• 1. K8s 的垃圾回收策略

  • 2 gc 源码分析

    • 2.1 初始化 garbageCollector 对象

      • 2.1.1 garbageCollector包含的结构体对象

      • 2.1.2 NewGarbageCollector

    • 2.2 启动garbageCollector

      • 2.2.1 启动dependencyGraphBuilder

      • 2.2.2 runAttemptToDeleteWorker

      • 2.2.3 runAttemptToOrphanWorker

      • 2.2.4 总结

    • 2.3 runProcessGraphChanges

    • 2.4 processTransitions函数的处理逻辑

    • 2.5 runAttemptToOrphanWorker

    • 2.6 attemptToDeleteWorker

    • 2.7 uidToNode到底是什么

  • 3.总结

当我们给一个对象设置OwnerReference的时候,删除该对象的owner, 该对象也会被连带删除。这个时候用的就是k8s的垃圾回收机制。

1. K8s 的垃圾回收策略

k8s目前支持三种回收策略:

(1)前台级联删除(Foreground Cascading Deletion):在这种删除策略中,所有者对象的删除将会持续到其所有从属对象都被删除为止。当所有者被删除时,会进入“正在删除”(deletion in progress)状态,此时:

  • 对象仍然可以通过 REST API 查询到(可通过 kubectl 或 kuboard 查询到)

  • 对象的 deletionTimestamp 字段被设置

  • 对象的 metadata.finalizers 包含值 foregroundDeletion

(2)后台级联删除(Background Cascading Deletion):这种删除策略会简单很多,它会立即删除所有者的对象,并由垃圾回收器在后台删除其从属对象。这种方式比前台级联删除快的多,因为不用等待时间来删除从属对象。

(3)孤儿(Orphan):这种情况下,对所有者的进行删除只会将其从集群中删除,并使所有对象处于“孤儿”状态。

举例:已有一个deployA, 对应的rs假设为 rsA, pod为PodA。

(1)前台删除:先删除podA, 再删除rsA, 再删除deployA。 podA的删除如果卡在,rsA也会被卡住。

(2)后台删除:先删除deployA, 再删除rsA, 再删除podA。 podA和rsA是否会删除成功,deploy不会受影响。

(3)孤儿删除:只删除deployA。rsA, podA不受影响。 rsA的owner不再是deployA。

2 gc 源码分析

和deployController, rsController一样,GarbageCollectorController也是kube-controller-manager(kcm)中的一个控制器。

GarbageCollectorController 的启动方法为 startGarbageCollectorController,主要逻辑如下:

从第三步开始每一步都深入展开。第三步对应2.1。

(1)初始化客户端,用于发现集群中的资源。这个先不关注

(2)获得deletableResources,以及ignoredResources。

deletableResources: 所有支持”delete”, “list”, “watch” 操作的资源

ignoredResources:kcm启动时GarbageCollectorController的config指定

(3)初始化 garbageCollector 对象。

(4)启动garbageCollector

(5)garbageCollector同步

(6)开启debug模式

func startGarbageCollectorController(ctx ControllerContext) (http.Handler, bool, error) {// 1.初始化客户端if !ctx.ComponentConfig.GarbageCollectorController.EnableGarbageCollector {return nil, false, nil}
​gcClientset := ctx.ClientBuilder.ClientOrDie("generic-garbage-collector")discoveryClient := cacheddiscovery.NewMemCacheClient(gcClientset.Discovery())
​config := ctx.ClientBuilder.ConfigOrDie("generic-garbage-collector")metadataClient, err := metadata.NewForConfig(config)if err != nil {return nil, true, err}
​// 2. 获得deletableResources,以及ignoredResources// Get an initial set of deletable resources to prime the garbage collector.deletableResources := garbagecollector.GetDeletableResources(discoveryClient)ignoredResources := make(map[schema.GroupResource]struct{})for _, r := range ctx.ComponentConfig.GarbageCollectorController.GCIgnoredResources {ignoredResources[schema.GroupResource{Group: r.Group, Resource: r.Resource}] = struct{}{}}// 3. NewGarbageCollectorgarbageCollector, err := garbagecollector.NewGarbageCollector(metadataClient,ctx.RESTMapper,deletableResources,ignoredResources,ctx.ObjectOrMetadataInformerFactory,ctx.InformersStarted,)if err != nil {return nil, true, fmt.Errorf("failed to start the generic garbage collector: %v", err)}
​// 4. 启动garbageCollector// Start the garbage collector.workers := int(ctx.ComponentConfig.GarbageCollectorController.ConcurrentGCSyncs)go garbageCollector.Run(workers, ctx.Stop)
​// Periodically refresh the RESTMapper with new discovery information and sync// the garbage collector.// 5. garbageCollector同步go garbageCollector.Sync(gcClientset.Discovery(), 30*time.Second, ctx.Stop)// 6. 开启debug模式return garbagecollector.NewDebugHandler(garbageCollector), true, nil
}

2.1 初始化 garbageCollector 对象

2.1.1 garbageCollector包含的结构体对象

garbageCollector需要额外的结构:

attemptToDelete,attemptToOrphan:限速队列

uidToNode:一个缓存依赖关系的图。一个map结构,key=uid, value是一个node结构。

type GarbageCollector struct {restMapper     resettableRESTMappermetadataClient metadata.InterfaceattemptToDelete workqueue.RateLimitingInterfaceattemptToOrphan        workqueue.RateLimitingInterfacedependencyGraphBuilder *GraphBuilderabsentOwnerCache *UIDCacheworkerLock sync.RWMutex
}
​
​
// GraphBuilder: based on the events supplied by the informers, GraphBuilder updates
// uidToNode, a graph that caches the dependencies as we know, and enqueues
// items to the attemptToDelete and attemptToOrphan.
type GraphBuilder struct {restMapper meta.RESTMapper
​// 每一个monitor对应一种资源monitors    monitorsmonitorLock sync.RWMutexinformersStarted <-chan struct{}
​stopCh <-chan struct{}
​running bool
​metadataClient metadata.InterfacegraphChanges workqueue.RateLimitingInterface
​uidToNode *concurrentUIDToNodeattemptToDelete workqueue.RateLimitingInterfaceattemptToOrphan workqueue.RateLimitingInterface
​absentOwnerCache *UIDCachesharedInformers  controller.InformerFactoryignoredResources map[schema.GroupResource]struct{}
}
​
type concurrentUIDToNode struct {uidToNodeLock sync.RWMutexuidToNode     map[types.UID]*node
}
​
type node struct {identity objectReferencedependentsLock sync.RWMutexdependents map[*node]struct{}            //该节点的所有依赖
​deletingDependents     booldeletingDependentsLock sync.RWMutexbeingDeleted     boolbeingDeletedLock sync.RWMutex
​virtual     boolvirtualLock sync.RWMutexowners []metav1.OwnerReference         //该节点的所有owner
}

举例来说:

假设集群中有:deployA, rsA, podA三个对象。

monitors 负责监听这三种资源的变化。然后根据情况扔进 attemptToDelete,attemptToOrphan队列。

GraphBuilder负责构建一个图。在这种情况下,图的内容为:

Node1( key=deployA.uid ): 它的owner为空,dependents=rsA。

Node2( key=rsA.uid ): 它的owner=deployA,dependents=podA。

Node3( key=pod.uid ): 它的owner=rsA,dependents为空。

同时,每个节点还有beingDeleted,deletingDependents等关键字段。这样gc根据这个图就可以很方便地进行各种策略的删除。

2.1.2 NewGarbageCollector

NewGarbageCollector就做了俩件事

(1)初始化GarbageCollector结构体

(2)调用controllerFor定义对象变化的处理事件。无论是监听到add, update, del都是将其打包成一个event事件,然后加入graphChanges队列。

func NewGarbageCollector(metadataClient metadata.Interface,mapper resettableRESTMapper,deletableResources map[schema.GroupVersionResource]struct{},ignoredResources map[schema.GroupResource]struct{},sharedInformers controller.InformerFactory,informersStarted <-chan struct{},
) (*GarbageCollector, error) {attemptToDelete := workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "garbage_collector_attempt_to_delete")attemptToOrphan := workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "garbage_collector_attempt_to_orphan")absentOwnerCache := NewUIDCache(500)gc := &GarbageCollector{metadataClient:   metadataClient,restMapper:       mapper,attemptToDelete:  attemptToDelete,attemptToOrphan:  attemptToOrphan,absentOwnerCache: absentOwnerCache,}gb := &GraphBuilder{metadataClient:   metadataClient,informersStarted: informersStarted,restMapper:       mapper,graphChanges:     workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "garbage_collector_graph_changes"),uidToNode: &concurrentUIDToNode{uidToNode: make(map[types.UID]*node),},attemptToDelete:  attemptToDelete,attemptToOrphan:  attemptToOrphan,absentOwnerCache: absentOwnerCache,sharedInformers:  sharedInformers,ignoredResources: ignoredResources,}// if err := gb.syncMonitors(deletableResources); err != nil {utilruntime.HandleError(fmt.Errorf("failed to sync all monitors: %v", err))}gc.dependencyGraphBuilder = gb
​return gc, nil
}

syncMonitors就是同步更新哪些资源需要监听,然后调用controllerFor注册事件处理。

func (gb *GraphBuilder) syncMonitors(resources map[schema.GroupVersionResource]struct{}) error {gb.monitorLock.Lock()defer gb.monitorLock.Unlock()
​toRemove := gb.monitorsif toRemove == nil {toRemove = monitors{}}current := monitors{}errs := []error{}kept := 0added := 0for resource := range resources {if _, ok := gb.ignoredResources[resource.GroupResource()]; ok {continue}if m, ok := toRemove[resource]; ok {current[resource] = mdelete(toRemove, resource)kept++continue}kind, err := gb.restMapper.KindFor(resource)if err != nil {errs = append(errs, fmt.Errorf("couldn't look up resource %q: %v", resource, err))continue}c, s, err := gb.controllerFor(resource, kind)if err != nil {errs = append(errs, fmt.Errorf("couldn't start monitor for resource %q: %v", resource, err))continue}current[resource] = &monitor{store: s, controller: c}added++}gb.monitors = current
​for _, monitor := range toRemove {if monitor.stopCh != nil {close(monitor.stopCh)}}
​klog.V(4).Infof("synced monitors; added %d, kept %d, removed %d", added, kept, len(toRemove))// NewAggregate returns nil if errs is 0-lengthreturn utilerrors.NewAggregate(errs)
}

controllerFor无论是监听到add, update, del都是将其打包成一个event事件,然后加入graphChanges队列。

func (gb *GraphBuilder) controllerFor(resource schema.GroupVersionResource, kind schema.GroupVersionKind) (cache.Controller, cache.Store, error) {handlers := cache.ResourceEventHandlerFuncs{// add the event to the dependencyGraphBuilder's graphChanges.AddFunc: func(obj interface{}) {event := &event{eventType: addEvent,obj:       obj,gvk:       kind,}gb.graphChanges.Add(event)},UpdateFunc: func(oldObj, newObj interface{}) {// TODO: check if there are differences in the ownerRefs,// finalizers, and DeletionTimestamp; if not, ignore the update.event := &event{eventType: updateEvent,obj:       newObj,oldObj:    oldObj,gvk:       kind,}gb.graphChanges.Add(event)},DeleteFunc: func(obj interface{}) {// delta fifo may wrap the object in a cache.DeletedFinalStateUnknown, unwrap itif deletedFinalStateUnknown, ok := obj.(cache.DeletedFinalStateUnknown); ok {obj = deletedFinalStateUnknown.Obj}event := &event{eventType: deleteEvent,obj:       obj,gvk:       kind,}gb.graphChanges.Add(event)},}shared, err := gb.sharedInformers.ForResource(resource)if err != nil {klog.V(4).Infof("unable to use a shared informer for resource %q, kind %q: %v", resource.String(), kind.String(), err)return nil, nil, err}klog.V(4).Infof("using a shared informer for resource %q, kind %q", resource.String(), kind.String())// need to clone because it's from a shared cacheshared.Informer().AddEventHandlerWithResyncPeriod(handlers, ResourceResyncTime)return shared.Informer().GetController(), shared.Informer().GetStore(), nil
}

2.2 启动garbageCollector

func (gc *GarbageCollector) Run(workers int, stopCh <-chan struct{}) {defer utilruntime.HandleCrash()defer gc.attemptToDelete.ShutDown()defer gc.attemptToOrphan.ShutDown()defer gc.dependencyGraphBuilder.graphChanges.ShutDown()
​klog.Infof("Starting garbage collector controller")defer klog.Infof("Shutting down garbage collector controller")// 1.启动dependencyGraphBuildergo gc.dependencyGraphBuilder.Run(stopCh)
​if !cache.WaitForNamedCacheSync("garbage collector", stopCh, gc.dependencyGraphBuilder.IsSynced) {return}
​klog.Infof("Garbage collector: all resource monitors have synced. Proceeding to collect garbage")// 启动runAttemptToDeleteWorker,runAttemptToOrphanWorker// gc workersfor i := 0; i < workers; i++ {go wait.Until(gc.runAttemptToDeleteWorker, 1*time.Second, stopCh)go wait.Until(gc.runAttemptToOrphanWorker, 1*time.Second, stopCh)}
​<-stopCh
}

2.2.1 启动dependencyGraphBuilder

// Run sets the stop channel and starts monitor execution until stopCh is
// closed. Any running monitors will be stopped before Run returns.
func (gb *GraphBuilder) Run(stopCh <-chan struct{}) {klog.Infof("GraphBuilder running")defer klog.Infof("GraphBuilder stopping")
​// Set up the stop channel.gb.monitorLock.Lock()gb.stopCh = stopChgb.running = truegb.monitorLock.Unlock()
​// Start monitors and begin change processing until the stop channel is// closed.// 1. 启动各个资源的监听gb.startMonitors()// 2. runProcessGraphChanges开始处理各种事件wait.Until(gb.runProcessGraphChanges, 1*time.Second, stopCh)
​// 这里就是有monitor关闭后的处理// Stop any running monitors.gb.monitorLock.Lock()defer gb.monitorLock.Unlock()monitors := gb.monitorsstopped := 0for _, monitor := range monitors {if monitor.stopCh != nil {stopped++close(monitor.stopCh)}}
​// reset monitors so that the graph builder can be safely re-run/synced.gb.monitors = nilklog.Infof("stopped %d of %d monitors", stopped, len(monitors))
}
​
​
// 启动各个资源的监听
func (gb *GraphBuilder) startMonitors() {gb.monitorLock.Lock()defer gb.monitorLock.Unlock()
​if !gb.running {return}
​// we're waiting until after the informer start that happens once all the controllers are initialized.  This ensures// that they don't get unexpected events on their work queues.<-gb.informersStarted
​monitors := gb.monitorsstarted := 0for _, monitor := range monitors {if monitor.stopCh == nil {monitor.stopCh = make(chan struct{})gb.sharedInformers.Start(gb.stopCh)go monitor.Run()started++}}klog.V(4).Infof("started %d new monitors, %d currently running", started, len(monitors))
}

2.2.2 runAttemptToDeleteWorker

runAttemptToDeleteWorker就是从attemptToDelete队列中取出来一个对象处理。

func (gc *GarbageCollector) runAttemptToDeleteWorker() {for gc.attemptToDeleteWorker() {}
}
​
func (gc *GarbageCollector) attemptToDeleteWorker() bool {item, quit := gc.attemptToDelete.Get()...err := gc.attemptToDeleteItem(n)...return true
}

2.2.3 runAttemptToOrphanWorker

runAttemptToOrphanWorker就是从attemptToOrphan队列中取出来一个对象处理。

func (gc *GarbageCollector) runAttemptToOrphanWorker() {for gc.attemptToOrphanWorker() {}
}
​
​
func (gc *GarbageCollector) attemptToOrphanWorker() bool {item, quit := gc.attemptToOrphan.Get()defer gc.attemptToOrphan.Done(item)owner, ok := item.(*node)if !ok {utilruntime.HandleError(fmt.Errorf("expect *node, got %#v", item))return true}// we don't need to lock each element, because they never get updatedowner.dependentsLock.RLock()dependents := make([]*node, 0, len(owner.dependents))for dependent := range owner.dependents {dependents = append(dependents, dependent)}owner.dependentsLock.RUnlock()
​err := gc.orphanDependents(owner.identity, dependents)if err != nil {utilruntime.HandleError(fmt.Errorf("orphanDependents for %s failed with %v", owner.identity, err))gc.attemptToOrphan.AddRateLimited(item)return true}// update the owner, remove "orphaningFinalizer" from its finalizers listerr = gc.removeFinalizer(owner, metav1.FinalizerOrphanDependents)if err != nil {utilruntime.HandleError(fmt.Errorf("removeOrphanFinalizer for %s failed with %v", owner.identity, err))gc.attemptToOrphan.AddRateLimited(item)}return true
}

2.2.4 总结

(1)NewGarbageCollector初始化了graphbuild, attempToDelete, attempToOrphan队列,然后定义了资源变化时的处理对象

(2)GarbageCollector.run 做了三个工作。第一是, 让监控的所有资源,都用一个处理逻辑。就是:add, update, del都是将其打包成一个event事件,然后加入graphChanges队列。第二是 ,启动runProcessGraphChanges处理graphChanges队列的对象。第三是, 启动AttemptToOrphanWorker,AttemptToDeleteWorker进行gc处理。

(3)到这里,总的来说逻辑就是:

  • NewGarbageCollector监听了所有支持 list, watch, delete操作的事件

  • 然后定义这些对象所有的add, update, del变化都扔进 graphChanges队列

  • 然后启动runProcessGraphChanges,处理graphChanges的对象。runProcessGraphChanges主要做俩件事,一是维护图,二是将可能需要删除的对象,扔进 AttemptToOrphan,或者AttemptToDelete进行处理

  • AttemptToOrphanWorker,AttemptToDeleteWorker进行具体的gc处理。

到这里为止,gc的初始化,以及大概的流程都清楚了。接下来具体分析runProcessGraphChanges函数,以及AttemptToOrphanWorker,AttemptToDeleteWorker的处理逻辑。

2.3 runProcessGraphChanges

runProcessGraphChanges作用就是俩件事:

(1)时刻uidToNode维护图的正确和完整

(2)将可能需要删除的对象扔进AttemptToOrphan,AttemptToDelete队列

具体逻辑如下:

(1)从 graphChanges 取出一个 对象(event),然后判断图里面有没有这个对象。如果存在,将该节点标记为 observed。这个是表示,这个节点不是virtual节点。

(2)分三种情况进行处理。具体是:

func (gb *GraphBuilder) runProcessGraphChanges() {for gb.processGraphChanges() {}
}
​
// Dequeueing an event from graphChanges, updating graph, populating dirty_queue.
func (gb *GraphBuilder) processGraphChanges() bool {item, quit := gb.graphChanges.Get()if quit {return false}defer gb.graphChanges.Done(item)event, ok := item.(*event)if !ok {utilruntime.HandleError(fmt.Errorf("expect a *event, got %v", item))return true}obj := event.objaccessor, err := meta.Accessor(obj)if err != nil {utilruntime.HandleError(fmt.Errorf("cannot access obj: %v", err))return true}klog.V(5).Infof("GraphBuilder process object: %s/%s, namespace %s, name %s, uid %s, event type %v", event.gvk.GroupVersion().String(), event.gvk.Kind, accessor.GetNamespace(), accessor.GetName(), string(accessor.GetUID()), event.eventType)// Check if the node already exists// 1.判断图里面有没有这个对象existingNode, found := gb.uidToNode.Read(accessor.GetUID())// 1.1 如果存在,将其标记为 observed。这个是表示,这个节点不是virtual节点。if found {// this marks the node as having been observed via an informer event// 1. this depends on graphChanges only containing add/update events from the actual informer// 2. this allows things tracking virtual nodes' existence to stop polling and rely on informer eventsexistingNode.markObserved()}// 2. 分三种情况进行处理。switch {case (event.eventType == addEvent || event.eventType == updateEvent) && !found:newNode := &node{identity: objectReference{OwnerReference: metav1.OwnerReference{APIVersion: event.gvk.GroupVersion().String(),Kind:       event.gvk.Kind,UID:        accessor.GetUID(),Name:       accessor.GetName(),},Namespace: accessor.GetNamespace(),},dependents:         make(map[*node]struct{}),owners:             accessor.GetOwnerReferences(),deletingDependents: beingDeleted(accessor) && hasDeleteDependentsFinalizer(accessor),beingDeleted:       beingDeleted(accessor),}gb.insertNode(newNode)// the underlying delta_fifo may combine a creation and a deletion into// one event, so we need to further process the event.gb.processTransitions(event.oldObj, accessor, newNode)case (event.eventType == addEvent || event.eventType == updateEvent) && found:// handle changes in ownerReferencesadded, removed, changed := referencesDiffs(existingNode.owners, accessor.GetOwnerReferences())if len(added) != 0 || len(removed) != 0 || len(changed) != 0 {// check if the changed dependency graph unblock owners that are// waiting for the deletion of their dependents.gb.addUnblockedOwnersToDeleteQueue(removed, changed)// update the node itselfexistingNode.owners = accessor.GetOwnerReferences()// Add the node to its new owners' dependent lists.gb.addDependentToOwners(existingNode, added)// remove the node from the dependent list of node that are no longer in// the node's owners list.gb.removeDependentFromOwners(existingNode, removed)}
​if beingDeleted(accessor) {existingNode.markBeingDeleted()}gb.processTransitions(event.oldObj, accessor, existingNode)case event.eventType == deleteEvent:if !found {klog.V(5).Infof("%v doesn't exist in the graph, this shouldn't happen", accessor.GetUID())return true}// removeNode updates the graphgb.removeNode(existingNode)existingNode.dependentsLock.RLock()defer existingNode.dependentsLock.RUnlock()if len(existingNode.dependents) > 0 {gb.absentOwnerCache.Add(accessor.GetUID())}for dep := range existingNode.dependents {gb.attemptToDelete.Add(dep)}for _, owner := range existingNode.owners {ownerNode, found := gb.uidToNode.Read(owner.UID)if !found || !ownerNode.isDeletingDependents() {continue}// this is to let attempToDeleteItem check if all the owner's// dependents are deleted, if so, the owner will be deleted.gb.attemptToDelete.Add(ownerNode)}}return true
}

第一种: 如果图中不存在这个节点,并且事件为 add或者update,处理方法为:

(1) 初始化一个node节点。然后插入到map中。

case (event.eventType == addEvent || event.eventType == updateEvent) && !found:newNode := &node{// 该对象的标记,由APIVersion,Kind,UID,Nameidentity: objectReference{OwnerReference: metav1.OwnerReference{APIVersion: event.gvk.GroupVersion().String(),Kind:       event.gvk.Kind,UID:        accessor.GetUID(),Name:       accessor.GetName(),},Namespace: accessor.GetNamespace(),},dependents:         make(map[*node]struct{}),          // 这里现在是空的owners:             accessor.GetOwnerReferences(),// 判断是否是删dependentdeletingDependents: beingDeleted(accessor) && hasDeleteDependentsFinalizer(accessor),   // 判断是否在正在删除beingDeleted:       beingDeleted(accessor),}gb.insertNode(newNode)// the underlying delta_fifo may combine a creation and a deletion into// one event, so we need to further process the event.gb.processTransitions(event.oldObj, accessor, newNode)

(2)insertNode,将这个节点加入map中,并且将这个node加入所有的owner node的dependent中。

假设当前是当前节点是rsA, 这一步会将rsA加入map中,并且增加deployA的一个dependent为rsA.

(3)调用processTransitions进行进一步的处理。processTransitions是一个通用函数,它的作用就是将这个对象放入放到AttemptToOrphan或者AttemptToDelete队列,这个等下具体介绍

第二种, 如果图中存在这个节点,并且事件为 add或者update,处理方法为:

(1)处理references Diff

  • 首先根据节点的信息 和 对象最新的信息,判断OwnerReference的变化。这里分为三种变化:

added 表示该对象的OwnerReference中新增了哪些 owner; removed表示该对象删除了哪些owner;changed表示哪些改变了

  • 针对这三种变化做出的处理如下:

a. 调用addUnblockedOwnersToDeleteQueue将可能阻塞的owner重新加入队列。具体可以看代码注释中的分析

b. existingNode.owners = accessor.GetOwnerReferences(), 让节点使用最新的owner

c. 新增了owner,需要在新增owner中的Dependents增加一个Dependent, 就是该节点

d. 删除了owner,需要在原来的owner中的Dependents删除这个Dependent, 就是该节点

(2) 如果当前对象有deletionStamp,标记这个节点正在删除

(3)调用processTransitions进行进一步的处理。processTransitions是一个通用函数,它的作用就是将这个对象放入放到AttemptToOrphan或者AttemptToDelete队列,这个等下具体介绍

case (event.eventType == addEvent || event.eventType == updateEvent) && found:// handle changes in ownerReferencesadded, removed, changed := referencesDiffs(existingNode.owners, accessor.GetOwnerReferences())if len(added) != 0 || len(removed) != 0 || len(changed) != 0 {// check if the changed dependency graph unblock owners that are// waiting for the deletion of their dependents.// a.调用addUnblockedOwnersToDeleteQueue将可能阻塞的owner重新加入队列。具体可以看代码注释中的分析gb.addUnblockedOwnersToDeleteQueue(removed, changed)// update the node itself// b.让节点使用最新的ownerexistingNode.owners = accessor.GetOwnerReferences()// Add the node to its new owners' dependent lists.// c. 新增了owner,需要在新增owner中的Dependents增加一个Dependent, 就是该节点gb.addDependentToOwners(existingNode, added)// remove the node from the dependent list of node that are no longer in// the node's owners list.// d. 删除了owner,需要在原来的owner中的Dependents删除这个Dependent, 就是该节点gb.removeDependentFromOwners(existingNode, removed)}if beingDeleted(accessor) {existingNode.markBeingDeleted()}gb.processTransitions(event.oldObj, accessor, existingNode)​
// TODO: profile this function to see if a naive N^2 algorithm performs better
// when the number of references is small.
func referencesDiffs(old []metav1.OwnerReference, new []metav1.OwnerReference) (added []metav1.OwnerReference, removed []metav1.OwnerReference, changed []ownerRefPair) {oldUIDToRef := make(map[string]metav1.OwnerReference)for _, value := range old {oldUIDToRef[string(value.UID)] = value}oldUIDSet := sets.StringKeySet(oldUIDToRef)for _, value := range new {newUID := string(value.UID)if oldUIDSet.Has(newUID) {if !reflect.DeepEqual(oldUIDToRef[newUID], value) {changed = append(changed, ownerRefPair{oldRef: oldUIDToRef[newUID], newRef: value})}oldUIDSet.Delete(newUID)} else {added = append(added, value)}}for oldUID := range oldUIDSet {removed = append(removed, oldUIDToRef[oldUID])}
​return added, removed, changed
}
​
​
// 以foreground方式删除deployA的时候,deployA会被Block,原因在于它在等 rsA的删除。
// 这个时候如果改变rsA的OwnerReference,比如删除owner, deployA。这个时候需要通知deployA,你不用等了,可以直接删除了。
// addUnblockedOwnersToDeleteQueue就是做这样的事情,检测到rsA的OwnerReference变化,将等待的deployA加入删除队列。
// if an blocking ownerReference points to an object gets removed, or gets set to
// "BlockOwnerDeletion=false", add the object to the attemptToDelete queue.
func (gb *GraphBuilder) addUnblockedOwnersToDeleteQueue(removed []metav1.OwnerReference, changed []ownerRefPair) {for _, ref := range removed {if ref.BlockOwnerDeletion != nil && *ref.BlockOwnerDeletion {node, found := gb.uidToNode.Read(ref.UID)if !found {klog.V(5).Infof("cannot find %s in uidToNode", ref.UID)continue}gb.attemptToDelete.Add(node)}}for _, c := range changed {wasBlocked := c.oldRef.BlockOwnerDeletion != nil && *c.oldRef.BlockOwnerDeletionisUnblocked := c.newRef.BlockOwnerDeletion == nil || (c.newRef.BlockOwnerDeletion != nil && !*c.newRef.BlockOwnerDeletion)if wasBlocked && isUnblocked {node, found := gb.uidToNode.Read(c.newRef.UID)if !found {klog.V(5).Infof("cannot find %s in uidToNode", c.newRef.UID)continue}gb.attemptToDelete.Add(node)}}
}

第三种,这个对象已经删除, 处理方法为:

(1)从图中删除这个节点,如果这个节点有dependents,将这个节点加入absentOwnerCache。这个是非常有用的。假如deployA删除了,rsA通过absentOwnerCache能判断,deployA确实存在,并且被删除了。

(2)将所有的依赖加入attemptToDelete队列

(3)如果这个节点有owners,并且处于删除Dependents中,那么很有可能它的owners正在等自己。现在自己删除了,所以将owners再加入删除队列

case event.eventType == deleteEvent:if !found {klog.V(5).Infof("%v doesn't exist in the graph, this shouldn't happen", accessor.GetUID())return true}// removeNode updates the graphgb.removeNode(existingNode)existingNode.dependentsLock.RLock()defer existingNode.dependentsLock.RUnlock()if len(existingNode.dependents) > 0 {gb.absentOwnerCache.Add(accessor.GetUID())}for dep := range existingNode.dependents {gb.attemptToDelete.Add(dep)}for _, owner := range existingNode.owners {ownerNode, found := gb.uidToNode.Read(owner.UID)if !found || !ownerNode.isDeletingDependents() {continue}// this is to let attempToDeleteItem check if all the owner's// dependents are deleted, if so, the owner will be deleted.gb.attemptToDelete.Add(ownerNode)}}

2.4 processTransitions函数的处理逻辑

从上面的分析,可以看出来,runProcessGraphChanges就做了两件事情:

(1)时刻维护图的正确和完整

(2)将可能需要删除的对象扔进AttemptToOrphan,AttemptToDelete队列

processTransitions就是做第二件事情,将可能需要删除的对象扔进AttemptToOrphan,AttemptToDelete队列。

判断的逻辑很简单:

(1)如果这个对象正在删除,并且有orphan这个Finalizer,就将它扔进attemptToOrphan队列

(1)如果这个对象正在删除,并且有foregroundDeletion这个Finalizer,就将它和它的dependents扔进attemptToDelete

func (gb *GraphBuilder) processTransitions(oldObj interface{}, newAccessor metav1.Object, n *node) {
​if startsWaitingForDependentsOrphaned(oldObj, newAccessor) {klog.V(5).Infof("add %s to the attemptToOrphan", n.identity)gb.attemptToOrphan.Add(n)return}if startsWaitingForDependentsDeleted(oldObj, newAccessor) {klog.V(2).Infof("add %s to the attemptToDelete, because it's waiting for its dependents to be deleted", n.identity)// if the n is added as a "virtual" node, its deletingDependents field is not properly set, so always set it here.n.markDeletingDependents()for dep := range n.dependents {gb.attemptToDelete.Add(dep)}gb.attemptToDelete.Add(n)}
}

2.5 runAttemptToOrphanWorker

runAttemptToOrphanWorker逻辑如下:

(1)获得这个节点的所有orphanDependents

(2)调用orphanDependents,删除它的orphanDependents的OwnerReferences。

(3)删除orphan这个Finalizer,让该对象可以被删除

func (gc *GarbageCollector) runAttemptToOrphanWorker() {for gc.attemptToOrphanWorker() {}
}
​
// attemptToOrphanWorker dequeues a node from the attemptToOrphan, then finds its
// dependents based on the graph maintained by the GC, then removes it from the
// OwnerReferences of its dependents, and finally updates the owner to remove
// the "Orphan" finalizer. The node is added back into the attemptToOrphan if any of
// these steps fail.
func (gc *GarbageCollector) attemptToOrphanWorker() bool {item, quit := gc.attemptToOrphan.Get()gc.workerLock.RLock()defer gc.workerLock.RUnlock()if quit {return false}defer gc.attemptToOrphan.Done(item)owner, ok := item.(*node)if !ok {utilruntime.HandleError(fmt.Errorf("expect *node, got %#v", item))return true}// we don't need to lock each element, because they never get updatedowner.dependentsLock.RLock()dependents := make([]*node, 0, len(owner.dependents))// 1.获得这个节点的所有orphanDependentsfor dependent := range owner.dependents {dependents = append(dependents, dependent)}owner.dependentsLock.RUnlock()// 2.调用orphanDependents,删除它的orphanDependents的OwnerReferences。// 举例来说,删除deployA时,删除rsA的OwnerReference,这样rsA就不受deployA控制了。err := gc.orphanDependents(owner.identity, dependents)if err != nil {utilruntime.HandleError(fmt.Errorf("orphanDependents for %s failed with %v", owner.identity, err))gc.attemptToOrphan.AddRateLimited(item)return true}// update the owner, remove "orphaningFinalizer" from its finalizers list// 3. 删除orphan这个Finalizer,让deployA可以被删除err = gc.removeFinalizer(owner, metav1.FinalizerOrphanDependents)if err != nil {utilruntime.HandleError(fmt.Errorf("removeOrphanFinalizer for %s failed with %v", owner.identity, err))gc.attemptToOrphan.AddRateLimited(item)}return true
}

2.6 attemptToDeleteWorker

主要调用attemptToDeleteItem函数。attemptToDeleteItem的逻辑如下:

(1)如果该对象isBeingDeleted,并且没有在删除Dependents,直接返回

(2)如果该对象正在删除dependents, 将dependents加入attemptToDelete队列

(3)调用classifyReferences,计算solid,dangling,waitingForDependentsDeletion的情况,solid,dangling,waitingForDependentsDeletion是OwnerReferences数组

solid:当前节点的owner存在,并且owner的状态不是删除Dependents中

dangling:owner不存在

waitingForDependentsDeletion:owner存在,并且owner的状态是删除Dependents中

(4)根据solid,dangling,waitingForDependentsDeletion的情况进行不同的处理,具体如下:

  • 情况1: 如果有至少有一个owner存在,并且不处于删除依赖中。这个时候判断dangling,waitingForDependentsDeletion的数量是否为0。如果为0,说明当前不需要处理;否则,将该节点对应dangling,waitingForDependentsDeletion的节点删除dependents。

  • 情况2: 到这里说明 len(solid)=0,这个时候如果有节点在等待这个节点删除,并且这个节点还有依赖,那么将这个节点的blockOwnerDeletion设置为true。然后后台删除这个节点。 这里举一个例子说明:当前台模式删除deployA时,rsA是当前要处理的节点。这个时候rsA发现deployA再等自己删除,但是自己又有依赖podA,所以这里马上将自己设置为前台删除。这样在deployA看来就实现了先删除podA, 再删除rsA,再删除deployA。

  • 情况3: 除了上面的两种情况,根据设置的删除策略删除这个节点。

这里举一个例子说明:当后台模式删除deployA时,rsA是当前要处理的节点。这个时候deployA已经删除了,同时没有finalizer,因为只有Orphan, foreGround有finalizer,所以这个时候直接默认以background删除这个节点。

func (gc *GarbageCollector) attemptToDeleteWorker() bool {item, quit := gc.attemptToDelete.Get()
​err := gc.attemptToDeleteItem(n)
​return true
}
​
​
func (gc *GarbageCollector) attemptToDeleteItem(item *node) error {klog.V(2).Infof("processing item %s", item.identity)// "being deleted" is an one-way trip to the final deletion. We'll just wait for the final deletion, and then process the object's dependents.// 1.如果该对象isBeingDeleted,并且没有在删除Dependents,直接返回if item.isBeingDeleted() && !item.isDeletingDependents() {klog.V(5).Infof("processing item %s returned at once, because its DeletionTimestamp is non-nil", item.identity)return nil}// TODO: It's only necessary to talk to the API server if this is a// "virtual" node. The local graph could lag behind the real status, but in// practice, the difference is small.latest, err := gc.getObject(item.identity)switch {case errors.IsNotFound(err):// the GraphBuilder can add "virtual" node for an owner that doesn't// exist yet, so we need to enqueue a virtual Delete event to remove// the virtual node from GraphBuilder.uidToNode.klog.V(5).Infof("item %v not found, generating a virtual delete event", item.identity)gc.dependencyGraphBuilder.enqueueVirtualDeleteEvent(item.identity)// since we're manually inserting a delete event to remove this node,// we don't need to keep tracking it as a virtual node and requeueing in attemptToDeleteitem.markObserved()return nilcase err != nil:return err}
​if latest.GetUID() != item.identity.UID {klog.V(5).Infof("UID doesn't match, item %v not found, generating a virtual delete event", item.identity)gc.dependencyGraphBuilder.enqueueVirtualDeleteEvent(item.identity)// since we're manually inserting a delete event to remove this node,// we don't need to keep tracking it as a virtual node and requeueing in attemptToDeleteitem.markObserved()return nil}
​// TODO: attemptToOrphanWorker() routine is similar. Consider merging// attemptToOrphanWorker() into attemptToDeleteItem() as well.// 2. 如果该对象正在删除dependents, 将dependents加入attemptToDelete队列if item.isDeletingDependents() {return gc.processDeletingDependentsItem(item)}// compute if we should delete the itemownerReferences := latest.GetOwnerReferences()if len(ownerReferences) == 0 {klog.V(2).Infof("object %s's doesn't have an owner, continue on next item", item.identity)return nil}// 3.计算solid,dangling,waitingForDependentsDeletion的情况。solid, dangling, waitingForDependentsDeletion, err := gc.classifyReferences(item, ownerReferences)if err != nil {return err}klog.V(5).Infof("classify references of %s.\nsolid: %#v\ndangling: %#v\nwaitingForDependentsDeletion: %#v\n", item.identity, solid, dangling, waitingForDependentsDeletion)
​
​// 4.根据solid,dangling,waitingForDependentsDeletion的情况进行不同的处理switch {// 情况1: 如果有至少有一个owner存在,并且不处于删除依赖中。这个时候判断dangling,waitingForDependentsDeletion的数量是否为0。如果为0,说明当前不需要处理;否则,将该节点对应dangling,waitingForDependentsDeletion的节点删除dependents。case len(solid) != 0:klog.V(2).Infof("object %#v has at least one existing owner: %#v, will not garbage collect", item.identity, solid)if len(dangling) == 0 && len(waitingForDependentsDeletion) == 0 {return nil}klog.V(2).Infof("remove dangling references %#v and waiting references %#v for object %s", dangling, waitingForDependentsDeletion, item.identity)// waitingForDependentsDeletion needs to be deleted from the// ownerReferences, otherwise the referenced objects will be stuck with// the FinalizerDeletingDependents and never get deleted.ownerUIDs := append(ownerRefsToUIDs(dangling), ownerRefsToUIDs(waitingForDependentsDeletion)...)patch := deleteOwnerRefStrategicMergePatch(item.identity.UID, ownerUIDs...)_, err = gc.patch(item, patch, func(n *node) ([]byte, error) {return gc.deleteOwnerRefJSONMergePatch(n, ownerUIDs...)})return err// 情况2: 到这里说明 len(solid)=0,这个时候如果有节点在等待这个节点删除,并且这个节点还有依赖,那么将这个节点的blockOwnerDeletion设置为true。然后后台删除这个节点。case len(waitingForDependentsDeletion) != 0 && item.dependentsLength() != 0:deps := item.getDependents()for _, dep := range deps {if dep.isDeletingDependents() {// this circle detection has false positives, we need to// apply a more rigorous detection if this turns out to be a// problem.// there are multiple workers run attemptToDeleteItem in// parallel, the circle detection can fail in a race condition.klog.V(2).Infof("processing object %s, some of its owners and its dependent [%s] have FinalizerDeletingDependents, to prevent potential cycle, its ownerReferences are going to be modified to be non-blocking, then the object is going to be deleted with Foreground", item.identity, dep.identity)patch, err := item.unblockOwnerReferencesStrategicMergePatch()if err != nil {return err}if _, err := gc.patch(item, patch, gc.unblockOwnerReferencesJSONMergePatch); err != nil {return err}break}}klog.V(2).Infof("at least one owner of object %s has FinalizerDeletingDependents, and the object itself has dependents, so it is going to be deleted in Foreground", item.identity)// the deletion event will be observed by the graphBuilder, so the item// will be processed again in processDeletingDependentsItem. If it// doesn't have dependents, the function will remove the// FinalizerDeletingDependents from the item, resulting in the final// deletion of the item.policy := metav1.DeletePropagationForegroundreturn gc.deleteObject(item.identity, &policy)// 情况3: 除了上面的两种情况,根据设置的删除策略删除这个节点default:// item doesn't have any solid owner, so it needs to be garbage// collected. Also, none of item's owners is waiting for the deletion of// the dependents, so set propagationPolicy based on existing finalizers.var policy metav1.DeletionPropagationswitch {case hasOrphanFinalizer(latest):// if an existing orphan finalizer is already on the object, honor it.policy = metav1.DeletePropagationOrphancase hasDeleteDependentsFinalizer(latest):// if an existing foreground finalizer is already on the object, honor it.policy = metav1.DeletePropagationForegrounddefault:// otherwise, default to background.policy = metav1.DeletePropagationBackground}klog.V(2).Infof("delete object %s with propagation policy %s", item.identity, policy)return gc.deleteObject(item.identity, &policy)}
}

2.7 uidToNode到底是什么

在startGarbageCollectorController的时候 开启debug模式

return garbagecollector.NewDebugHandler(garbageCollector), true, nil

利用这个,我们可以看到uidToNode里的数据。数据太多,我这里就看 kube-system命名空间,kube-hpa这个deploy 在uidToNode的数据。

kcm对应的10252端口

。看这个
// 639d5269-d73d-4964-a7de-d6f386c9c7e4是kube-hpa这个deploy的uid。
# curl http://127.0.0.1:10252/debug/controllers/garbagecollector/graph?uid=639d5269-d73d-4964-a7de-d6f386c9c7e4
strict digraph full {// Node definitions.0 [label="\"uid=e66e45c0-5695-4c93-82f1-067b20aa035f\nnamespace=kube-system\nReplicaSet.v1.apps/kube-hpa-84c884f994\n\""group="apps"version="v1"kind="ReplicaSet"namespace="kube-system"name="kube-hpa-84c884f994"uid="e66e45c0-5695-4c93-82f1-067b20aa035f"missing="false"beingDeleted="false"deletingDependents="false"virtual="false"];1 [label="\"uid=9833c399-b139-4432-98f7-cec13158f804\nnamespace=kube-system\nPod.v1/kube-hpa-84c884f994-7gwpz\n\""group=""version="v1"kind="Pod"namespace="kube-system"name="kube-hpa-84c884f994-7gwpz"uid="9833c399-b139-4432-98f7-cec13158f804"missing="false"beingDeleted="false"deletingDependents="false"virtual="false"];2 [label="\"uid=639d5269-d73d-4964-a7de-d6f386c9c7e4\nnamespace=kube-system\nDeployment.v1.apps/kube-hpa\n\""group="apps"version="v1"kind="Deployment"namespace="kube-system"name="kube-hpa"uid="639d5269-d73d-4964-a7de-d6f386c9c7e4"missing="false"beingDeleted="false"deletingDependents="false"virtual="false"];
​// Edge definitions.0 -> 2;1 -> 0;
}

可以看出来,这个图就是表示了节点的依赖,同时beingDeleted, deletingDependents表示了当前节点的状态。

这个还可以将图画出来。

curl http://127.0.0.1:10252/debug/controllers/garbagecollector/graph?uid=639d5269-d73d-4964-a7de-d6f386c9c7e4 > tmp.dot
​
dot -Tsvg -o graph.svg tmp.dot

graph.svg如下:

3.总结

gc这块的逻辑非常绕,也非常难懂。但是多看几遍就会发现这个其他的妙处。这里再次总结一下整个流程。

(1) kcm启动时,gc controller随之启动。gc 启动时,做了以下的初始化工作见下图:

  • 定期获取所有能删除的资源,保存到RestMapper。然后启动这些资源的监听事件

  • 对这些些资源设置add, update, delete事件的处理逻辑:只要有变化就将其封装成一个event,然后扔进graphChanges队列

(2)runProcessGraphChanges负责处理graphChanges队列中的对象。主要做了俩件事情:

  • 第一,根据不同的变化,维护uidToNode这个图。一个对象对应了uidToNode中的一个节点,同时该节点有o wner, depends字段。

  • 第二,根据节点的beingDeleted, deletingDependents等字段,判断该节点是否可能要删除。如果要删除,将其扔进attemtToDelete, attemtToOrghan队列

(3)attemtToDeleteWorker, attemtToOrghanWorker负责出来attemtToDelete, attemtToOrghan队列,根据不同的情况进行删除

k8s gc原理详解相关推荐

  1. java年轻代minor gc_jvm之年轻代(新生代)、老年代、永久代以及GC原理详解、GC优化...

    关于JVM,也许你听过这些术语:年轻代(新生代).老年代.永久代.minor gc(young gc).major gc.full gc 不要急,先上图,这是jvm 堆内存结构图 仔细的你发现了 图中 ...

  2. jvm之年轻代(新生代)、老年代、永久代以及GC原理详解

    关于JVM,也许你听过这些术语:年轻代(新生代).老年代.永久代.minor gc(young gc).major gc.full gc 不要急,先上图,这是jvm 堆内存结构图 仔细的你发现了 图中 ...

  3. java代码轻量级锁_Java轻量级锁原理详解(Lightweight Locking)

    转自http://www.cnblogs.com/redcreen/archive/2011/03/29/1998801.html 大家知道,Java的多线程安全是基于Lock机制实现的,而Lock的 ...

  4. JVM之垃圾收集机制四种GC算法详解

    JVM之四种GC算法详解 目录: 什么是GC? GC算法之引用计数法 GC算法之复制算法(Copying) GC算法之标记清除(Mark-Sweep) GC算法之标记压缩(Mark-Compact) ...

  5. Java ArrayList的实现原理详解

    ArrayList是Java List类型的集合类中最常使用的,本文基于Java1.8,对于ArrayList的实现原理做一下详细讲解. (Java1.8源码:http://docs.oracle.c ...

  6. Java 轻量级锁原理详解(Lightweight Locking)

    2019独角兽企业重金招聘Python工程师标准>>> 大家知道,Java的多线程安全是基于Lock机制实现的,而Lock的性能往往不如人意. 原因是,monitorenter与mo ...

  7. AQS抽象队列同步器原理详解

    系列文章目录 第一节 synchronized关键字详解-偏向锁.轻量级锁.偏向锁.重量级锁.自旋.锁粗化.锁消除 AQS抽象队列同步器原理详解 系列文章目录 前言 一.AQS特性 二.AQS原理 1 ...

  8. 并发编程五:java并发线程池底层原理详解和源码分析

    文章目录 java并发线程池底层原理详解和源码分析 线程和线程池性能对比 Executors创建的三种线程池分析 自定义线程池分析 线程池源码分析 继承关系 ThreadPoolExecutor源码分 ...

  9. 通过 JFR 与日志深入探索 JVM - TLAB 原理详解

    全系列目录:通过 JFR 与日志深入探索 JVM - 总览篇 什么是 TLAB? TLAB(Thread Local Allocation Buffer)线程本地分配缓存区,这是一个线程专用的内存分配 ...

最新文章

  1. 多线程编程实践——实现生产者、消费者模型
  2. 【LINUX】——linux如何使用Python创建一个web服务
  3. 数学是什么?_题跋—数学是什么?
  4. LeetCode - Add Binary
  5. 【Android 逆向】Frida 框架 ( Frida 框架使用环境 | Frida 框架作用 | Frida 框架模块 )
  6. gridcontrol 验证错误_值得品读的人生感悟句子,生气,是拿别人的错误惩罚自己...
  7. matlab 旅行商遗传算法,急求蚁群混合遗传算法在matlab上的实现以解决TSP旅行商的问? 爱问知识人...
  8. line-height 属性
  9. “这辈子不可能打工男子”出狱了,司法所将重点关注,网友:《今瓶没》今日上映!...
  10. Winform的菜单控件
  11. 台式计算机网卡型号怎么查找,怎么确定台式机无线网卡驱动版本 台式机无线网卡驱动版本查看方法...
  12. Activity 生命周期详解与异常情况生命周期
  13. 小伙长期熬夜加班致“斑秃” IT业人士最易脱发
  14. STM32 Roadshow 更新 | 生态伙伴演讲定档
  15. 安大计算机学院汤进,“CCF合肥庐州论坛——认知计算研讨会”成功举办
  16. footnote latex
  17. linux 运行QQ /Tim(超简单)
  18. 让图片说出声音来(利用讯飞API实现图片转文字和文字转语音)
  19. java windows 打印机_windows系统 TSC 打印机的JAVA实现
  20. 网络探测工具(二)——traceroute

热门文章

  1. Excel2013打印时怎么固定表头及表尾让打印后的每页都可以看得到
  2. Unifying Voxel-based Representation with Transformer for 3D Object Detection (UVTR)论文笔记
  3. 好用的识别植物的软件app合集分享,快码住了
  4. for(int num:nums)
  5. python 自动生成问卷表的软件的设计与实现 毕业设计源码291138
  6. 腾讯云云硬盘快速入门-挂载云硬盘
  7. 漫谈唯一设备ID,android开发工程师
  8. 计算机一级考试可以搜索吗,手动找回Windows7搜索功能
  9. word使用技巧---插入图片显示不全的解决方案
  10. 初识HTTP——基于《图解HTTP》