原理

    检测广告内容是广告发布前后判断广告是否违反<广告法>的重要工作.随着广告业的快速发展,广告表达方式越来越复杂,传统的广告内容检测工具作用力也越来越小,因此,具有AI人工智能技术加持的广告内 ...

  7. PHP敏感词过滤【整理实践版】

    2019独角兽企业重金招聘Python工程师标准>>> 由于国内互联网管制政策,强大的敏感词过滤系统成为了每一个网站必须具备的基本功能,尤其是那些涉及UGC内容的站点. 对敏感词过滤 ...

  8. python敏感词过滤replace_Serverless 实战:3 分钟实现文本敏感词过滤

    敏感词过滤是随着互联网社区一起发展起来的一种阻止网络犯罪和网络暴力的技术手段,通过对可能存在犯罪或网络暴力的关键词进行有针对性的筛查和屏蔽,能够防患于未然,将后果严重的犯罪行为扼杀于萌芽之中. 随着各 ...

  9. 【前缀树】写一个敏感词过滤器

    1.什么是敏感词过滤 这其实是一个很常见的功能,随处可见以至于你可能都没关注过,基本上在有评论的地方都会有它的身影. 举例来说,你打游戏和别人对喷的时候,是不是一些脏话发不出去哈哈,这些词汇会用*** ...

最新文章

  1. Ubuntu 9.0 下之HBase 0.90.4 的安装和使用
  2. opencv编译python库_linux 下编译安装 opencv-python
  3. SAP Fiori RouteMatched and getById
  4. thinkpad e420 装完新系统后,耳机有声音,外音没有,解决方法
  5. 一个八卦的AI,嗅到了你和TA之间基情满满
  6. 【渝粤教育】国家开放大学2018年春季 0706-21T行政管理学导论 参考试题
  7. Hash函数加密算法(一)
  8. 铁岭市奔腾计算机学校地址,辽宁省铁岭市奔腾计算机职业高级中学2020年高三数学理上学期期末试题.docx...
  9. 多媒体计算机辅助英语教学,浅谈多媒体计算机辅助英语教学
  10. 互联网行业,常见含金量高的证书,看看你有几个?
  11. spoj4487(splay)
  12. 数据结构和算法-查找算法之黄金分割查找法
  13. urdf 学习与制作
  14. windows画图工具,两张图片叠加
  15. ab测试工具 linux,超实用压力测试工具-ab工具
  16. 微信小程序开发之数据存储 参数传递 数据缓存
  17. linux下tree指令的用法
  18. SCN Headroom过低问题处理
  19. rg1 蓝光危害rg0_蓝光危害检测标准IEC/TR 62778
  20. python实现离散傅里叶变换

热门文章

  1. hexo+GitHub博客搭建实战
  2. 【游戏建模全流程】使用Maya制作赛车模型
  3. 音频帧、视频帧及其同步
  4. c语言flag什么意思,flag已立是什么梗 flag是什么意思
  5. oracle 一次插入多条
  6. TC Disrupt San Francisco 2011冠军出炉,Shaker问鼎
  7. 使用DDMS中的native heap 检查Android native 内存泄露
  8. 通过GitHub API下载Repository源码Zip文件的方法
  9. Sony 32G U盘 现形记
  10. U盘大小只有几kb的恢复办法以及老毛桃修复windows引导错误