摘要

数据库锁设计的初衷是处理并发问题。作为多用户共享的资源,当出现并发访问的时候,数据库需要合理地控制资源的访问规则。例如,操作缓冲池中的LRU列表,删除、添加、移动LRU列表中的元素,为了保证一致性,必须有锁的介入。数据库系统使用锁是为了支持对共享资源进行并发访问,提供数据的完整性和一致性。人们认为行级锁总会增加开销。实际上,只有当实现本身会增加开销时,行级锁才会增加开销。InnoDB存储引擎不需要锁升级,因为一个锁和多个锁的开销是相同的。InnoDB存储引擎锁的实现和Oracle数据库非常类似,提供一致性的非锁定读、行级锁支持。行级锁没有相关额外的开销,并可以同时得到并发性和--致性。根据加锁的范围,MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类。

一、Mysql中锁的类型

1.1 全局锁原理

全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令"Flush tables with read lock (FTWRL)"。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

全局锁的典型使用场景是,做全库逻辑备份。也就是把整库每个表都 select 出来存成文本。以前有一种做法,是通过 FTWRL 确保不会有其他线程对数据库做更新,然后对整个库做备份。注意,在备份过程中整个库完全处于只读状态。

但是让整库都只读,听上去就很危险:

  • 如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;
  • 如果你在从库上备份,那么备份期间从库不能执行主库同步过来的 binlog,会导致主从延迟。

假设你现在要维护某一个购买系统,关注的是用户账户余额表和用户课程表。现在发起一个逻辑备份。假设备份期间,有一个用户,他购买了一门课程,业务逻辑里就要扣掉他的余额,然后往已购课程里面加上一门课。如果时间顺序上是先备份账户余额表 (u_account),然后用户购买,然后备份用户课程表 (u_course),会怎么样呢?你可以看一下这个图:

可以看到,用户 A 的数据状态是“账户余额没扣,但是用户课程表里面已经多了一门课”。如果后面用这个备份来恢复数据的话,用户 A 就发现,自己赚了。相反的如果备份表的顺序反过来,先备份用户课程表再备份账户余额表,那就出现的余额被扣了,但是的没有的相关的课程添加经进lia,用户的这个时候可能就生气,投诉了。

正确的方式是:可重复读隔离级别下开启一个事务。官方自带的逻辑备份工具是mysqldump。当 mysqldump 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。

为什么还需要FTWRL呢?

一致性读是好,但前提是引擎要支持这个隔离级别。比如,对于 MyISAM 这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用 FTWRL 命令了。所以,single-transaction 方法只适用于所有的表使用事务引擎的库。如果有的表使用了不支持事务的引擎,那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员使用 InnoDB 替代 MyISAM 的原因之一。

既然要全库只读,为什么不使用 set global readonly=true 的方式呢

readonly 方式也可以让全库进入只读状态,主要有两个原因:

  • 1.在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,我不建议你使用。
  • 2.在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。

业务的更新不只是增删改数据(DML),还有可能是加字段等修改表结构的操作(DDL)。不论是哪种方法,一个库被全局锁上以后,你要对里面任何一个表做加字段操作,都是会被锁住的。即使没有被全局锁住,加字段也不是就能一帆风顺的。

1.2 表级锁原理

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。lock tables … read/write与FTWRL 类似可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables 语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。

举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能访问其他表。

在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。而对于InnoDB 这种支持行锁的引擎,一般不使用lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大。

另一类表级的锁是 MDL(metadata lock)。MDL不需要显式使用,在访问一个表的时候会被自动加上。MDL 的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。因此,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁。

  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

虽然 MDL锁是系统默认会加的,但却是你不能忽略的一个机制。比如下面这个例子,我经常看到有人掉到这个坑里:给一个小表加个字段,导致整个库挂了。你肯定知道,给一个表加字段,或者修改字段,或者加索引,需要扫描全表的数据。在对大表操作的时候,你肯定会特别小心,以免对线上服务造成影响。而实际上,即使是小表,操作不慎也会出问题。假设表t是一个小表。备注:实验环境是MySQL 5.6。

我们可以看到 session A 先启动,这时候会对表 t 加一个 MDL 读锁。由于 session B 需要的也是 MDL 读锁,因此可以正常执行。之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 t 上新申请 MDL 读锁的请求也会被 session C 阻塞。所有对表的增删改查操作都需要先申请 MDL 读锁,就都被锁住,等于这个表现在完全不可读写了。

如果某个表上的查询语句频繁,而且客户端有重试机制,也就是说超时后会再起一个新 session 再请求的话,这个库的线程很快就会爆满。事务中的 MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。

如何安全地给小表加字段?首先我们要解决长事务,事务不提交,就会一直占着 MDL 锁。在 MySQL 的 information_schema 库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做 DDL 变更的表刚好有长事务在执行,要考虑先暂停 DDL,或者 kill 掉这个长事务。

假设,如果你要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而你不得不加个字段,你该怎么做呢?

这时候 kill 可能未必管用,因为新的请求马上就来了。比较理想的机制是,在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。

MariaDB 已经合并了 AliSQL的这个功能,所以这两个开源分支目前都支持 DDL NOWAIT/WAIT n 这个语法。

ALTER TABLE tbl_name NOWAIT add column ...ALTER TABLE tbl_name WAIT N add column ... 

MYSQL(InnoDB引擎下)什么时候使用表锁?

对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个另特殊事务中,也可以考虑使用表级锁。

  • 事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。
  • 事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。当然,应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表。

在InnoDB下 ,使用表锁要注意以下两点。

  • 使用LOCK TALBES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层MySQL Server负责的,仅当autocommit=0、innodb_table_lock=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁;否则,InnoDB将无法自动检测并处理这种死锁。
  • 在用LOCAK TABLES对InnoDB锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCAK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK产不能释放用LOCAK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁,正确的方式见如下语句。

1.3 行锁原理

MySQL的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如 MyISAM引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁,对于这种引擎的表,同一张表上任何时刻只能有一个更新在执行,这就会影响到业务并发度。InnoDB 是支持行锁的,这也是 MyISAM 被 InnoDB 替代的重要原因之一。行锁就是针对数据表中行记录的锁。这很好理解,比如事务 A 更新了一行,而这时候事务 B 也要更新同一行,则必须等事务 A 的操作完成后才能进行更新。当然,数据库中还有一些没那么一目了然的概念和设计,这些概念如果理解和使用不当,容易导致程序出现非预期行为,比如两阶段锁。在下面的操作序列中,事务 B 的 update 语句执行时会是什么现象呢?假设字段 id 是表 t 的主键。

这个问题的结论取决于事务 A 在执行完两条 update 语句后,持有哪些锁,以及在什么时候释放。实际上事务 B 的 update 语句会被阻塞,直到事务 A 执行 commit 之后,事务 B 才能继续执行。知道了这个答案,你一定知道了事务 A 持有的两个记录的行锁,都是在 commit 的时候才释放的。

在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

假设你负责实现一个电影票在线交易业务,顾客 A 要在影院 B 购买电影票。我们简化一点,这个业务需要涉及到以下操作:

  1. 从顾客 A 账户余额中扣除电影票价;
  2. 给影院 B 的账户余额增加这张电影票价;
  3. 记录一条交易日志。

也就是说,要完成这个交易,我们需要update 两条记录,并insert 一条记录。当然,为了保证交易的原子性,我们要把这三个操作放在一个事务中。那么,你会怎样安排这三个语句在事务中的顺序呢?试想如果同时有另外一个顾客 C 要在影院 B 买票,那么这两个事务冲突的部分就是语句 2 了。因为它们要更新同一个影院账户的余额,需要修改同一行数据。

根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。所以,如果你把语句 2 安排在最后,比如按照 3、1、2 这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。

  1. 记录一条交易日志。
  2. 从顾客 A 账户余额中扣除电影票价;
  3. 给影院 B 的账户余额增加这张电影票价;

好了,现在由于你的正确设计,影院余额这一行的行锁在一个事务中不会停留很长时间。但是,如果这个影院做活动,可以低价预售一年内所有的电影票,而且这个活动只做一天。于是在活动时间开始的时候,你的 MySQL 就挂了。你登上服务器一看,CPU 消耗接近 100%,但整个数据库每秒就执行不到 100 个事务。这是什么原因呢?

1.4 mysql的死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。这里我用数据库中的行锁举个例子。

这时候,事务 A 在等待事务 B 释放 id=2 的行锁,而事务 B 在等待事务 A 释放 id=1 的行锁。 事务 A 和事务 B 在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。

在 InnoDB 中,innodb_lock_wait_timeout 的默认值是 50s,意味着如果采用第一个策略,当出现死锁以后,第一个被锁住的线程要过 50s 才会超时退出,然后其他线程才有可能继续执行。对于在线服务来说,这个等待时间往往是无法接受的。但是,我们又不可能直接把这个时间设置成一个很小的值,比如 1s。这样当出现死锁的时候,确实很快就可以解开,但如果不是死锁,而是简单的锁等待呢?所以,超时时间设置太短的话,会出现很多误伤。

正常情况下我们还是要采用第二种策略,即:主动死锁检测,而且 innodb_deadlock_detect 的默认值本身就是 on。主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。你可以想象一下这个过程:每当一个事务被锁的时候,就要看看它所依赖的线程有没有被别人锁住,如此循环,最后判断是否出现了循环等待,也就是死锁。如果是我们上面说到的所有事务都要更新同一行的场景呢?

每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 O(n) 的操作。假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。因此,你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。

二、Mysql的其他锁类型

2.1 lock 与latch的区别

latch一般称为门锁(轻量级的锁),因为其要求锁定的时间必须非常短。若持续的时间长,则应用的性能会非常差。在InnoDB存储引擎中,latch 又可以分为mutex(互斥量〉和rwlock(读写锁)。其目的是用来保证并发线程操作临界资源的正确性,并且通常没有死锁检测的机制。

lock的对象是事务,用来锁定的是数据库中的对象,如表、页、行。并且一般lock的对象仅在事务commit或rollback后进行释放(不同事务隔离级别释放的时间可能不同)。lock,正如在大多数数据库中一样,是有死锁机制的。

lock latch
对象 事务 线程
保护 数据库内容 内存结构
持续时间 整个事务过程 临界资源
模式 行锁、表锁、意向锁 读写锁、互斥锁
死锁 通过waits-for graph time-out等机制进行死锁检索与处理 无死锁检测与处理机制,通过应用程序加锁的顺序保证无思索的发送。
存在于 LockManager的哈希表中 每一个数据结构的对象中

2.2 lnnoDB存储引擎中的锁

共享锁(S Lock),允许事务读一行数据。排他锁(X Lock),允许事务删除或更新一行数据。(x锁)  如果一个事务T1已经获得了行r的共享锁,那么另外的事务T2可以立即获得行r的共享锁,因为读取并没有改变行r的数据,称这种情况为锁兼容(Lock Compatible)。但若有其他的事务T3想获得行r的排他锁,则其必须等待事务T1、T2释放行r上的共享锁——这种情况称为锁不兼容。

X锁 S锁
X 不兼容 不兼容
S 不兼容 兼容

InnoDB存储引擎支持多粒度( granular)锁定,这种锁定允许事务在行级上的锁和表级上的锁同时存在。为了支持在不同粒度上进行加锁操作,InnoDB存储引擎支持一种额外的锁方式,称之为意向锁(Intention Lock)。意向锁是将锁定的对象分为多个层次,意向锁意味着事务希望在更细粒度(fine granularity)上进行加锁。InnoDB存储引擎支持意向锁设计比较简练,其意向锁即为表级别的锁。设计目的主要是为了在一个事务中揭示下一行将被请求的锁类型。其支持两种意向锁:

  • 意向共享锁(IS Lock),事务想要获得一张表中某几行的共享锁
  • 意向排他锁(IX Lock),事务想要获得一张表中某几行的排他锁

由于InnoDB存储引擎支持的是行级别的锁,因此意向锁其实不会阻塞除全表扫以外的任何请求。意向锁之间是相互兼容的是可以同时加锁的。。那是因为的数据库中的意向锁是表锁。而x s 是属于行锁。

2.3 一致性非锁定读原理

一致性的非锁定读(consistent nonlocking read)是指InnoDB存储引擎通过行多版本控制(multi versioning)的方式来读取当前执行时间数据库中行的数据。如果读取的行正在执行DELETE或UPDATE操作,这时读取操作不会因此去等待行上锁的释放。相反地,InnoDB存储引擎会去读取行的一个快照数据。

InnoDB存储引擎-致性的非锁定读。因为不需要等待访问的行上X(排他锁 )锁的释放。快照数据是指该行的之前版本的数据,该实现是通过undo段来完成。而undo用来在事务中回滚数据,因此快照数据本身是没有额外的开销。此外,读取快照数据是不需要上锁的,因为没有事务需要对历史的数据进行修改操作。可以看到,非锁定读机制极大地提高了数据库的并发性。在 InnoDB存储引擎的默认设置下,这是默认的读取方式,即读取不会占用和等待表上的锁。但是在不同事务隔离级别下,读取的方式不同,并不是在每个事务隔离级别下都是采用非锁定的一致性读。此外,即使都是使用非锁定的一致性读,但是对于快照数据的定义也各不相同。通过图6-4可以知道,快照数据其实就是当前行数据之前的历史版本,每行记录可能有多个版本。就图6-4所显示的,一个行记录可能有不止一个快照数据,一般称这种技术为行多版本技术。由此带来的并发控制,称之为多版本并发控制(Multi VersionConcurrency Control,MVCC)。

在事务隔离级别READ COMMITTED和REPEATABLE READ (InnoDB存储引擎的默认事务隔离级别 读已提交)下,InnoDB存储引擎使用非锁定的一致性读。然而,对于快照数据的定义却不相同。

  • 在 READ COMMITTED(读已提交事务)事务隔离级别下,对于快照数据,非一致性读总是读取被锁定行的最新一份快照数据。
  • 而在REPEATABLE READ(可以重复读的)事务隔离级别下,对于快照数据,非一致性读总是读取事务开始时的行数据版本。最开始数据的

2.4 InnoDB锁的算法实现

InnoDB存储引擎有3种行锁的算法,其分别是:

  • Record Lock:单个行记录上的锁
  • Gap Lock:间隙锁,锁定一个范围,但不包含记录本身
  • Next-Key Lock : Gap Lock+Record Lock,锁定一个范围,并且锁定记录本身

Record Lock总是会去锁住索引记录,如果InnoDB存储引擎表在建立的时候没有设置任何一个索引,那么这时InnoDB存储引擎会使用隐式的主键来进行锁定。

Next-Key Lock是结合了Gap Lock和 Record Lock的一种锁定算法,在Next-KeyLock算法下,InnoDB对于行的查询都是采用这种锁定算法。所以在避免了幻读的问题的。保证了数据的一致性。

2.5 MYSQL的幻读在InnoDB解决方案

在默认的事务隔离级别下,即 REPEATABLE READ 下,InnoDB存储引擎采用Next-Key Locking 机制来避免幻读。这点可能不同于与其他的数据库,如Oracle数据库,因为其可能需要在SERIALIZABLE的事务隔离级别下才能解决幻读。幻读是指在同一事务下,连续执行两次同样的SQL语句可能导致不同的结果,第二次的SQL语句可能会返回之前不存在的行。下面将演示这个例子,使用前一小节所创建的表t。表t由1、2、5这三个值组成,若这时事务T1执行如下的SQL语句:

SELECT *FROMt WHERE a> 2FOR UPDATE;

注意这时事务T1并没有进行提交操作,上述应该返回5这个结果。若与此同时,另一个事务T2插入了4这个值,并且数据库允许该操作,那么事务T1再次执行上述SQL语句会得到结果4和5。这与第一次得到的结果不同,违反了事务的隔离性,即当前事务能够看到其他事务的结果。

InnoDB存储引擎采用Next-Key Locking 的算法避免幻读。使用上面SQL语句其锁住的不是5这单个值,而是对(2,+ o)这个范围加了X锁。因此任何对于这个范围的插入都是不被允许的,从而避免幻读。InnoDB存储引擎默认的事务隔离级别是REPEATABLE READ,在该隔离级别下,其采用Next-Key Locking的方式来加锁。而在事务隔离级别READ COMMITTED 下,其仅采用Record Lock,因此在上述的示例中,会话A需要将事务的隔离级别设置为READ COMMITTED。

2.6 数据库的乐观锁和悲观锁

数据库管理系统中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性。乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段。

  • 悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。在查询完数据的时候就把事务锁起来,直到提交事务。实现方式:使用数据库中的锁机制。
  • 乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。在修改数据的时候把事务锁起来,通过Version的方式来进行锁定。实现方式:一般会使用版本号机制或CAS算法实现。

两种锁的使用场景

  • 从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。
  • 但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行Retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。

三、高并发下死锁解决方案

根据上面的分析,我们来讨论一下,怎么解决由这种热点行更新导致的性能问题呢?问题的症结在于,死锁检测要耗费大量的 CPU 资源。

  • 一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。
  • 另一个思路是控制并发度。根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有 10 个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有 600 个客户端,这样即使每个客户端控制到只有 5 个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到 3000。

因此,这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改 MySQL 源码的人,也可以做在 MySQL 里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作了。可能你会问,如果团队里暂时没有数据库方面的专家,不能实现这样的方案,能不能从设计上优化这个问题呢?

你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如 10 个记录,影院的账户总额等于这 10 个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的 1/10,可以减少锁等待个数,也就减少了死锁检测的 CPU 消耗。这个方案看上去是无损的,但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可能会减少,比如退票逻辑,那么这时候就需要考虑当一部分行记录变成 0 的时候,代码要有特殊处理。

五、数据库加锁原则

  • 原则 1:加锁的基本单位是 next-key lock。next-key lock 是前开后闭区间。
  • 原则 2:查找过程中访问到的对象才会加锁。
  • 优化 1:索引上的等值查询,给唯一索引加锁的时候,next-key lock 退化为行锁。
  • 优化 2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock 退化为间隙锁。
  • 一个 bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止。

5.1 等值查询间隙锁

CREATE TABLE `t` (`id` int(11) NOT NULL,`c` int(11) DEFAULT NULL,`d` int(11) DEFAULT NULL,PRIMARY KEY (`id`),KEY `c` (`c`)
) ENGINE=InnoDB;insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);

由于表 t 中没有 id=7 的记录,所以用我们上面提到的加锁规则判断一下的话:

  1. 根据原则 1,加锁单位是 next-key lock,session A 加锁范围就是 (5,10];
  2. 同时根据优化 2,这是一个等值查询 (id=7),而 id=10 不满足查询条件,next-key lock 退化成间隙锁,因此最终加锁的范围是 (5,10)。

session B要往这个间隙里面插入id=8的记录会被锁住,但是session C修改id=10这行是可以的。

5.2 非唯一索引等值锁

看到这个例子,你是不是有一种“该锁的不锁,不该锁的乱锁”的感觉。这里 session A 要给索引 c 上 c=5 的这一行加上读锁。

  1. 根据原则 1,加锁单位是 next-key lock,因此会给 (0,5] 加上 next-key lock。
  2. 要注意 c 是普通索引,因此仅访问 c=5 这一条记录是不能马上停下来的,需要向右遍历,查到 c=10 才放弃。根据原则 2,访问到的都要加锁,因此要给 (5,10] 加 next-key lock。
  3. 但是同时这个符合优化 2:等值判断,向右遍历,最后一个值不满足 c=5 这个等值条件,因此退化成间隙锁 (5,10)。
  4. 根据原则 2 ,只有访问到的对象才会加锁,这个查询使用覆盖索引,并不需要访问主键索引,所以主键索引上没有加任何锁,这就是为什么 session B 的 update 语句可以执行完成。

但 session C 要插入一个 (7,7,7) 的记录,就会被 session A 的间隙锁 (5,10) 锁住。

需要注意,在这个例子中,lock in share mode 只锁覆盖索引,但是如果是 for update 就不一样了。 执行for update 时,系统会认为你接下来要更新数据,因此会顺便给主键索引上满足条件的行加上行锁。这个例子说明,锁是加在索引上的;同时,它给我们的指导是,如果你要用 lock in share mode 来给行加读锁避免数据被更新的话,就必须得绕过覆盖索引的优化,在查询字段中加入索引中不存在的字段。比如,将 session A 的查询语句改成 select d from t where c=5 lock in share mode。

5.3 主键索引范围锁

对于我们这个表 t,下面这两条查询语句,加锁范围相同吗?mysql> select * from t where id=10 for update;mysql> select * from t where id>=10 and id<11 for update;

你可能会想,id 定义为 int 类型,这两个语句就是等价的吧?其实,它们并不完全等价。在逻辑上,这两条查语句肯定是等价的,但是它们的加锁规则不太一样。现在,我们就让 session A 执行第二个查询语句,来看看加锁效果。

现在我们就用前面提到的加锁规则,来分析一下 session A 会加什么锁呢?

  1. 开始执行的时候,要找到第一个 id=10 的行,因此本该是 next-key lock(5,10]。 根据优化 1, 主键 id 上的等值条件,退化成行锁,只加了 id=10 这一行的行锁。
  2. 范围查找就往后继续找,找到 id=15 这一行停下来,因此需要加 next-key lock(10,15]。

所以,session A 这时候锁的范围就是主键索引上,行锁 id=10 和 next-key lock(10,15]。这样,session B 和 session C 的结果你就能理解了。这里你需要注意一点,首次 session A 定位查找 id=10 的行的时候,是当做等值查询来判断的,而向右扫描到 id=15 的时候,用的是范围查询判断。

5.4 非唯一索引范围锁

这次 session A 用字段 c 来判断,加锁规则跟案例三唯一的不同是:在第一次用 c=10 定位记录的时候,索引 c 上加了 (5,10] 这个 next-key lock 后,由于索引 c 是非唯一索引,没有优化规则,也就是说不会蜕变为行锁,因此最终 sesion A 加的锁是,索引 c 上的 (5,10] 和 (10,15] 这两个 next-key lock。所以从结果上来看,sesson B 要插入(8,8,8) 的这个 insert 语句时就被堵住了。这里需要扫描到 c=15 才停止扫描,是合理的,因为 InnoDB 要扫到 c=15,才知道不需要继续往后找了。

5.5 唯一索引范围锁 bug

我们已经用到了加锁规则中的两个原则和两个优化,接下看一个关于加锁规则中 bug 的案例。

session A 是一个范围查询,按照原则 1 的话,应该是索引 id 上只加 (10,15] 这个 next-key lock,并且因为 id 是唯一键,所以循环判断到 id=15 这一行就应该停止了。但是实现上,InnoDB 会往前扫描到第一个不满足条件的行为止,也就是 id=20。而且由于这是个范围扫描,因此索引 id 上的 (15,20] 这个 next-key lock 也会被锁上。

所以你看到了,session B 要更新 id=20 这一行,是会被锁住的。同样地,session C 要插入 id=16 的一行,也会被锁住。照理说,这里锁住 id=20 这一行的行为,其实是没有必要的。因为扫描到 id=15,就可以确定不用往后再找了。但实现上还是这么做了,因此我认为这是个 bug。

5.6 非唯一索引上存在"等值"的例子

了更好地说明“间隙”这个概念。这里,我给表 t 插入一条新记录。新插入的这一行 c=10,也就是说现在表里有两个 c=10 的行。那么,这时候索引 c 上的间隙是什么状态了呢?你要知道,由于非唯一索引上包含主键的值,所以是不可能存在“相同”的两行的。

mysql> insert into t values(30,10,30);

可以看到,虽然有两个 c=10,但是它们的主键值 id 是不同的(分别是 10 和 30),因此这两个 c=10 的记录之间,也是有间隙的。图中我画出了索引 c 上的主键 id。为了跟间隙锁的开区间形式进行区别,我用 (c=10,id=30) 这样的形式,来表示索引上的一行。

这次我们用 delete 语句来验证。注意,delete 语句加锁的逻辑,其实跟 select ... for update 是类似的,也就是我在文章开始总结的两个“原则”、两个“优化”和一个“bug”。

这时,session A 在遍历的时候,先访问第一个 c=10 的记录。同样地,根据原则 1,这里加的是 (c=5,id=5) 到 (c=10,id=10) 这个 next-key lock。然后,session A 向右查找,直到碰到 (c=15,id=15) 这一行,循环才结束。根据优化 2,这是一个等值查询,向右查找到了不满足条件的行,所以会退化成 (c=10,id=10) 到 (c=15,id=15) 的间隙锁。这个蓝色区域左右两边都是虚线,表示开区间,即 (c=5,id=5) 和 (c=15,id=15) 这两行上都没有锁。

5.7 limit 语句加锁

这个例子里,session A 的 delete 语句加了 limit 2。你知道表 t 里 c=10 的记录其实只有两条,因此加不加 limit 2,删除的效果都是一样的,但是加锁的效果却不同。可以看到,session B 的 insert 语句执行通过了,跟案例六的结果不同。这是因为,案例七里的 delete 语句明确加了 limit 2 的限制,因此在遍历到 (c=10, id=30) 这一行之后,满足条件的语句已经有两条,循环就结束了。因此,索引c上的加锁范围就变成从(c=5,id=5) 到(c=10,id=30) 这个前开后闭区间,如图所示:

可以看到,(c=10,id=30)之后的这个间隙并没有在加锁范围里,因此 insert 语句插入 c=12 是可以执行成功的。这个例子对我们实践的指导意义就是,在删除数据的时候尽量加 limit。这样不仅可以控制删除数据的条数,让操作更安全,还可以减小加锁的范围。

六、死锁的实例

我们在分析的时候,是按照 next-key lock 的逻辑来分析的,因为这样分析比较方便。最后我们再看一个案例,目的是说明:next-key lock 实际上是间隙锁和行锁加起来的结果。

现在,我们按时间顺序来分析一下为什么是这样的结果。

  1. session A 启动事务后执行查询语句加lock in share mode,在索引 c 上加了 next-key lock(5,10] 和间隙锁 (10,15);
  2. session B 的 update 语句也要在索引 c 上加 next-key lock(5,10] ,进入锁等待;
  3. 然后 session A 要再插入 (8,8,8) 这一行,被 session B 的间隙锁锁住。由于出现了死锁,InnoDB 让 session B 回滚。

你可能会问,session B 的 next-key lock 不是还没申请成功吗?其实是这样的,session B 的“加 next-key lock(5,10] ”操作,实际上分成了两步,先是加 (5,10) 的间隙锁,加锁成功;然后加 c=10 的行锁,这时候才被锁住的。也就是说,我们在分析加锁规则的时候可以用 next-key lock 来分析。但是要知道,具体执行的时候,是要分成间隙锁和行锁两段来执行的。

博文参考

《极客时间MYSQL实战45讲》

MySQL——数据库锁原理相关推荐

  1. 徐无忌MySQL笔记:MySQL数据库锁有几种?实现原理是什么?

    徐无忌MySQL笔记:MySQL数据库锁有几种?实现原理是什么? 完成:第一遍 1.数据库并发控制通过什么实现? 当多个事务并发方法对同一个数据进行操作 通过数据库锁实现对数据库的并发控制. 2.锁类 ...

  2. Mysql数据库管理系统原理及基本操作

    文章目录 Mysql数据库管理系统原理 一.引子: 二.数据库种类: 三.数据库解决的问题: 四.数据库的作用: 五.SQL结构语句: 六.关系型数据库结构: 七.存储引擎: 八.数据库存储和查询: ...

  3. Mysql 数据库锁表的原因和解决方法

    Mysql 数据库锁表的原因和解决方法 参考文章: (1)Mysql 数据库锁表的原因和解决方法 (2)https://www.cnblogs.com/xinruyi/p/11108795.html ...

  4. MySQL数据库锁介绍

    MySQL数据库锁介绍 1. 锁的基本概念 当并发事务同时访问一个资源时,有可能导致数据不一致,因此需要一种机制来将数据访问顺序化,以保证数据库数据的一致性. 锁就是其中的一种机制. 我们可以用商场的 ...

  5. MYSQL数据库锁概念

    MYSQL数据库锁概念 数据库中的锁,就是数据库协调多个进程或者线程并发访问某一资源的机制. 除了传统的计算机资源(CPU .RAM.磁盘I/O)的争用之外,数据也是提供一种多用户共享的资源. 锁是为 ...

  6. Mysql数据库主从原理

    一.什么是数据库主从 主从复制,是用来建立一个和主数据库完全一样的数据库环境,称为从数据库.从数据库存储的数据和主数据是完全一模一样的. 二.主从复制的原理 Mysql数据库主从原理大致有三个步骤: ...

  7. MySQL数据库——锁机制

    1 认识锁机制 在认识锁机制前,首先思考一个问题:在同一时刻,用户A和用户B同时要获取并修改sh_goods表中id等于2的stock库存量值,此时会发生什么呢? 假设在初始情况下,sh_ goods ...

  8. mysql中锁原理及for update悲观锁的详解

    mysql 中有多种多样的锁,今天我们具体分享一下: 一.mysql中乐观锁和悲观锁原理及种类: ​        乐观锁并不是数据库自带的,如果需要使用乐观锁,那么需要自己去实现,一般情况下,我们会 ...

  9. Mysql数据库存储原理

    转载:https://blog.csdn.net/weixin_40612082/article/details/82179714 现在在做数据库服务器的开发工作,今天被问到存储过程,当时只是简单地回 ...

最新文章

  1. php-fpm linux 权限,nginx/php-fpm及网站目录的权限设置
  2. SAP Commerce Cloud 的 build 过程
  3. vb访问mysql容易死机_VB访问MySQL
  4. java synchronized块_Java多线程同步代码块Synchronized
  5. 电脑遇到问题需要重新启动_如何解决电脑风扇转一下就停开不了机的问题-系统城...
  6. linux远程连接telnet命令,Linux中的ssh,ping,ftp,telnet远程登录及通信相关的命令...
  7. golang在windows下编译Linux下的文件
  8. POI java导出Excel宏文件
  9. nodejs gm 中文 linux,nodejs gm drawText使用(中文、字体、大小及颜色)
  10. 解决 Refused to display in a frame because it set 'X-Frame-Options' to 'deny'.问题
  11. 对云桌面、桌面云、私有云的一些看法
  12. web前端培训 - 12个有用的 JavaScript 代码片段
  13. Python学习总结(10) python中数据的常用操作之切片和迭代
  14. MySQL中date、datetime、timestamp、time、year的区别
  15. 大数据Spark(三):框架模块初步了解
  16. 高维非空间数据可视化
  17. 埃森哲java笔试_【埃森哲Java面试】埃森哲java面试-看准网
  18. 【UVA】【11021】麻球繁衍
  19. 幅值单位是v吗_电压幅值什么意思
  20. C语言初级——变量、常量

热门文章

  1. 如何将xml格式转换为yolov5所需的txt格式
  2. Python:实现scoring评分算法(附完整源码)
  3. MapReduce快速入门系列(4) | Hadoop序列化
  4. 「学习笔记」回文树/回文自动机(Palindromic Tree)
  5. 软件工程McCabe环路复杂度计算,自环情况详解。
  6. 多线程(二)互斥锁详解
  7. Python自定义一个异常类【注释详细】
  8. 【VPD】使用Oracle VPD(Virtual Private Database)限制用户获取数据的范围
  9. html长方形代码_Graphics绘图,画矩形,长方形(入门级)
  10. AFNetworking 2.0