本篇文章参考了Transformer模型详解(图解最完整版)
,相当于是它的转载,

一、前言

Transformer 网络架构架构由 Ashish Vaswani 等人在 Attention Is All You Need一文中提出,并用于Google的机器翻译任务。但是该模型并没有用到以往的RNN或CNN网络架构,而是采用注意力机制。这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。

为方便编写,以下的Transformer模型简称T模型

二、Transformer的整体架构

上图就是T模型的大致流程,可以看到,它分为编码器和解码器,其中编码器和解码器中中各有六个Block。

三、T模型的大致流程如下

3.1第一步

获取输入句子的每一个单词的表示向量 X,
X由单词的 Embedding(Embedding就是从原始数据提取出来的Feature) 和单词位置的 Embedding 相加得到。
图形如下:

3.2第二步

将得到的单词表示向量矩阵x 传入 Encoder 中,经过 6 个 Encoder block 后可以得到句子所有单词的编码信息矩阵 C,如下图。单词向量矩阵用Xn*d 表示, n 是句子中单词个数,d 是表示向量的维度 (论文中 d=512)。每一个 Encoder block 输出的矩阵维度与输入完全一致。

3.3第三步

第三步:将 Encoder 输出的编码信息矩阵 C传递到 Decoder 中,Decoder 依次会根据当前翻译过的单词 1~ i 翻译下一个单词 i+1,如下图所示。在使用的过程中,翻译到单词 i+1 的时候需要通过 Mask (掩盖) 操作遮盖住 i+1 之后的单词。


上图 Decoder 接收了 Encoder 的编码矩阵 C,然后首先输入一个翻译开始符 “”,预测第一个单词 “I”;然后输入翻译开始符 “” 和单词 “I”,预测单词 “have”,以此类推。这就是T模型的大致流程

四、T模型的详细流程

4.1T模型的输入

4.1.1 单词 Embedding

单词的 Embedding 有很多种方式可以获取,例如可以采用 Word2Vec、Glove 等算法预训练得到,也可以在 Transformer 中训练得到。

4.1.2 位置 Embedding

Transformer 中除了单词的 Embedding,还需要使用位置 Embedding 表示单词出现在句子中的位置。因为 Transformer 不采用 RNN 的结构,而是使用全局信息,不能利用单词的顺序信息,而这部分信息对于 NLP 来说非常重要。所以 Transformer 中使用位置 Embedding 保存单词在序列中的相对或绝对位置。

位置 Embedding 用 PE表示,PE 的维度与单词 Embedding 是一样的。PE 可以通过训练得到,也可以使用某种公式计算得到。在 Transformer 中采用了后者,计算公式如下:

其中,pos 表示单词在句子中的位置,d 表示 PE的维度 (与词 Embedding 一样),2i 表示偶数的维度,2i+1 表示奇数维度 (即 2i≤d, 2i+1≤d)。
使用这种公式计算 PE 有以下的好处:

  1. 使 PE 能够适应比训练集里面所有句子更长的句子,假设训练集里面最长的句子是有 20 个单词,突然来了一个长度为 21 的句子,则使用公式计算的方法可以计算出第 21 位的 Embedding。

  2. 可以让模型容易地计算出相对位置,对于固定长度的间距 k,PE(pos+k) 可以用 PE(pos) 计算得到。因为 Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B), Cos(A+B) = Cos(A)Cos(B) - Sin(A)Sin(B)。

将单词的词 Embedding 和位置 Embedding 相加,就可以得到单词的表示向量 x,x 就是 Transformer 的输入。

4.2Self-Attention(自注意力机制)

上图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。但这不是T模型的结构图,它只是一个Block,而T模型里面共有12个Bolck

红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。Multi-Head Attention 上方还包括一个 Add & Norm 层,Add 表示残差连接 (Residual Connection) 用于防止网络退化,Norm 表示 Layer Normalization,用于对每一层的激活值进行归一化。

因为 Self-Attention是 Transformer 的重点,所以我们重点关注 Multi-Head A
ttention 以及 Self-Attention,首先详细了解一下 Self-Attention 的内部逻辑。

4.2.1 Self-Attention 结构

Self-Attention 结构
上图是 Self-Attention 的结构,在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。

4.2.2 Q, K, V 的计算

Self-Attention 的输入用矩阵X进行表示,则可以使用线性变阵矩阵WQ,WK,WV计算得到Q,K,V。计算如下图所示,注意 X, Q, K, V 的每一行都表示一个单词。

4.2.3 Self-Attention 的输出

得到矩阵 Q, K, V之后就可以计算出 Self-Attention 的输出了,计算的公式如下:

Self-Attention 的输出

公式中计算矩阵Q和K每一行向量的内积,为了防止内积过大,因此除以 [公式] 的平方根。Q乘以K的转置后,得到的矩阵行列数都为 n,n 为句子单词数,这个矩阵可以表示单词之间的 attention 强度。下图为Q乘以 [公式] ,1234 表示的是句子中的单词。

Q乘以K的转置的计算
得到[公式] 之后,使用 Softmax 计算每一个单词对于其他单词的 attention 系数,公式中的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都变为 1.

对矩阵的每一行进行 Softmax
得到 Softmax 矩阵之后可以和V相乘,得到最终的输出Z。

Self-Attention 输出
上图中 Softmax 矩阵的第 1 行表示单词 1 与其他所有单词的 attention 系数,最终单词 输出,如下图所示:

4.2.4 Multi-Head Attention

在上一步,我们已经知道怎么通过 Self-Attention 计算得到输出矩阵 Z,而 Multi-Head Attention 是由多个 Self-Attention 组合形成的,下图是论文中 Multi-Head Attention 的结构图。


Multi-Head Attention
从上图可以看到 Multi-Head Attention 包含多个 Self-Attention 层,首先将输入X分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵Z。下图是 h=8 时候的情况,此时会得到 8 个输出矩阵Z。

多个 Self-Attention得到 8 个输出矩阵 之后,Multi-Head Attention 将它们拼接在一起 (Concat),然后传入一个Linear层,得到 Multi-Head Attention 最终的输出Z。

Multi-Head Attention 的输出
可以看到 Multi-Head Attention 输出的矩阵Z与其输入的矩阵X的维度是一样的。

4.3Encoder结构


上图红色部分是 Transformer 的 Encoder block 结构,可以看到是由 Multi-Head Attention, Add & Norm, Feed Forward, Add & Norm 组成的。刚刚已经了解了 Multi-Head Attention 的计算过程,现在了解一下 Add & Norm 和 Feed Forward 部分。

4.3.1Add & Norm

Add & Norm 层由 Add 和 Norm 两部分组成,其计算公式如下:

其中 X表示 Multi-Head Attention 或者 Feed Forward 的输入,MultiHeadAttention(X) 和 FeedForward(X) 表示输出 (输出与输入 X 维度是一样的,所以可以相加)。

Add指 X+MultiHeadAttention(X),是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到:


Norm指 Layer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的,这样可以加快收敛。

4.3.2 Feed Forward

Feed Forward 层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,对应的公式如下。

X是输入,Feed Forward 最终得到的输出矩阵的维度与X一致

4.3.3 组成Encoder

通过上面描述的 Multi-Head Attention, Feed Forward, Add & Norm 就可以构造出一个 Encoder block,Encoder block 接收输入矩阵 ,并输出一个矩阵 。通过多个 Encoder block 叠加就可以组成 Encoder。

第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是编码信息矩阵 C,这一矩阵后续会用到 Decoder 中。

4.4Decoder结构


上图红色部分为 Transformer 的 Decoder block 结构,与 Encoder block 相似,但是存在一些区别:

包含两个 Multi-Head Attention 层。

  • 第一个 Multi-Head Attention 层采用了 Masked 操作。
  • 第二个 Multi-Head Attention层的K, V矩阵使用 Encoder的编码信息矩阵C进行计算,而Q使用上一个 Decoder block 的输出计算。
  • 最后有一个Softmax 层计算下一个翻译单词的概率。
4.4.1 第一个 Multi-Head Attention

Decoder block 的第一个 Multi-Head Attention 采用了 Masked 操作,因为在翻译的过程中是顺序翻译的,即翻译完第 i 个单词,才可以翻译第 i+1 个单词。通过 Masked 操作可以防止第 i 个单词知道 i+1 个单词之后的信息。下面以 “我有一只猫” 翻译成 “I have a cat” 为例,了解一下 Masked 操作。

下面的描述中使用了类似 Teacher Forcing 的概念,在 Decoder 的时候,是需要根据之前的翻译,求解当前最有可能的翻译,如下图所示。首先根据输入 “” 预测出第一个单词为 “I”,然后根据输入 “ I” 预测下一个单词 “have”。

Decoder 可以在训练的过程中使用 Teacher Forcing 并且并行化训练,即将正确的单词序列 ( I have a cat) 和对应输出 (I have a cat ) 传递到 Decoder。那么在预测第 i 个输出时,就要将第 i+1 之后的单词掩盖住,注意 Mask 操作是在 Self-Attention 的 Softmax 之前使用的,下面用 0 1 2 3 4 5 分别表示 “ I have a cat ”。

第一步:是 Decoder 的输入矩阵和 Mask 矩阵,输入矩阵包含 “ I have a cat” (0, 1, 2, 3, 4) 五个单词的表示向量,Mask 是一个 5×5 的矩阵。在 Mask 可以发现单词 0 只能使用单词 0 的信息,而单词 1 可以使用单词 0, 1 的信息,即只能使用之前的信息。

第二步:接下来的操作和之前的 Self-Attention 一样,通过输入矩阵X计算得到Q,K,V矩阵。然后计算Q和 KQ的转置乘积 。


第三步:在得到其乘积之后需要进行 Softmax,计算 attention score,我们在 Softmax 之前需要使用Mask矩阵遮挡住每一个单词之后的信息,遮挡操作如下:

得到 Mask [QKT] 之后在 Mask [QKT]上进行 Softmax,每一行的和都为 1。但是单词 0 在单词 1, 2, 3, 4 上的 attention score 都为 0
第四步:使用 Mask [公式]与矩阵 V相乘,得到输出 Z,则单词 1 的输出向量 [公式] 是只包含单词 1 信息的。

第五步:通过上述步骤就可以得到一个 Mask Self-Attention 的输出矩阵 ,然后和 Encoder 类似,通过 Multi-Head Attention 拼接多个输出, 然后计算得到第一个 Multi-Head Attention 的输出Z,Z与输入X维度一样。

4.4.2 第二个 Multi-Head Attention

Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Self-Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 C 计算的。

根据 Encoder 的输出 C计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一致。

这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词的信息 (这些信息无需 Mask)。

4.4.3 Softmax 预测输出单词

Decoder block 最后的部分是利用 Softmax 预测下一个单词,在之前的网络层我们可以得到一个最终的输出 Z,因为 Mask 的存在,使得单词 0 的输出 Z0 只包含单词 0 的信息,如下:

Softmax 根据输出矩阵的每一行预测下一个单词

这就是 Decoder block 的定义,与 Encoder 一样,Decoder 是由多个 Decoder block 组合而成。

五、 Transformer 总结

Transformer 与 RNN 不同,可以比较好地并行训练。

Transformer 本身是不能利用单词的顺序信息的,因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。

Transformer 的重点是 Self-Attention 结构,其中用到的 Q, K, V矩阵通过输出进行线性变换得到。

Transformer 中 Multi-Head Attention 中有多个 Self-Attention,可以捕获单词之间多种维度上的相关系数 attention score。

侵联删,谢谢!

Transformer的详细深入理解相关推荐

  1. 『NLP学习笔记』Transformer技术详细介绍

    Transformer技术详细介绍! 文章目录 一. 整体结构图 二. 输入部分 2.1. 词向量 2.2. 位置编码 三. 注意力机制 3.1. 注意力机制的本质 3.2. 举例说明 3.3. Tr ...

  2. 对Transformer中的MASK理解

    对Transformer中的MASK理解 Padding Masked Self-Attention Masked 上一篇文章我们介绍了 对Transformer中FeedForward层的理解,今天 ...

  3. 【Transformer 相关理论深入理解】注意力机制、自注意力机制、多头注意力机制、位置编码

    目录 前言 一.注意力机制:Attention 二.自注意力机制:Self-Attention 三.多头注意力机制:Multi-Head Self-Attention 四.位置编码:Positiona ...

  4. Transformer 超详细解读,一图胜千言

    点击上方"小白学视觉",选择加"星标"或"置顶" 重磅干货,第一时间送达本文转自|深度学习这件小事 正文 Transformer由论文< ...

  5. 收藏 | Transformer 论文详细解读

    点上方计算机视觉联盟获取更多干货 仅作学术分享,不代表本公众号立场,侵权联系删除 转载于:来源:知乎-北方一瓶川 地址:https://zhuanlan.zhihu.com/p/366014410 A ...

  6. yum详细教程(理解、使用、yum源)

    文章目录 对yum的简单理解 yum的使用方法 配置yum源国内镜像 对yum的简单理解 对安装软件这件事情的一个理解: 我们在安装软件时,必须要先把软件的安装包下载到本地: 在下载安装包之前,安装包 ...

  7. 0基础学图论!——图论精讲/详细/新手理解概念必看!

    并不会有更好的阅读体验 特别特别感谢: lmpplmpplmpp大佬牺牲自己宝贵时间,为我没有脾气的耐心讲解. BeyondHeavenBeyondHeavenBeyondHeaven大佬,无偿帮我康 ...

  8. CV领域Transformer之Self-Attention浅薄理解

    CNN和Self-Attention的比较理解: 对于CNN而言,越深的网络关注的区域越大,因为其每一层网络都相当于不断的整合之前的信息.以3×3卷积为例,如下图所示:蓝色方框表示能看到原始图像多大的 ...

  9. FFT原理——详细推导理解FFT变换

    概要: FFT(Fast Fourier transform):快速傅里叶变换,是DFT的工程化实现方法. DFT直接求解太过于复杂,FFT方法根据DFT求解过程中旋转因子的性质并引入分治算法思想,大 ...

最新文章

  1. SpringCloud Gateway的工作方式
  2. 译 | 将数据从Cosmos DB迁移到本地JSON文件
  3. selenium headless报错Message: unknown error: failed to wait for extension background page to load
  4. docker nginx 反向代理
  5. Android Expandable List View
  6. JavaScript里的语句用分号结尾是个选项吗
  7. 基于Microhard P900无人机PIX飞控远距离数传解决方案
  8. 理解蓝绿发布、灰度发布和滚动发布
  9. 复杂领域的Cynefin模型和Stacey模型
  10. OBS 进阶 之 高分屏下 屏幕采集不全问题解决
  11. 机器学习模型——回归模型
  12. C1073 涉及增量编译的内部错误(编译器文件“d:\agent\_work\4\s\src\vctools\Compiler\CxxFE\sl
  13. 基于VS的印刷数字识别系统
  14. 蜻蜓直播社交软件之蜻蜓s前端文件目录详解-开源系统蜻蜓s系统
  15. 全球20家最具创新力的创业公司
  16. 2006-10-01 十一皖南单车行
  17. 《哲学家们都干了些什么》读后感
  18. MATLAB对数图拟合,求助,MATLAB中对数分布拟合问题
  19. 游戏服务器环境部署说明文档,游戏服务器环境安装包
  20. cdn简单理解_快速了解CDN是什么

热门文章

  1. Google Chrome浏览器、360极速浏览器必备的N个插件
  2. 简单的dnf增幅模拟器
  3. Steam和Epic连接Nas搭建的方舟进化ARK专用服务器
  4. weblogic中间件漏洞总结
  5. fplayer—Flutter播放器插件
  6. 基于flask的在线笔记共享管理系统【1】(项目介绍)
  7. 在 Windows 下编译运行 MUMPS
  8. python动态捕捉屏幕_python学习(十五) 屏幕抓取
  9. Linux IPC通信方式
  10. 浅析主流视频直播系统的推拉流架构、传输协议