论文:Visual Domain Adaptation with Manifold Embedded Distribution Alignment
地址:https://arxiv.org/abs/1807.07258

一、简介

在解决 unsupervised domain adaption 时主要出现两个问题:

  1. 恶化的特征转化: 特征对齐通常在原来的特征空间中实施,而且特征扭曲现象难以克服。另一方面,子空间学习不足以减少分布差异。
  2. 分布对齐没有测量的标准:之前的特征对齐方法仅仅将边缘分布和条件分布以视为同等重要的方式对齐,没有考虑到在真实应用中这两种方式的重要性可能不同。比如Figure1 所示,当两个域是非常不同(Figure 1(a) → 1(b)),此时对齐边缘分布可能更加重要。如果边缘分布是相近的(Figure 1(a) → 1©),此时对齐条件分布可能更加重要。

Manifold Embedded Distribution Alignment (MEDA) 方法解决了这两个问题,主要通过具有结构化危险最小化(structural risk minimization )的拉格拉斯流行(Grassmann manifold) 学习一个域不变的分类器,同时通过考虑条件分布和边缘分布的重要性来进行动态分布对齐。

二、细节

Main Idea

MEDA方法主要有两个基本步骤,分别解决上述提出的两个问题。

  1. 使用流形特征学习(manifold feature learning) 去解决恶化的特征表示问题。
  2. 使用动态特征对齐去定量的考虑边缘分布对齐和条件分布对齐的重要性。

根据结构危险最小化原则(SRM),最终可以把学习到域不变分类器 f f f 为:
f = arg ⁡ min ⁡ f ∈ ∑ i = 1 n H K l ( f ( g ( x i ) ) , y i ) + η ∣ ∣ f ∣ ∣ K 2 + λ D f ‾ ( D s , D t ) + ρ R f ( D s , D t ) f = {\arg\min}_{f\in\sum_{i=1}^n\mathcal H_K} l(f(g(\mathbf x_i)), \mathbf y_i) + \eta||f||_K^2 + \lambda\overline {D_f}(\mathcal D_s, \mathcal D_t) + \rho R_f(\mathcal D_s, \mathcal D_t) f=argminfi=1nHKl(f(g(xi)),yi)+ηfK2+λDf(Ds,Dt)+ρRf(Ds,Dt)

∣ ∣ f ∣ ∣ K 2 ||f||_K^2 fK2f f f 的二次范式,后面两项分别为动态分布对齐和拉普拉斯正则项。其中 η 、 λ 、 ρ \eta、\lambda、\rho ηλρ 是相应的参数。

Manifold Feature Learning

作者使用测地线流式核方法(GFK)来进行Manifold Feature learning。经过转换后的特征可以表示为 z = g ( x ) = Φ ( t ) T x \mathbf {z = g(x) = \Phi(t)^T x} z=g(x)=Φ(t)Tx,转换后的特征 z i z_i ziz j z_j zj 的内积形成一个半正定测地线流式核:
< z i , z j > = ∫ 0 1 ( Φ ( t ) T x i ) T ( Φ ( t ) x j ) d t = x i t G X j <\mathbf z_i, \mathbf z_j> = \mathbf{\int_0^1{(\Phi(t)^Tx_i)^T(\Phi(t)x_j) dt = x_i^tGX_j}} <zi,zj>=01(Φ(t)Txi)T(Φ(t)xj)dt=xitGXj
最后得到 z = g ( x ) = G x \mathbf{z = g(x) = \sqrt{G}x} z=g(x)=G

x

Dynamic Distribution Alignment

这里首先定义 P P P为边缘分布, Q Q Q为条件分布。作者提出使用Adaption factor μ \mu μ 来平衡两个分布的重要性,因此动态分布对齐 D f ‾ \overline{D_f} Df 可以被定义为:
D f ‾ ( D s , D t ) = ( 1 − μ ) D f ( P s , P t ) + μ ∑ c = 1 C D f ( c ) ( Q s , Q t ) \overline{D_f}(\mathcal D_s, \mathcal D_t) = (1 - \mu)D_f(P_s, P_t) + \mu\sum_{c=1}^CD_f^{(c)}(Q_s, Q_t) Df(Ds,Dt)=(1μ)Df(Ps,Pt)+μc=1CDf(c)(Qs,Qt)
其中 μ ∈ [ 0 , 1 ] \mu\in[0, 1] μ[0,1]就是 adaptive factor , c ∈ { 1 , ⋅ ⋅ ⋅ , C } c\in\{1, ···,C\} c{1,C}是类别指示符号。
D f D_f Df可以用最大化均值差异(maximum mean discrepancy,MMD)来度量,因此,改写 D f ‾ \overline{D_f} Df 为:
D f ‾ ( D s , D t ) = ( 1 − μ ) ∣ ∣ E [ f ( z s ) ] − E [ f ( z t ) ] ∣ ∣ H K 2 + μ ∑ c = 1 C ∣ ∣ E [ f ( z s ( c ) ) ] − E [ f ( z t ( c ) ) ] ∣ ∣ H K 2 \overline{D_f}(\mathcal D_s, \mathcal D_t) = (1-\mu){||\mathbb E[f(\mathbf z_s)] - \mathbb E[f(\mathbf z_t)] ||}_{\mathcal H_K}^2 + \mu\sum_{c=1}^C{||\mathbb E[f(\mathbf z_s^{(c)})] - \mathbb E[f(\mathbf z_t^{(c)})] ||}_{\mathcal H_K}^2 Df(Ds,Dt)=(1μ)E[f(zs)]E[f(zt)]HK2+μc=1CE[f(zs(c))]E[f(zt(c))]HK2
值得注意的是,这里的 D t \mathcal D_t Dt 是没有label的,所以无法直接评估条件分布 Q t = Q t ( y t ∣ z t ) Q_t = Q_t(\mathbf y_t|\mathbf z_t) Qt=Qt(ytzt),使用类条件分布 Q t ( z t ∣ y t ) Q_t(\mathbf z_t|\mathbf y_t) Qt(ztyt)去近似 Q t Q_t Qt,为了得到 Q t ( z t ∣ y t ) Q_t(\mathbf z_t|\mathbf y_t) Qt(ztyt),作者首先使用一个在 D s \mathcal D_s Ds上训练的基本分类器来预测 D t \mathcal D_t Dt的软标签。尽管这可能不值得信赖,但是可以迭代的去从新修正这个分类器。而且仅在第一次迭代的时候使用这个基础分类器,之后都使用MEDA来自动重新修订 D t D_t Dt的标签。

为了定量的得到适应参数 μ \mu μ ,作者使用 A \mathcal A A-distance 去作为基本的测量方式, A \mathcal A A-distance 被定义为构建一个线性分类器去判断两个域的错误率。 ϵ ( h ) \epsilon(h) ϵ(h) 定义为一个线性分类器 h 判别两个域 D s \mathcal D_s DsD t \mathcal D_t Dt 的错误率。 A \mathcal A A-distance 公式化定义如下:
d A ( D s , D t ) = 2 ( 1 − 2 ϵ ( h ) ) d_A(\mathcal D_s, \mathcal D_t) = 2(1 - 2\epsilon(h)) dA(Ds,Dt)=2(12ϵ(h))
所以 μ \mu μ的值可以被估计为:
μ ^ ≈ 1 − d M d M + ∑ c = 1 C d c \hat \mu \ \approx 1 - {d_M\over{d_M + \sum_{c=1}^Cd_c}} μ^1dM+c=1CdcdM

Learning Classifier f f f

引入平方loss l 2 l_2 l2f f f可以重新写成:
f = arg ⁡ min ⁡ f ∈ H K ∑ i = 1 n ( y i − f ( z i ) ) 2 + η ∣ ∣ f ∣ ∣ K 2 + λ D f ‾ ( D s , D t ) + ρ R f ( D s , D t ) f = {\arg\min}_{f\in\mathcal H_K}\sum_{i=1}^n(y_i - f(\mathbf z_i))^2 + \eta||f||_K^2 + \lambda\overline {D_f}(\mathcal D_s, \mathcal D_t) + \rho R_f(\mathcal D_s, \mathcal D_t) f=argminfHKi=1n(yif(zi))2+ηfK2+λDf(Ds,Dt)+ρRf(Ds,Dt)
接下来,作者详细的讨论了 f f f 中每一项的细节,包括 f 、 D f ‾ ( D s , D t ) 、 R f ( D s , D t ) f、\overline {D_f}(\mathcal D_s, \mathcal D_t)、R_f(\mathcal D_s, \mathcal D_t) fDf(Ds,Dt)Rf(Ds,Dt) 的准确表达形式:

f = arg ⁡ min ⁡ f ∈ H K ∣ ∣ ( Y − β T K ) A ∣ ∣ F 2 − η t r ( β T K β ) + t r ( β T K ( λ M + ρ L ) K β ) f = {\arg\min}_{f\in\mathcal H_K}||\mathbf {(Y-\beta^TK)A}||_F^2 - \eta tr(\beta^TK\beta) + tr(\mathbf{\beta^TK(\lambda M + \rho L)K\beta}) f=argminfHK(YβTK)AF2ηtr(βTKβ)+tr(βTK(λM+ρL)Kβ)
然后设置 ∂ f / ∂ β = 0 \partial f/\partial \beta = 0 f/β=0, 最后获得求解答案:
β ⋆ = ( ( A + λ M + ρ L ) K + η I ) − 1 A Y T \beta^\star = \mathbf{((A + \lambda M + \rho L)K + \eta I)^{-1}AY^T} β=((A+λM+ρL)K+ηI)1AYT

三、实验

作者使用了七个公开数据集:Office+Caltech10, USPS + MNIST, ImageNet + VOC2007, and Office-31,这些数据集都可以在这里看到 transferlearning dataset。(数据准备的详细细节见paper)。作者与当前几个state-of-the-art 传统和深度域适应方法。相关方法在论文中有简单的描述。为了公平比较,作者使用同样的准则去得到特征。准确度:
A c c u r a c y = ∣ x : x ∈ D t ∧ y ^ ( x ) = y ( x ) ∣ ∣ x : x ∈ D s ∣ Accuracy = {{|\mathbf {x:x \in \mathcal D_t \land \hat y(x)=y(x)}|} \over \mathbf {|x:x \in \mathcal D_s|}} Accuracy=x:xDsx:xDty^(x)=y(x)
其中 y ( x ) y(\mathbf x) y(x)y ^ ( x ) \hat y(\mathbf x) y^(x) 是分别是对于目标域的ground truth label 和 predicted labels。



所有实验分类结果准确度分别展示在Tables 2,3,4。可以得到如下结果:

  • MEDA的性能超过大多数传统或深度域适应方法(21/28个任务)。MEDA在28项任务中的平均分类准确率为73.2%。 与最佳基线方法JGSA(69.7%)相比,平均性能改善为3.5%,显示出显着的平均误差降低11.6%。 请注意,由于空间限制,Office-31数据集上的结果位于补充文件2中,并且观察结果相同。由于这些结果是从广泛的图像数据集中获得的,因此它表明MEDA能够显着降低域适应问题中的分布差异。
  • 可以看到所有的分布对齐方法(TCA, JDA, ARTL, TJM, JGSA, and DMM) 和 子空间学习方法(GFK, CORAL, and SCA) 性能比MEDA方法效果差。每一种方法都有它们的限制(恶化的特征转化 或 分布对齐没有测量的标准),MEDA解决了这两个问题。
  • MEDA的性能也超过了深度方法(AlexNet, DDC, DAN, DCORAL, and DUCDA)。深度学习方法需要调整很多的超参数,而MEDA仅仅涉及几个参数。

除了MEDA与state-of-the-art方法的性能,还分析了MEDA中流行特征学习动态分布对齐每一个组件评估,最后还分析了参数敏感性、收敛和时间复杂度等,限于篇幅这里不在赘述。

四、总结

这不愧为ACMMM oral的论文,内容十分充足。论文提出了一个新奇的方法,解决unsupervised domain adaption中之前工作没有解决的两个核心问题1)恶化的特征转化。2)分布对齐没有测量的标准。分别引入流形特征学习和动态分布对齐方法分布解决这两个问题。在实验阶段,作者进行了全面而丰富的实验,使用了7个公共数据集,比较了很多 state-of-the-art 传统的和深度的域适应方法,证实了MEDA方法卓越的性能。之后还对MEDA每一个组件进行了实验分析,分析参数敏感性和MEDA时间复杂度。

论文笔记:Visual Domain Adaptation with Manifold Embedded Distribution Alignment相关推荐

  1. Visual Domain Adaptation with Manifold Embedded Distribution Alignment 阅读MEDA

    流形嵌入式分布对齐 方法提出:现有的迁移方法尝试跨域分布对齐,共享子空间学习,但存在两个挑战:1)分布对齐一般在原始的特征空间,特征变换出现扭曲难以克服.2)对边缘分布和条件分布进行对齐,并没有考虑其 ...

  2. 遥感图像处理-Spectral–Spatial Weighted Kernel Manifold Embedded Distribution Alignment for Remote Sensing

    Spectral–Spatial Weighted Kernel Manifold Embedded Distribution Alignment for Remote Sensing Image C ...

  3. Deep visual domain adaptation: A survey

    参考 Deep visual domain adaptation: A survey - 云+社区 - 腾讯云 摘要 深度视觉域适配作为一个解决大量标注数据缺失的新的学习技巧而出现.与传统的学习共享特 ...

  4. 迁移学习——Joint Geometrical and Statistical Alignment for Visual Domain Adaptation

    <Joint Geometrical and Statistical Alignment for Visual Domain Adaptation>学习 2017 CVPR 文章目录 摘要 ...

  5. 论文笔记:Contrastive Adaptation Network for Unsupervised Domain Adaptation

    1. 任务设置 U n s u p e r v i s e d D o m a i n A d a p t a t i o n f o r I m a g e C l a s s i f i c a ...

  6. [论文阅读] Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel Segmentation

    [论文地址] [代码] [ISBI 22] Abstract 各种深度学习模型已经被开发出来,用于从医学图像中分割解剖结构,但当在另一个具有不同数据分布的目标域上测试时,它们通常表现不佳.最近,人们提 ...

  7. 【论文阅读】Domain Adaptation for Deep Entity Resolution

    Domain Adaptation for Deep Entity Resolution 摘要 实体解析(ER)是数据集成的一个核心问题.ER的最先进(SOTA)结果是通过基于深度学习(DL)的方法实 ...

  8. 论文笔记:Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World

    Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World 文章概况 作者 ...

  9. 论文笔记:Adapting Object Detectors via Selective Cross-Domain Alignment

    论文地址:https://ieeexplore.ieee.org/document/8953252 源码地址:https://github.com/xinge008/SCDA 1 Focus of A ...

最新文章

  1. python3调用腾讯AI开放平台
  2. 学python看谁的视频比较好-Python入门视频看哪个好?适合初学者的教学视频推荐...
  3. javascript感叹号1_「翻译」JavaScript的可视化学习之三:作用域(链)
  4. 协方差与相关系数的再理解
  5. CXF与Web项目集成---without Spring
  6. 神经网络densecnn_对比学习用 Keras 搭建 CNN RNN 等常用神经网络
  7. 训练时发生的错误:Couldn‘t open shared file mapping: <000001910A228862>, error code: <1455>
  8. 80% 的 Android 应用正使用加密流量!
  9. 解决 DBMS_AW_EXP: BIN$*****==$0 not AW$
  10. 最快的Java序列化框架Protostuff简介
  11. Linux笔记1 修改主机名、ip以及指DNS
  12. 智慧小区智能安防设计方案
  13. 软件测试周刊(第31期):所有的伟大 都源于一个勇敢的开始
  14. 初学者:set/multisetmap/multimap
  15. 音乐节拍自动标记插件 BeatEdit
  16. Android 设计素材积累(九层之台起于垒土)
  17. 土方回填施工方案范本_土方回填施工方案.doc.docx
  18. lighttpd移植
  19. java 判断两个字符串相等
  20. 华为运营商级路由器配置示例 | EVdPdN VPLS over SRv6 BE(CE双归接入)

热门文章

  1. 感想篇:7)知其然与知其所以然,KnowHow与KnowWhy
  2. Axure中继器的高级功能
  3. Oulipo HDU - 1686 (kmp初见讨伐!)
  4. 0x00007FFE81272FE1 (ucrtbased.dll) (Project1.exe 中)处有未经处理的异常: 0xC0000005: 读取位置 0x0000000000000000 时发
  5. 菲尔兹奖得主陶哲轩:解题的策略
  6. EF| CodeFirst 代码先行
  7. html图片向两边展开效果,通过CSS3 transform实现图片浏览的几种效果
  8. 搜索引擎技术大战,始于昨日
  9. 【Verilog】一、Verilog概述
  10. “万丈高楼平地起,编程学习要趁早”