BLDC控制框图

BLDC 的控制电路对电机转子位置信号进行逻辑变换后产生脉宽调制 PWM 信号,驱动逆变器的功率开关管,从而控制 BLDC 电机各相绕组按一定顺序工作,在电机气隙中产生跳跃式旋转磁场。BLDC 转子旋转时,每转过 60°,逆变器开关管换流一次、定子磁场状态改变一次,因此 BLDC 共有 6 个磁场状态,三相各导通 120°,相电流为方波。

实验波形图

六步控制PWM与换相

反电动势过零检测波形

问题

直接打开工程文档编译报错

问题都出现在spm.h这个文件里,declaration is incompatible 定义不兼容

后来发现,这个头文件在即在keil的了 AC78xx 系列 MCU 的 CMSIS pack中有,又在你自己的工程文件里有,类似于重复定义,定义不兼容。

所以办法是,把包含这个头文件的路径删除。

编译成功

软件工程架构

出现区别的原因在于keil的CMSIS pack中已经包含了很多配置文件,就是上面右图中下边那几个绿色的四边形。你可以在keil的这里进行配置,非常的方便,但缺点是比较混乱,会与芯片厂商提供的工程文件出现一定的冲突。

启动阶段

该模块主要是为了在启动阶段,不知道转子位置的情况下让电机先转起来,有以下两种流程:

1、预定位->开环->开环切换到闭环

2、预定位->直接闭环

无感启动预定位阶段

我们都只知道对于无感控制来讲,获取转子位置是非常重要的;

而对于BLDC的无感控制,最常用的的方法是:六部换相+反电动势过零点检测。

但是要想测反电动势测得准,精度高,就需要反电动势数值大。

这就要求在起步阶段要先把电机拉到指定位置上,先让它转起来(开环控制),等到能准确获取反电动势过零点的时候,再切换到无感控制上(闭环)。

那么怎么把电机拉到指定位置上呢?具体实现代码如下:

/*!
* @brief Pre-position function in bldc sensorless control.
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @return none
*/
void BLDC_Preposition(BLDC_VARS_CTRL *bldcCtrl){uint8_t delay = INIT_PREPOSITION_DELAY ;for (bldcCtrl->setDuty = MIN_DUTY_PREPOSITION; bldcCtrl->setDuty < MAX_DUTY_PREPOSITION; bldcCtrl->setDuty += STEP_DUTY_PREPOSITION){delay -= INIT_PREPOSITION_DELAY_STEP;if (delay <= MIN_PREPOSITION_DELAY){delay = MIN_PREPOSITION_DELAY;}UpDatePwmDuty(DUTY_PERIOD(bldcCtrl->setDuty));bldcCtrl->pBemf->currentDriverVector = (uint8_t)AH_PWM_BL_ON;MosDriver(bldcCtrl->pBemf->currentDriverVector);mdelay(delay);}bldcCtrl->pBemf->kickTimeThreshold = BLDC_SENSORLESS_INIT_DELAY_TIME;}

其中核心的命令就一个:

bldcCtrl->pBemf->currentDriverVector = (uint8_t)AH_PWM_BL_ON;
MosDriver(bldcCtrl->pBemf->currentDriverVector);

其实就是直接选六步中的一步,如,这里选择的是A+B-。

这样就可以把转子拉到指定位置上了。

无感启动开环阶段

在上一步完成获取转自初始位置后(实际上把他拉到某一位置上),需要赶紧让转子转起来了。

/*!
* @brief bldc openkick function in bldc sensorless control, it is usually executed after obtaining the initial rotor position.
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @param[in] bldcCfg: pointer to BLDC_VARS_CFG structure
* @return none
*/
void BLDC_Bemf_OpenKick(BLDC_VARS_CTRL *bldcCtrl, BLDC_VARS_CFG *bldcCfg)
{if (bldcCfg->motorDir != 1)//反转{bldcCtrl->pBemf->currentDriverVector--;if (bldcCtrl->pBemf->currentDriverVector <= (uint8_t)INVALID_VECTOR_MIN){bldcCtrl->pBemf->currentDriverVector = (uint8_t)CH_PWM_BL_ON;}MosDriver(bldcCtrl->pBemf->currentDriverVector);}else//正转{bldcCtrl->pBemf->currentDriverVector++;if (bldcCtrl->pBemf->currentDriverVector >= (uint8_t)INVALID_VECTOR_MAX){bldcCtrl->pBemf->currentDriverVector = (uint8_t)AH_PWM_BL_ON;}MosDriver(bldcCtrl->pBemf->currentDriverVector);}if (bldcCtrl->setDuty <= MAX_DUTY_SENSORLESS_START){bldcCtrl->setDuty += STARTUP_DUTY_STEP;}else{bldcCtrl->setDuty = MAX_DUTY_SENSORLESS_START;}UpDatePwmDuty(DUTY_PERIOD(bldcCtrl->setDuty));
}

其实就是六步换相,刚刚我们已将把转子拉到下图这个位置上了

下一步我们要先判断是让电机正转还是反转:

正转就按图示向下的顺序,当其大于INVALID_VECTOR_MAX时,拉回到最开始位置;

反转就图示向上的顺序,当其小于INVALID_VECTOR_MIN时,就跳到最后的位置。

然后就是逐渐的增加占空比,直到与设定的启动阶段最大占空比一致。

if (bldcCtrl->setDuty <= MAX_DUTY_SENSORLESS_START){bldcCtrl->setDuty += STARTUP_DUTY_STEP;}else{bldcCtrl->setDuty = MAX_DUTY_SENSORLESS_START;}UpDatePwmDuty(DUTY_PERIOD(bldcCtrl->setDuty));

启动开环阶段完成。

从开环切入闭环控制

/*!
* @brief drag motor to RUN state through open kick.
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @param[in] bldcCfg: pointer to BLDC_VARS_CFG structure
* @return none
*/
void MotorKickDrag(BLDC_VARS_CTRL *bldcCtrl, BLDC_VARS_CFG *bldcCfg)
{if (bldcCtrl->pBemf->kickTimeThreshold > BLDC_SENSORLESS_MIN_DELAY_TIME){bldcCtrl->bldcStartTime++;if (bldcCtrl->bldcStartTime > bldcCtrl->pBemf->kickTimeThreshold){bldcCtrl->bldcStartTime = 0;if (bldcCtrl->pBemf->kickTimeThreshold > BLDC_SENSORLESS_MIN_DELAY_TIME){bldcCtrl->pBemf->kickTimeThreshold -= BLDC_SENSORLESS_STEP_DELAY_TIME;}else{bldcCtrl->pBemf->kickTimeThreshold = BLDC_SENSORLESS_MIN_DELAY_TIME;}BLDC_Bemf_OpenKick(&g_bldcVarsCtrl, pBldcVarsCfg);}}else{if ((bldcCtrl->pBemf->currentDriverVector + bldcCfg->motorDir) >= (uint8_t)INVALID_VECTOR_MAX){bldcCtrl->pBemf->currentDriverVector = (uint8_t)AH_PWM_BL_ON;}else if ((bldcCtrl->pBemf->currentDriverVector + bldcCfg->motorDir) <= (uint8_t)INVALID_VECTOR_MIN){bldcCtrl->pBemf->currentDriverVector = (uint8_t)CH_PWM_BL_ON;}else{bldcCtrl->pBemf->currentDriverVector += bldcCfg->motorDir;}MosDriver(bldcCtrl->pBemf->currentDriverVector);SwitchAcmpChannel(bldcCtrl->pBemf->currentDriverVector);bldcCtrl->pBemf->changePhaseTime = 0;bldcCtrl->pBemf->saveChangePhaseTime = FIRST_COMMUTATE_TIME;bldcCtrl->pBemf->afterFlowTime = FIRST_STEP_DRAG_TIME;bldcCtrl->pBemf->forceChangePhaseFlag = 0;bldcCtrl->startupStatus = STARTUP_READY;}
}

上来先做一个判断,开环阶段有没有执行完,没执行完继续去执行;

执行完了直接切入就行,说实话,我没看出这个阶段和开环有啥区别,唯一不同的是进行了一些传参,还有最后一个标志位STARTUP_READY的切换。

以上三个阶段怎么联系起来?

/*!
* @brief BLDC motor startup function, include bldc hall and bldc sensorless control.
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @param[in] bldcCfg: pointer to BLDC_VARS_CFG structure
* @return none
*/
void BLDC_Startup(BLDC_VARS_CTRL *bldcCtrl, BLDC_VARS_CFG *bldcCfg)
{
#if (defined BLDC_HALL)if (bldcCtrl->bldcStartTime == 0){BLDC_Hall_Startup(bldcCtrl, bldcCfg, &g_bldc_speedCmd);}if (bldcCtrl->bldcStartTime++ > 20){bldcCtrl->bldcStartTime = 0;}
#elif (defined BLDC_SENSORLESS)if (bldcCtrl->pBemf->prepositonIndex < 3)   /* preposition */{bldcCtrl->pBemf->prepositonIndex++;BLDC_Preposition(bldcCtrl);}else        /* drag startup */{#if (defined NOKICK_STARTUP)MotorDirectDrag(bldcCtrl);#elseMotorKickDrag(bldcCtrl, bldcCfg);#endif}
#else
#endif}

咱们不看hall那部分,只看下边无感部分。

上来先调用了三次预定位函数,三次过后,判断你是直接切入的闭环阶段,还是经过开环再切入的闭环。

以上便是启动阶段的所有代码了

直接进入闭环

/*!
* @brief drag motor dircet to RUN state, get into close loop control fast.
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @return none
*/
void MotorDirectDrag(BLDC_VARS_CTRL *bldcCtrl)
{UpDatePwmDuty(DUTY_PERIOD(DRAG_DUTY));MosDriver(bldcCtrl->pBemf->currentDriverVector);SwitchAcmpChannel(bldcCtrl->pBemf->currentDriverVector);bldcCtrl->pBemf->changePhaseTime = 0;bldcCtrl->pBemf->saveChangePhaseTime = FIRST_COMMUTATE_TIME;bldcCtrl->pBemf->afterFlowTime = FIRST_STEP_DRAG_TIME;bldcCtrl->pBemf->forceChangePhaseFlag = 0;bldcCtrl->startupStatus = STARTUP_READY;
}

反电动势过零点检测通道切换

在无感BLDC控制中,采集到的三相反电动势电机中值电压ACMP中进行比较,所以这就牵涉到三相反电动势采集时候的切换,采用轮询的方式与电机中值电压比较。

so,什么时候切换通道,进行轮询?

切换函数如下:

/*!
* @brief switch acmp compared channel according to current magnetic vector, it is usually executed in bldc sensorless control.
*
* @param[in] curDriverValue: current magnetic vector in bldc sensorless control
* @return none
*/
void SwitchAcmpChannel(uint8_t curDriverValue)
{switch (curDriverValue){case AH_PWM_BL_ON:ACMP_PositiveInputSelect(ACMP_CHANNEL0, 2);break;case AH_PWM_CL_ON:ACMP_PositiveInputSelect(ACMP_CHANNEL0, 1);break;case BH_PWM_CL_ON:ACMP_PositiveInputSelect(ACMP_CHANNEL0, 0);break;case BH_PWM_AL_ON:ACMP_PositiveInputSelect(ACMP_CHANNEL0, 2);break;case CH_PWM_AL_ON:ACMP_PositiveInputSelect(ACMP_CHANNEL0, 1);break;case CH_PWM_BL_ON:ACMP_PositiveInputSelect(ACMP_CHANNEL0, 0);break;default:break;}
}

直接根据所处的磁场位置,切换ACMP+的通道。

Bemf

这个模块主要功能是实现反电动势过零点检测并实现换相。

过零点检测代码实现

/*!
* @brief Check black EMF over zero point to determine when to change phase.
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @param[in] bldcCfg: pointer to BLDC_VARS_CFG structure
* @return none
*/
void BemfOverZeroCheck(BLDC_VARS_CTRL *bldcCtrl, BLDC_VARS_CFG *bldcCfg)
{if (bldcCfg->motorDir == 1){switch (bldcCtrl->pBemf->currentDriverVector){case AH_PWM_BL_ON:if (C_PHASE_BEMF == 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case AH_PWM_CL_ON:if (B_PHASE_BEMF != 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case BH_PWM_CL_ON:if (A_PHASE_BEMF == 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case BH_PWM_AL_ON:if (C_PHASE_BEMF != 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case CH_PWM_AL_ON:if (B_PHASE_BEMF == 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case CH_PWM_BL_ON:if (A_PHASE_BEMF != 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;}}else{switch (bldcCtrl->pBemf->currentDriverVector){case AH_PWM_BL_ON:if (C_PHASE_BEMF != 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case AH_PWM_CL_ON:if (B_PHASE_BEMF == 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case BH_PWM_CL_ON:if (A_PHASE_BEMF != 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case BH_PWM_AL_ON:if (C_PHASE_BEMF == 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case CH_PWM_AL_ON:if (B_PHASE_BEMF != 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;case CH_PWM_BL_ON:if (A_PHASE_BEMF == 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;}}
}

这部分代码逻辑就是,先判断正转反转,再判断处于什么换相状态,比如A+B-时,就要检测C相的反电动势是否为零。

switch (bldcCtrl->pBemf->currentDriverVector){case AH_PWM_BL_ON:if (C_PHASE_BEMF == 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}break;}

这里的C_PHASE_BEMF就来自于ACMP的DR寄存器。

#define C_PHASE_BEMF                    ((ACMP0->DR)&ACMP0_DR_O_Msk)     /*!< get phase C over zero detect results */

C向的反电动势与电机中值电压比较之后的结果。

判断为0后,开始准备换相,就是这个命令:

PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);

下一次换相与延时的具体时间确定

就是这个函数PrepareNextChangePhase():

下一次换相其实没什么特别的,还是根据正反转,对六步换相++--

if (motorDir == 1){curDriverValue++;if (curDriverValue >= (uint8_t)INVALID_VECTOR_MAX){curDriverValue = (uint8_t)AH_PWM_BL_ON;}}else{curDriverValue--;if (curDriverValue <= (uint8_t)INVALID_VECTOR_MIN){curDriverValue = (uint8_t)CH_PWM_BL_ON;}}

重要的在后边:

 g_bemfControl.nextDriverVector = curDriverValue;g_bemfControl.delayTime = (3 * g_bemfControl.saveChangePhaseTime) >> 3;g_bemfControl.overZero_Flag = 1;

也就是这个 g_bemfControl.delayTime,我们要知道30°的电角度,对应的时间是多少,这个值就是delayTime,延迟30电角度之后再换相。具体为什么*3/8,我一直没搞懂。

换相时间那个结构体中有好几类换相时间:

 uint32_t changePhaseTime;                       /*!< Current vector affect time count, units: 12us */uint32_t saveChangePhaseTime;                   /*!< Current vector affect time count saved for commutate delay, units: 12us */uint32_t lastChangePhaseTime;                   /*!< Last vector affect time count to determine after flow time, units: 12us */uint32_t afterFlowTime;                         /*!< After flow time while don't detect over zero point, units: 12us */uint32_t aveChangePhaseTime;                    /*!< Current vector affect average time count, units: 12us */uint32_t delayTime;                             /*!< Bldc delay 30 degree elec angle time count, units: 12us */BUFFER_TYPE commutationTime;                    /*!< Buffer to storage commutate time */

要先捋一下这几个换相时间:

changePhaseTime 当前换相时间(其实就是计数器的计数值,一个计数单元是12us)

saveChangePhaseTime当前换相时间,存下来为换相延时用

lastChangePhaseTime上一次换相时间,用来确定FlowTime?

afterFlowTime不检测过零点时,FlowTime之后

aveChangePhaseTime当前换相时间的平均值

delayTime换相延迟时间

commutationTime换相时间的缓冲区

越理感觉越乱,什么鬼这是。

是不是这个saveChangePhaseTime,指的是上次换相到这次换相之间的时间间隔?

也就是两个红线之间的时间。

开始换相

在知道下一次换相目标和需要的延时事件后,开始换相

先判断电机状态是不是‘准备好’了:

if (g_mcStatus == RUN)

之后直接执行换相

 MosDriver(bldcCtrl->pBemf->nextDriverVector);

之后不要忘记轮询切换过零点的检测通道

SwitchAcmpChannel(bldcCtrl->pBemf->currentDriverVector);

然后是各种换相时间的更新以及各种标志位的清零:

bldcCtrl->pBemf->lastChangePhaseTime = bldcCtrl->pBemf->saveChangePhaseTime;
bldcCtrl->pBemf->saveChangePhaseTime = bldcCtrl->pBemf->changePhaseTime;
bldcCtrl->pBemf->afterFlowTime = ((bldcCtrl->pBemf->saveChangePhaseTime + bldcCtrl->pBemf->lastChangePhaseTime)) >> 3;ChangePhaseTimeCalc(&g_bldcVarsCtrl);bldcCtrl->pBemf->changePhaseTime = 0;
bldcCtrl->pBemf->overZero_Flag = 0;
bldcCtrl->pBemf->afterFlow_Flag = 0;
bldcCtrl->pBemf->forceChangePhaseFlag = 0;

强制换相

检查一下换相间隔,是否需要强制换相。

FORCE_COMMUTATE_TIME强制换相的时间阈值,超过这个时间阈值,强制换相标志位置1.

/*!
* @brief Check change phase interval to determine whether forced change phase is in needed.
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @param[in] bldcCfg: pointer to BLDC_VARS_CFG structure
* @return none
*/
void ForceChangePhaseCheck(BLDC_VARS_CTRL *bldcCtrl, BLDC_VARS_CFG *bldcCfg)
{if (bldcCtrl->pBemf->forceChangePhaseFlag == 0){if (bldcCtrl->pBemf->changePhaseTime > FORCE_COMMUTATE_TIME){bldcCtrl->pBemf->forceChangePhaseFlag = 1;bldcCtrl->pBemf->afterFlow_Flag = 1;if (bldcCtrl->pBemf->overZero_Flag == 0){PrepareNextChangePhase(bldcCfg->motorDir, bldcCtrl->pBemf->currentDriverVector);}}}
}

串联起来

/*!
* @brief Bemf over zero point detect and change phase function.
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @param[in] bldcCfg: pointer to BLDC_VARS_CFG structure
* @return none
*/
void BemfCheckFun(BLDC_VARS_CTRL *bldcCtrl, BLDC_VARS_CFG *bldcCfg)
{ForceChangePhaseCheck(bldcCtrl, bldcCfg);//看看需不需要强制换相if (bldcCtrl->pBemf->afterFlow_Flag == 0){if (bldcCtrl->pBemf->changePhaseTime > bldcCtrl->pBemf->afterFlowTime){bldcCtrl->pBemf->afterFlow_Flag = 1;}}else//不需要强制换相,检查检查过零点{if (bldcCtrl->pBemf->overZero_Flag == 0){BemfOverZeroCheck(bldcCtrl, bldcCfg);}else//检查到过零点标志位了{if (bldcCtrl->pBemf->delayTime > 0)//实现具体的30电角度的延时{bldcCtrl->pBemf->delayTime--;}if ((bldcCtrl->pBemf->delayTime == 0) || (bldcCtrl->pBemf->forceChangePhaseFlag == 1)){//延时时间为0了,或者需要强制换相了,开始执行换相DisableInterrupts//换相的时候,一定要保证不能被中断给打断了BldcBemfChangePhase(bldcCtrl);EnableInterrupts}}}
}

ADC

这部分代码主要为实现以下功能:

  • 获取总线电压;
  • 获取总线电流,电流环PI控制调用

获取总线电压

/*!
* @brief Bldc control bus voltage sample, get bus voltage feedback.
*
* @param[in] adc: pointer to BLDC_ADC_TYPE structure
* @return none
*/
void Get_VoltageValue(BLDC_ADC_TYPE *adc)
{adc->busVoltageAD = (g_ADCRegularBuffer[1] + g_ADCRegularBuffer[3]) >> 1;adc->busVoltageTrue = (uint16_t)((uint32_t)(adc->busVoltageAD * (VBUS_ATTENUATE_FACTOR * VSVREF * 10)) / ADC_RANGE);        /* 120=12V *///VBUS_ATTENUATE_FACTOR这个数值,是你的电阻分压网络缩小的那个倍数
}

这个函数没什么特别的,就是电压AD数值的一个转换。注意得出的电压数值是放大10倍的。

获取总线电流

这个要稍微复杂一些,因为牵涉到一个过流的保护判断,还有滤波

/*!
* @brief Bldc control bus current sample, get bus current feedback.
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @param[in] adc: pointer to BLDC_ADC_TYPE structure
* @return none
*/
void Get_CurrentValue(BLDC_VARS_CTRL *bldcCtrl, BLDC_ADC_TYPE *adc)
{adc->busCurAD = g_ADCRegularBuffer[0];//获取ADC采样值if (adc->busCurAD > adc->busCurOffset)//判断获取到的采样值是不是大于 总线电流的零点漂移busCurOffset {if (adc->busCurAD > (int16_t)(adc->busCurOffset + LIMIT_PEAK_CUR_AD))//是的话,再判断有没有超过设定的峰值电流值{adc->busOverCurCnt++;//超过了,开始计次,看超过了几次,后边保护策略中会有判断超过10次,过流保护}else//没有超过电流峰值,要先把计数值清零{if (adc->busOverCurCnt-- <= 0){adc->busOverCurCnt = 0;}}adc->busCurAD = adc->busCurAD - adc->busCurOffset;//如果没有超过设定值,那么busCurAD就是 采集到的AD值-零点漂移}else{adc->busCurAD = 0;//如果采集到的电流AD还没零点飘逸的AD值大,直接拉为0}StorageDataCyclic(&adc->busCur, adc->busCurAD);adc->busCurAD = Filter_AverageCalc(adc->busCur.array, BUFFER_SIZE);//滤波,求平均值adc->motorFeedbackCur = adc->busCurAD * Get_EffectiveDuty(bldcCtrl) / 10000; /* effective duty in 10000 times *///Get_EffectiveDuty()有效占空比?不太懂这个值adc->busCurTrue =  (uint16_t)((int32_t)adc->motorFeedbackCur * 100 / CURRENT_AD_COF);    /* real current in 100 times *///电流计算公式:AD反馈值*100/CURRENT_AD_COF//CURRENT_AD_COF = (RSHUNT * OP_AMPLIFICATION_GAIN * ADC_RANGE / VSVREF) = 采样电阻 * 放大倍数 * ADC最大范围 / 参考电压adc->busPowerTrue = (uint16_t)(((uint32_t)adc->busCurTrue * adc->busVoltageTrue) / 100); /* real power in 10 times *///功率计算adc->motorFeedbackCurOld = adc->motorFeedbackCur;
}

电流环PI调用

/*!
* @brief Bldc bus current sample and current loop PI control, executed in the RUN state
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @param[in] adc: pointer to BLDC_ADC_TYPE structure
* @return none
*/
void BusCurrent_Control(BLDC_VARS_CTRL *bldcCtrl, BLDC_ADC_TYPE *adc)
{Get_CurrentValue(bldcCtrl, adc);//获取总线电流bldcCtrl->ibusFdkPu = adc->motorFeedbackCur * CURRENT_PU_COF;//电流环反馈值,这里的CURRENT_PU_COF与上面的CURRENT_AD_COF不一样// CURRENT_PU_COF = (uint16_t)(((uint32_t)32768 * VSVREF) / (RSHUNT * OP_AMPLIFICATION_GAIN * ADC_RANGE * MAX_CURRENT))//区别在于,求出AD值转化成电流值之后,又乘了一个比例关系 32768/MAX_CURRENT  2的15次方=32768 这属于Q15定点数类型的表达方式BLDC_CurrentLoop_Calculate(pBldcVarsCfg, &g_bldc_acrPid, bldcCtrl);//进行电流环PI控制的一些计算#if (defined BLDC_HALL)bldcCtrl->currentPwmPu = Q15_Sat(bldcCtrl->currentPwmPu, MATH_IQ(MAX_DUTY_WITH_HALL / DUTY_BASE_VALUE), MATH_IQ(MIN_DUTY_WITH_HALL / DUTY_BASE_VALUE));#elsebldcCtrl->currentPwmPu = Q15_Sat(bldcCtrl->currentPwmPu, MATH_IQ(MAX_DUTY_SENSORLESS / DUTY_BASE_VALUE), MATH_IQ(MIN_DUTY_SENSORLESS / DUTY_BASE_VALUE));#endifUpDatePwmDuty(Q15_PERIOD(bldcCtrl->currentPwmPu));//PI调节之后的输出结果,用来进行PWM占空比的调节
}

Q15定点数

挺复杂一个东西,简单理解:浮点数在运算的时候是很慢很慢的,所以可以采用Q格式进行浮点数据到定点的转化,节约CPU时间。

浮点数据转化为Q15,将数据乘以2^15;Q15数据转化为浮点数据,将数据除以2^15。

具体可参考这个网址:Q格式(Q15)DSP上浮点数据定点化处理 - rockstone - 博客园

以前做总线电流采样的时候,几乎不会去考虑计算时间的问题,直接AD值到实际电流值的转换就行了,但牵涉到电流环PI调节,有大量运算的情况,就需要去考虑这个问题了,这里采用的就是把浮点数转化为Q格式。

PWM

这部分代码主要功能是:

进行PWM的一些输出控制,如PWM的停止输出、PWM占空比的调节、PWM直接驱动MOS的开关等

停止PWM输出

拢共分三步:PWM2的所以通道停止输出、PWM占空比设为0、PWM2软件同步

/*!
* @brief Clear pwm duty and stop bldc motor.
*
* @param[in] none
* @return none
*/
void BLDC_Stop(void)
{PWM2->CHOSWCR = ALL_CH_OFF;UpDatePwmDuty(0);PWM_SoftwareSync(PWM2);
}

PWM在10000次中的有效占空比

意思就是说,你设定的PWM占空比输出值,并不代表就是实际的PWM占空比输出值,这个函数就是计算出实际的占空比输出。

/*!
* @brief Get PWM module effective duty in 10000 times
*
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @return pwm effective duty
*/
uint16_t Get_EffectiveDuty(BLDC_VARS_CTRL *bldcCtrl)
{uint32_t temp_PwmCh0Val;uint32_t temp_PwmCh1Val;uint32_t temp_PwmMcvr;
#if (PWM_MODE_SELECT == PWM_COUNT_UP_DOWN_MODE)//PWM向上向下计数#elsetemp_PwmCh0Val = PWM2->CHANNELS[0].CHV;temp_PwmCh1Val = PWM2->CHANNELS[1].CHV;temp_PwmMcvr = PWM2->MCVR;//MCVR是PWM计数器最大计数值#if (PHASE_UVW_POLARITY == ACTIVE_HIGH)bldcCtrl->pwmOutDuty = 10000 * (temp_PwmCh1Val - temp_PwmCh0Val) / temp_PwmMcvr;//这一部分牵涉到PWM的 组合输出模式 看下面的举例#elsebldcCtrl->pwmOutDuty = 10000 * (temp_PwmCh0Val - temp_PwmCh1Val) / temp_PwmMcvr;#endif
#endif/* enlarge 10000 times, 1234 means 12.34% */return bldcCtrl->pwmOutDuty;
}

PWM的组合输出模式

在组合模式下,将偶数通道(n)和相邻的奇数通道(n + 1)组合以在通道(n)输出中产生 PWM 信号。在组合模式下,PWM 周期由(MCVR - CNTIN + 0x0001) 确定 ,且 PWM 脉冲宽度(占空比)由(|CH(n+1)V - CH(n)V|)确定。

用在这里就是:10000*(3-1)/ 5 = 4000 就是40%的占空比

PWM占空比的更新(正常情况与电流PID)

这个就没什么可说的,就是调用一下PWM占空比设置函数PWM_SetChannelValue()

/*!
* @brief Update PWM output duty by manual settig or current PID calculate.
*
* @param[in] pwmDuty: range: 0 ~ PWMx->MCVR, corresponding to 0 ~ 100% duty cycle
* @return none
*/
void UpDatePwmDuty(uint16_t pwmDuty)
{if (pwmDuty > (PWM2->MCVR - 1)){pwmDuty = (PWM2->MCVR - 1);}else if (pwmDuty < 1){pwmDuty = 1;}else{}
#if (defined BLDC_AFTER_FLOW_CONTROL)if (g_bemfControl.commutateState == 1){if (g_bemfControl.changePhaseTime > ((g_bemfControl.afterFlowTime * AFTER_FLOW_ANGLE_NUMERATOR) >> AFTER_FLOW_ANGLE_PSRC)){switch (g_bemfControl.currentDriverVector){case AH_PWM_BL_ON:PWM2->CHOSWCR = CH0_MODULATION_CH3_ON;break;case AH_PWM_CL_ON:PWM2->CHOSWCR = CH0_MODULATION_CH5_ON;break;case BH_PWM_CL_ON:PWM2->CHOSWCR = CH2_MODULATION_CH5_ON;break;case BH_PWM_AL_ON:PWM2->CHOSWCR = CH2_MODULATION_CH1_ON;break;case CH_PWM_AL_ON:PWM2->CHOSWCR = CH4_MODULATION_CH1_ON;break;case CH_PWM_BL_ON:PWM2->CHOSWCR = CH4_MODULATION_CH3_ON;break;default:break;}g_bemfControl.commutateState = 2;}}
#endif#if (PWM_MODE_SELECT == PWM_COUNT_UP_DOWN_MODE)#else#if (PHASE_UVW_POLARITY == ACTIVE_HIGH)PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL1, (PWM_PERIOD_VALUE + pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL3, (PWM_PERIOD_VALUE + pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL5, (PWM_PERIOD_VALUE + pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL0, (PWM_PERIOD_VALUE - pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL2, (PWM_PERIOD_VALUE - pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL4, (PWM_PERIOD_VALUE - pwmDuty) >> 1);#elsePWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL1, (PWM_PERIOD_VALUE - pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL3, (PWM_PERIOD_VALUE - pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL5, (PWM_PERIOD_VALUE - pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL0, (PWM_PERIOD_VALUE + pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL2, (PWM_PERIOD_VALUE + pwmDuty) >> 1);PWM_SetChannelValue(PWM2, PWM_CHANNEL_CHANNEL4, (PWM_PERIOD_VALUE + pwmDuty) >> 1);#endif
#endifPWM_SoftwareSync(PWM2);
}

直接控制MOS开关

根据需要直接改变PWM输出通道,来打开对应的MOS。

/*!
* @brief update PWM channel output by six step square wave magnetic vector to driver MOS.
*
* @param[in] ChangePhaseVector: current magnetic vector in bldc control
* @return none
*/
void MosDriver(uint8_t ChangePhaseVector)
{
#if (defined BLDC_AFTER_FLOW_CONTROL)AfterFlow_Control(ChangePhaseVector, pBldcVarsCfg->motorDir);
#elseswitch (ChangePhaseVector){case AH_PWM_BL_ON:PWM2->CHOSWCR = CH0_MODULATION_CH3_ON;PWM_SoftwareSync(PWM2);break;case AH_PWM_CL_ON:PWM2->CHOSWCR = CH0_MODULATION_CH5_ON;PWM_SoftwareSync(PWM2);break;case BH_PWM_CL_ON:PWM2->CHOSWCR = CH2_MODULATION_CH5_ON;PWM_SoftwareSync(PWM2);break;case BH_PWM_AL_ON:PWM2->CHOSWCR = CH2_MODULATION_CH1_ON;PWM_SoftwareSync(PWM2);break;case CH_PWM_AL_ON:PWM2->CHOSWCR = CH4_MODULATION_CH1_ON;PWM_SoftwareSync(PWM2);break;case CH_PWM_BL_ON:PWM2->CHOSWCR = CH4_MODULATION_CH3_ON;PWM_SoftwareSync(PWM2);break;default:break;}
#endif
}

Speed

这个模块主要实现的是速度环速度设置上的功能。

设定目标转速

从rpm到Q15

/*!
* @brief The per-unit value of speed targe value is calculated according to the actual value of the speed command unit rpm.
*
* @param[in] command: pointer to SPEED_RAMP_TYPE structure
* @param[in] speedCmdRpm: Given speed command unit rpm
* @return none
*/
void BLDC_ASR_SetTargetRpm(SPEED_RAMP_TYPE *command, int16_t speedCmdRpm)
{command->speedTarget = (int32_t)(speedCmdRpm) * 32768 / MOTOR_MAX_SPEED_RPM;//speedTarget = 给定的实际转速rpm / 最大转速rpm * 32678 这里好像又转化成Q15定点数了
}

直接Q15

/*!
* @brief The per-unit value of speed targe value is calculated according to the speed command unit pu.
*
* @param[in] command: pointer to SPEED_RAMP_TYPE structure
* @param[in] speedCmdPu: Given speed command unit pu
* @return none
*/
void BLDC_ASR_SetTargetPu(SPEED_RAMP_TYPE *command, int16_t speedCmdPu)
{command->speedTarget = speedCmdPu;
}

设定目标加速度

/*!
* @brief The per-unit value of speed ramp value is calculated according to the speed command unit pu.
*
* @param[in] command: pointer to SPEED_RAMP_TYPE structure
* @param[in] speedCmdPu: Given speed command unit pu
* @return none
*/
void BLDC_ASR_SetRampPu(SPEED_RAMP_TYPE *command, int16_t speedCmdPu)
{command->speedTargetRamp = speedCmdPu;
}

获取目标转速值

/*!
* @brief Get the speed target value.
*
* @param[in] speedRamp: pointer to SPEED_RAMP_TYPE structure
* @return none
*/
int16_t BLDC_ASR_GetTargetPu(SPEED_RAMP_TYPE *speedRamp)
{return speedRamp->speedTarget;
}

获取反馈速度值

以rpm为单位

/*!
* @brief Get the feedback speed unit in Rpm.
*
* @param[in] speed: pointer to SPEED_RAMP_TYPE structure
* @return none
*/
int16_t BLDC_ASR_GetFbkRpm(SPEED_RAMP_TYPE *speed)
{return speed->speedFbkRpm;
}

以pu为单位

/*!
* @brief Get the feedback speed unit in Pu.
*
* @param[in] speed: pointer to SPEED_RAMP_TYPE structure
* @return none
*/
int16_t BLDC_ASR_GetFbkPu(SPEED_RAMP_TYPE *speed)
{return speed->speedFbk;
}

后面还有很多的这种转换,就不再写了,只写重点程序!

根据设定目标速度计算加速度?

这个函数实现的是,各一个设定的rpm速度,然后可以计算出到达这一速度,所使用的加速度。

但我一直没搞懂speedTargetRamp这个参数到底什么意思?斜坡函数?加速度?

/*!
* @brief Speed ramp calculation. calculate the ramp output according to the speed target value.
*
* @param[in] bldcCfg: pointer to BLDC_VARS_CFG structure
* @param[in] speedRamp: pointer to SPEED_RAMP_TYPE structure
* @return none
*/
void BLDC_ASR_RampCalc(BLDC_VARS_CFG *bldcCfg, SPEED_RAMP_TYPE *speedRamp)
{static uint16_t s_countSpdCmd = 0;//先判断设定的这个速度有没有超过设定的速度阈值BLDC_ASR_TargetLimit(bldcCfg->motorDir, speedRamp);s_countSpdCmd++;/* calculate speed ramp every 10ms, 9 = 10 - 1, s_countSpdCmd range is 1~10, then back to 0, and becomes to 1 after '++' */if (s_countSpdCmd > 9){s_countSpdCmd = 0;if (bldcCfg->motorDir == FORWARD_ROTATE)//正转{if ((speedRamp->speedTarget - speedRamp->speedTargetRamp) > speedRamp->speedAcceleration){speedRamp->speedTargetRamp += speedRamp->speedAcceleration;}else if ((speedRamp->speedTargetRamp - speedRamp->speedTarget) > speedRamp->speedDeceleration){speedRamp->speedTargetRamp -= speedRamp->speedDeceleration;}else{speedRamp->speedTargetRamp = speedRamp->speedTarget;}}else if (bldcCfg->motorDir == REVERSE_ROTATE){if ((speedRamp->speedTargetRamp - speedRamp->speedTarget) > speedRamp->speedAcceleration){speedRamp->speedTargetRamp -= speedRamp->speedAcceleration;}else if ((speedRamp->speedTarget - speedRamp->speedTargetRamp) > speedRamp->speedDeceleration){speedRamp->speedTargetRamp += speedRamp->speedDeceleration;}else{speedRamp->speedTargetRamp = speedRamp->speedTarget;}}else{}}
}

计算转速

/*!
* @brief get motor elec freq in bldc control with sensorless.
*
* @param[in] motorDir: motor run direction
* @return elec freq in Q15
*/
int16_t BLDC_Bemf_SpeedGet(int16_t motorDir)
{uint32_t s_elecFreq = 0;uint32_t s_elecFreqPu = 0;if (g_bemfControl.aveChangePhaseTime)//只要平均换相时间不为0{s_elecFreq = 166667 / (int32_t)(g_bemfControl.aveChangePhaseTime * TIMER_XUS);   /* 166667 refers 6 sector time in us, 166667 = (6 / 10^-6) *///这个也比较好理解 aveChangePhaseTime是平均换相间隔(其实是一个次数值) 所以要乘以时间单元TIMER_XUS//得到的才是换一次相,费的时间(单位是us)//转一圈6次换相 所以还要*6,再把us转化成s  就是上面这个公式}s_elecFreqPu = motorDir * MATH_IQ(s_elecFreq * 1.0 / BASE_FREQ);//转化成Q15格式*2^15return s_elecFreqPu;

Protector

这个模块主要是为实现电机保护策略方面的功能。

过流检测

/*!
* @brief DC Bus over current protection. When the DC Bus current exceeds
*        the threshold value, DC Bus over current fault is reported.
*
* @param[in] protect: pointer to PROTECTOR_TYPE structure
* @param[in] adc: pointer to BLDC_ADC_TYPE structure
* @return none
*/
void BLDC_Over_Current_Check(PROTECTOR_TYPE *protect, BLDC_ADC_TYPE *adc)
{if (adc->busOverCurCnt > BLDC_OVER_CURRENT_DBC)//电流超过电流阈值十次{protect->faultFlag.all |= (1 << OVER_CURRENT_IBUS_FAULT);//故障标志位置1}else{}
}

过压欠压检测

电压保护策略方面,主要就是过压与欠压的检测(过压与欠压原理相似放一起说)

代码给不同的电压设定了三个状态:DETECT_FAULT、DETECT_OK、DETECT_UNKNOWN

除了设定这样一个恢复阈值之外,还牵涉了一个s_debounce参数,这个参数是用来消抖的,简单理解,就是延时,不会因为电压的跳变,突然就出现保护。

/*!
* @brief DC Bus over voltage protection. When the bus voltage is higher than
*        threshold value, Undervoltage fault is reported, and it will return
*        to normal operation after the bus voltage rises to the recovery threshold.
*
* @param[in] protect: pointer to PROTECTOR_TYPE structure
* @param[in] volt: DC Bus voltage value, 10 times the real value
* @return none
*/
void BLDC_Over_Voltage_Check(PROTECTOR_TYPE *protect, uint16_t volt)
{static int16_t s_vbusStatus = BUS_VOLTAGE_NORMAL;static int16_t s_prevVbusStatus = BUS_VOLTAGE_NORMAL;static int16_t s_debounce = 0;
//    static int16_t s_status = DETECT_OK;if (volt > OVER_VBUS_THRESHOLD){s_vbusStatus = BUS_VOLTAGE_OVER;}else if (volt < OVER_VBUS_RECOVERY_THRESHOLD){if (s_vbusStatus == BUS_VOLTAGE_OVER){s_vbusStatus = BUS_VOLTAGE_RECOVER;}}else{}if (s_vbusStatus != s_prevVbusStatus){s_prevVbusStatus = s_vbusStatus;s_debounce = 0;}else{if (s_vbusStatus == BUS_VOLTAGE_RECOVER){if (s_debounce < 10){s_debounce++;}else{
//                g_mcStatus = STOP;s_vbusStatus = BUS_VOLTAGE_NORMAL;protect->faultFlag.all &= ~(1 << VBUS_OVER_VOLTAGE_FAULT);}}else if (s_vbusStatus == BUS_VOLTAGE_NORMAL){if (s_debounce < 10){s_debounce++;}else{
//                s_status = DETECT_OK;protect->faultFlag.all &= ~(1 << VBUS_OVER_VOLTAGE_FAULT);}}else{if (s_debounce < 10){s_debounce++;}else{
//                s_status = DIAGNOSTIC_FAIL;protect->faultFlag.all |= (1 << VBUS_OVER_VOLTAGE_FAULT);}}}//    return s_status;
}

串起来

故障检查以什么样的时基单元进行检查。

/*!
* @brief Motor protection main function. The corresponding protection functions
*        are implemented according to different time bases.
*
* @param[in] none
* @return none
*/
void BLDC_Motor_Protection(void)
{#if (defined BLDC_OVER_CURRENT_CHECK)/* DC Bus over current protection , 1ms*/BLDC_Over_Current_Check(&g_bldc_protector, &g_bldc_adSample);
#endif#if (defined BLDC_UNDER_VOLTAGE_CHECK)/* DC Bus under voltage protection, 1ms */BLDC_Under_Voltage_Check(&g_bldc_protector, g_bldc_adSample.busVoltageTrue);
#endif#if (defined BLDC_OVER_VOLTAGE_CHECK)/* DC Bus over voltage protection, 1ms */BLDC_Over_Voltage_Check(&g_bldc_protector, g_bldc_adSample.busVoltageTrue);
#endifif (g_bldc_protector.faultFlag.all)//检测到故障位了,电机停转{BLDC_Stop();g_mcStatus = FAULT;}return;
}

PID

这里只用到了PI调节,比例与积分,其实就是下面公式的实现

PI计算

/*!
* @brief Pid calculate of motor control.
*
* @param[in] pid: pointer to PID_TYPE structure
* @return none
*/
int16_t PID_Calculate(PID_TYPE *pid)
{int32_t min;int32_t max;pid->pPidOutput->errPu = pid->pPidInput->refPu - pid->pPidInput->fbkPu;//误差 设定值-反馈值/* proportional term */pid->pPidOutput->upPu = MATH_Mpy(pid->pPidOutput->errPu, pid->pPidCoef->kpPu);//比例:kp*误差 再转化成Q15格式/* integral term */pid->pPidOutput->uiPu += MATH_Mpy(pid->pPidOutput->errPu, pid->pPidCoef->kiPu);//积分:ki*kp 再转化为Q15格式/* saturate integral output with a dynamic limit 带有动态限制的饱和积分输出*/max = pid->pPidInput->maxPu - pid->pPidOutput->upPu;max = Q15_Sat(max, max, 0);min = pid->pPidInput->minPu - pid->pPidOutput->upPu;min = Q15_Sat(min, 0, min);pid->pPidOutput->uiPu = Q15_Sat(pid->pPidOutput->uiPu, max, min);/* calculate total output */pid->pPidOutput->outPu = pid->pPidOutput->upPu + pid->pPidOutput->uiPu;//计算总的比例 与 积分的变化/* saturate total output 饱和总输出 */pid->pPidOutput->outPu = Q15_Sat(pid->pPidOutput->outPu, pid->pPidInput->maxPu, pid->pPidInput->minPu);return (int16_t)pid->pPidOutput->outPu;
}

有几个疑问的计算公式:

#define Q15_Max(x, y)                   (x > y ? y : x)//很显然不太对啊这
#define Q15_Min(x, y)                   (x < y ? y : x)
#define Q15_Sat(A, P, N)                (Q15_Max(Q15_Min(A, N), P))//取最大值?

速度环

/*!
* @brief Speed loop processing of motor control.
*
* @param[in] speed: pointer to SPEED_RAMP_HANDLE structure
* @param[in] pid: pointer to PID_TYPE structure
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @return none
*/
void BLDC_SpeedLoop_Calculate(SPEED_RAMP_TYPE *speed, PID_TYPE *pid, BLDC_VARS_CTRL *bldcCtrl)
{Set_BLDC_PidRef(pid, speed->speedTargetRamp);//设定速度参考值Set_BLDC_PidFbk(pid, speed->speedFbk);//设定速度反馈值bldcCtrl->ibusRefPu = PID_Calculate(pid);//ibusRefPu电流环参考值 是不是意味着其实速度环还是靠电流环来调节占空比的
}

电流环

/*!
* @brief Current loop processing of motor control.
*
* @param[in] bldcCfg: pointer to BLDC_VARS_CFG structure
* @param[in] pid: pointer to PID_TYPE structure
* @param[in] bldcCtrl: pointer to BLDC_VARS_CTRL structure
* @return none
*/
void BLDC_CurrentLoop_Calculate(BLDC_VARS_CFG *bldcCfg, PID_TYPE *pid, BLDC_VARS_CTRL *bldcCtrl)
{Set_BLDC_PidRef(pid, (bldcCfg->motorDir * bldcCtrl->ibusRefPu));Set_BLDC_PidFbk(pid, bldcCtrl->ibusFdkPu);bldcCtrl->currentPwmPu = PID_Calculate(pid);
}

归根结底:速度环的控制,最后都要换在电流环上。

Contral_api

这个模块是电机控制参数的一些初始化,比如速度环与电流环的PI值、电机初始状态等,没什么特别的。

Bldc_app

这个模块除了一些电机、板子和控制参数的初始化外,还有任务调度方面的函数与代码,这里重点讲一讲。

电机状态切换

/*!
* @brief The Main state machine, used to set the running state of the bldc control system.
*
* @param[in] none
* @return none
*/
void BldcStateMachine(void)
{switch (g_mcStatus){case POWER_ON:BLDC_Parameters_Initialize();
//    BLDC_ASR_CommandInit(pBldcVarsCfg, &g_bldc_speedCmd);BLDC_ASR_CommandSet(pBldcVarsCfg, &g_bldc_speedCmd);#if (defined DATA_ACCESS_FLASH_ENABLE)g_flashOperationStatus = Eflash_DataAccess_DefaultSave(&g_dataAccessFlash);if (g_flashOperationStatus == EFLASH_STATUS_SUCCESS){Eflash_DataAccess_PowerOnRecovery(&g_dataAccessFlash);Eflash_DataAccessEflashInit(&g_dataAccessFlash);g_mcStatus = IDLE;}#elseg_mcStatus = IDLE;#endifbreak;case IDLE:BLDC_Parameters_Initialize();#if (defined DATA_ACCESS_FLASH_ENABLE)if (g_dataAccessFlash.eraseEnable == 1){g_mcStatus = FLASH_TASK;}#endifif ((g_bldc_speedCmd.speedTarget * pBldcVarsCfg->motorDir) < 0){g_bldc_speedCmd.speedTarget = 0 - g_bldc_speedCmd.speedTarget;g_bldc_speedCmd.speedTargetRamp = 0 - g_bldc_speedCmd.speedTargetRamp;}break;case START:BLDC_Startup(&g_bldcVarsCtrl, pBldcVarsCfg);if (BLDC_Get_Startup_Status(&g_bldcVarsCtrl) == STARTUP_READY){g_mcStatus = RUN;}else if (BLDC_Get_Startup_Status(&g_bldcVarsCtrl) == STARTUP_FAIL){g_mcStatus = IDLE;}else{}break;case RUN:BLDC_SpeedTask();break;case STOP:BLDC_Stop();BLDC_Parameters_Initialize();
//    BLDC_ASR_CommandInit(pBldcVarsCfg, &g_bldc_speedCmd);BLDC_ASR_CommandSet(pBldcVarsCfg, &g_bldc_speedCmd);g_mcStatus = IDLE;break;case FAULT:BLDC_Stop();if (g_bldc_protector.faultFlag.all == 0){g_mcStatus = STOP;}break;#if (defined DATA_ACCESS_FLASH_ENABLE)case FLASH_TASK:g_flashOperationStatus = Eflash_DataAccessEflashProcess(&g_dataAccessFlash);if (g_flashOperationStatus == EFLASH_STATUS_SUCCESS){g_mcStatus = IDLE;g_flashOperationStatus = EFLASH_STATUS_ACK;Eflash_DataAccessEflashInit(&g_dataAccessFlash);g_flashTaskFinish = 1;}break;#endifdefault:break;}
}

task_scheduler

此文件提供基于毫秒时基函数的任务调度。

核心

最关键的核心函数

/*!
* @brief Task scheduler main processer, called by Main function.
*
* @param[in] none
* @return none
*/
void Task_Scheduler(void)
{/* Notice: the delay of each task sequency cannot be the same! *//** We can add a new time base task as the follow type:* SCH_Add_Task(New_task_function, task_sequence_number, task_time_base);* where New_task_function is the name of the task name;* task_sequence_number is the position of the task in all task sequences;* task_time_base is the time base of the task, indicating its execution cycle.*//* 1ms time base tasks */SCH_Add_Task(Task0_1ms, 0, 1);/* 2ms time base tasks */SCH_Add_Task(Task1_2ms, 1, 2);/* 10ms time base tasks, reserve */SCH_Add_Task(Task2_10ms, 2, 10);/* 100ms time base tasks, reserve */SCH_Add_Task(Task3_100ms, 3, 100);/* 1s time base tasks, reserve */SCH_Add_Task(Task4_1000ms, 4, 1000);/* 2s time base tasks, only used in FOC */SCH_Add_Task(Task5_2000ms, 5, 2000);while (1){SCH_Dispatch_Tasks();//任务调度MC_Keys_Read();//按键扫描}
}

任务调度

*!
* @brief Dispatch the tasks.
*
* @param[in] none
* @return none
*/
void SCH_Dispatch_Tasks(void)
{uint8_t index;/* Dispatches (runs) the next task (if one is ready) */for (index = 0; index < SCH_TASKS_SEQUENCE_MAX; index++){if (g_SchTask[index].runOrder > 0){/* Run the task */(*g_SchTask[index].pTask)();/* Reset / reduce runOrder flag */g_SchTask[index].runOrder -= 1;/* Periodic tasks will be scheduled to run again *//* if this is a 'one shot' task, remove it from the array */if (g_SchTask[index].period == 0){SCH_Delete_Task(index);}}}/* Report system status */SCH_Report_Status();
}

key

这个就是按键控制逻辑了,就一个函数:

/*!
* @brief Get the response of pressing each key on the control board.
*        The keys action are judged by the ADC value:
*        when ADC value is in [ 0, START_STOP_MAX ], it corresponds to the Start / Stop key;
*        when ADC value is in [ FORWARD_REVERSE_MIN, FORWARD_REVERSE_MAX ], it corresponds to the Forward / Reverse key;
*        when ADC value is in [ FAST_MIN, FAST_MAX ], it corresponds to the Fast key;
*        when ADC value is in [ SLOW_MIN, SLOW_MAX ], it corresponds to the Slow key.
*
* @param[in] none
* @return none
*/
void MC_Keys_Read(void)
{if ((!GPIO_GetPinValue(KEY_START_STOP)) && (!s_keyStartPressed))//开始、停止{s_keyStartPressed = 1;}else if (s_keyStartPressed && GPIO_GetPinValue(KEY_START_STOP)){s_keyStartPressed = 0;if (g_mcStatus == IDLE){g_mcStatus = START;}else{g_mcStatus = STOP;}}else if ((!GPIO_GetPinValue(KEY_DIRECTION)) && (!s_keyDirPressed))//方向{s_keyDirPressed = 1;}else if ((GPIO_GetPinValue(KEY_DIRECTION)) && (s_keyDirPressed)){s_keyDirPressed = 0;if (pBldcVarsCfg->motorDir == 1){pBldcVarsCfg->motorDir = -1;}else{pBldcVarsCfg->motorDir = 1;}
//            g_bldc_speedCmd.speedTarget = MATH_Abs(g_bldc_speedCmd.speedTarget) * pBldcVarsCfg->motorDir;}else if ((!GPIO_GetPinValue(KEY_SPEED_UP)) && (!s_keyUpPressed))//加速{s_keyUpPressed = 1;}else if ((GPIO_GetPinValue(KEY_SPEED_UP)) && (s_keyUpPressed)){s_keyUpPressed = 0;g_bldc_speedCmd.speedTarget += (pBldcVarsCfg->motorDir * SPEED_CHANGE_STEP);}else if ((!GPIO_GetPinValue(KEY_SPEED_DOWN)) && (!s_keyDownPressed))//减速{s_keyDownPressed = 1;}else if ((GPIO_GetPinValue(KEY_SPEED_DOWN)) && (s_keyDownPressed)){s_keyDownPressed = 0;g_bldc_speedCmd.speedTarget -= (pBldcVarsCfg->motorDir * SPEED_CHANGE_STEP);}else{/* do nothing */}
}

BLDC无感方波控制函数

AC7811-BLDC无感控制代码详解相关推荐

  1. AC7811-FOC无感控制代码详解

    目录 矢量控制原理 矢量控制框图 电流采样方式 电流在整个控制过程中的传递 采样关键点 三电阻 双电阻 单电阻 三者对比 坐标变换 dq轴电流的PI控制 启动方式 启动波形 脉冲注入 高频注入 Sta ...

  2. php怎么自定义设置打印区域,JavaScript_jQuery实现区域打印功能代码详解,使用CSS控制打印样式,需要设 - phpStudy...

    jQuery实现区域打印功能代码详解 使用CSS控制打印样式,需要设置样式media="print",并且将页面中不需要打印的元素的样式display属性设置为none.如DEMO ...

  3. 基于凌鸥平台的120° 方波控制 BLDC 无感 比较器反电动势过零点

    基于凌鸥平台的120° 方波控制 BLDC 无感 比较器反电动势过零点 :95800668808014970MCTianci

  4. STM32 电机教程 33 - 无刷电机无感控制快速实现

    前言 上一节<STM32 电机教程 32 - 基于ST X-CUBE-SPN7 无刷无感电机库的电机驱动实现>给大家分享了ST的官方的无刷电机无感控制实现方案(基于NUCLEO-F103R ...

  5. 基于spring security实现vue2前后端分离的双token刷新机制(完整代码详解,含金量拉满!)

    目录 一.前言: 核心功能概要: 通过加密算法创建一个用户: 二.后端 代码详解: 1.代码整体结构: 2.所需依赖: 3.UserDetailServiceImpl拦截用户登陆: 4.所需工具类 4 ...

  6. jedis操作set_Jedis对redis的五大类型操作代码详解

    本篇主要阐述Jedis对redis的五大类型的操作:字符串.列表.散列.集合.有序集合. JedisUtil 这里的测试用例采用junit4进行运行,准备代码如下: private static fi ...

  7. java一个方法排他调用_Java编程实现排他锁代码详解

    一 .前言 某年某月某天,同事说需要一个文件排他锁功能,需求如下: (1)写操作是排他属性 (2)适用于同一进程的多线程/也适用于多进程的排他操作 (3)容错性:获得锁的进程若Crash,不影响到后续 ...

  8. VINS技术路线与代码详解

    VINS技术路线 写在前面:本文整和自己的思路,希望对学习VINS或者VIO的同学有所帮助,如果你觉得文章写的对你的理解有一点帮助,可以推荐给周围的小伙伴们,当然,如果你有任何问题想要交流,欢迎随时探 ...

  9. 深入浅出吃透多线程、线程池核心原理及代码详解

    一.多线程详解 1.什么是线程 线程是一个操作系统概念.操作系统负责这个线程的创建.挂起.运行.阻塞和终结操作.而操作系统创建线程.切换线程状态.终结线程都要进行CPU调度--这是一个耗费时间和系统资 ...

最新文章

  1. SQL Server误区30日谈-Day26-SQL Server中存在真正的“事务嵌套”
  2. 解决在C#(.net)按字节数截取字符串最后出现乱码的问题
  3. c# as 关键字作用
  4. matlab实战系列之人工鱼群算法求解TSP问题原理解析(下篇源码解析)
  5. drools6.5_Drools 6.2.0.Final发布
  6. 用IIS配置反向代理
  7. 计算机系统如何禁止删除文件,电脑禁止安装删除文件 禁止复制电脑文件的方法...
  8. 温故而知新 forEach 无法中断(break)的问题
  9. ip地址怎么设置才有效_如果想减肥,怎么拆解目标才是有效的?
  10. python下载文件的三种方法
  11. ABC三类地址、子网掩码及子网划分
  12. 安装 | 最新MATLAB 2020b(64位)安装教程完整版
  13. mfc入门程序之简单的计算器
  14. 第13章 Python建模库介绍--Python for Data Analysis 2nd
  15. 央视就《新闻联播》“火炬手空手捐款”致歉
  16. oracle12c ora 12560,oracle11g报ora-12560:tns连接异常的解决方法
  17. 局域网内Linux服务器时间同步
  18. html5 xdwlnjs cn,XDW,丝印Marking-电子元件丝印查询
  19. 小米手环导出心率_小米手环测量心率功能该怎么使用?
  20. unity 手机重力迷宫(二)

热门文章

  1. 恐怖呀,差点就被杀了(转帖)
  2. Wifi BT 地址格式
  3. Office含有多个“需要激活。。。”授权信息无法删除的解决办法(包含了管理员切换到指定目录,在最后面)
  4. LCD段码液晶屏内容显示异常剖析
  5. 阅后即焚,火得一塌糊涂
  6. Matlab画误差线(Error Bar)
  7. Python爬取bilibili视频(期末设计)
  8. Android开发丶使用RxJava来完成倒计时功能
  9. js入门·动态的时钟,显示完整的一些方法,新年倒计时
  10. 《TensorFlow+Keras深度学习人工智能实践应用》林大贵著第六章第七章代码