LSTM的宏观讲解推荐这篇博客,以动图的形式展示特别容易理解https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/82922386

LSTM的输入、输出、遗忘门的控制推荐这篇博客。本篇的代码也是基于这篇博客的

https://zybuluo.com/hanbingtao/note/581764

import numpy as np
import matplotlib.pyplot as plt
class ReluActivator(object):def forward(self, weighted_input):#return weighted_inputreturn max(0, weighted_input)def backward(self, output):return 1 if output > 0 else 0class IdentityActivator(object):def forward(self, weighted_input):return weighted_inputdef backward(self, output):return 1class SigmoidActivator(object):def forward(self, weighted_input):return 1.0 / (1.0 + np.exp(-weighted_input))def backward(self, output):return output * (1 - output)class TanhActivator(object):def forward(self, weighted_input):return 2.0 / (1.0 + np.exp(-2 * weighted_input)) - 1.0def backward(self, output):return 1 - output * output
def element_wise_op(array, op):for i in np.nditer(array,op_flags=['readwrite']):i[...] = op(i)
class LstmLayer(object):def __init__(self, input_width, state_width, learning_rate):self.input_width = input_widthself.state_width = state_widthself.learning_rate = learning_rate# 门的激活函数self.gate_activator = SigmoidActivator()# 输出的激活函数self.output_activator = TanhActivator()# 当前时刻初始化为t0self.times = 0       # 各个时刻的单元状态向量cself.c_list = self.init_state_vec()# 各个时刻的输出向量hself.h_list = self.init_state_vec()# 各个时刻的遗忘门fself.f_list = self.init_state_vec()# 各个时刻的输入门iself.i_list = self.init_state_vec()# 各个时刻的输出门oself.o_list = self.init_state_vec()# 各个时刻的即时状态c~self.ct_list = self.init_state_vec()# 遗忘门权重矩阵Wfh, Wfx, 偏置项bfself.Wfh, self.Wfx, self.bf = (self.init_weight_mat())# 输入门权重矩阵Wfh, Wfx, 偏置项bfself.Wih, self.Wix, self.bi = (self.init_weight_mat())# 输出门权重矩阵Wfh, Wfx, 偏置项bfself.Woh, self.Wox, self.bo = (self.init_weight_mat())# 单元状态权重矩阵Wfh, Wfx, 偏置项bfself.Wch, self.Wcx, self.bc = (self.init_weight_mat())def init_state_vec(self):'''初始化保存状态的向量'''state_vec_list = []state_vec_list.append(np.zeros((self.state_width, 1)))return state_vec_listdef init_weight_mat(self):'''初始化权重矩阵'''Wh = np.random.uniform(-1e-4, 1e-4,(self.state_width, self.state_width))Wx = np.random.uniform(-1e-4, 1e-4,(self.state_width, self.input_width))b = np.zeros((self.state_width, 1))return Wh, Wx, bdef forward(self, x):'''根据式1-式6进行前向计算'''self.times += 1# 遗忘门fg = self.calc_gate(x, self.Wfx, self.Wfh, self.bf, self.gate_activator)self.f_list.append(fg)# 输入门ig = self.calc_gate(x, self.Wix, self.Wih,self.bi, self.gate_activator)self.i_list.append(ig)# 输出门og = self.calc_gate(x, self.Wox, self.Woh,self.bo, self.gate_activator)self.o_list.append(og)# 即时状态ct = self.calc_gate(x, self.Wcx, self.Wch,self.bc, self.output_activator)self.ct_list.append(ct)# 单元状态c = fg * self.c_list[self.times - 1] + ig * ctself.c_list.append(c)# 输出h = og * self.output_activator.forward(c)self.h_list.append(h)def calc_gate(self, x, Wx, Wh, b, activator):'''计算门'''h = self.h_list[self.times - 1] # 上次的LSTM输出net = np.dot(Wh, h) + np.dot(Wx, x) + bgate = activator.forward(net)return gatedef backward(self, x, delta_h, activator):'''实现LSTM训练算法'''self.calc_delta(delta_h, activator)self.calc_gradient(x)def update(self):'''按照梯度下降,更新权重'''self.Wfh -= self.learning_rate * self.Whf_gradself.Wfx -= self.learning_rate * self.Whx_gradself.bf -= self.learning_rate * self.bf_gradself.Wih -= self.learning_rate * self.Whi_gradself.Wix -= self.learning_rate * self.Whi_gradself.bi -= self.learning_rate * self.bi_gradself.Woh -= self.learning_rate * self.Wof_gradself.Wox -= self.learning_rate * self.Wox_gradself.bo -= self.learning_rate * self.bo_gradself.Wch -= self.learning_rate * self.Wcf_gradself.Wcx -= self.learning_rate * self.Wcx_gradself.bc -= self.learning_rate * self.bc_graddef calc_delta(self, delta_h, activator):# 初始化各个时刻的误差项self.delta_h_list = self.init_delta()  # 输出误差项self.delta_o_list = self.init_delta()  # 输出门误差项self.delta_i_list = self.init_delta()  # 输入门误差项self.delta_f_list = self.init_delta()  # 遗忘门误差项self.delta_ct_list = self.init_delta() # 即时输出误差项# 保存从上一层传递下来的当前时刻的误差项self.delta_h_list[-1] = delta_h# 迭代计算每个时刻的误差项for k in range(self.times, 0, -1):self.calc_delta_k(k)def init_delta(self):'''初始化误差项'''delta_list = []for i in range(self.times + 1):delta_list.append(np.zeros((self.state_width, 1)))return delta_listdef calc_delta_k(self, k):'''根据k时刻的delta_h,计算k时刻的delta_f、delta_i、delta_o、delta_ct,以及k-1时刻的delta_h'''# 获得k时刻前向计算的值ig = self.i_list[k]og = self.o_list[k]fg = self.f_list[k]ct = self.ct_list[k]c = self.c_list[k]c_prev = self.c_list[k-1]tanh_c = self.output_activator.forward(c)delta_k = self.delta_h_list[k]# 根据式9计算delta_odelta_o = (delta_k * tanh_c * self.gate_activator.backward(og))delta_f = (delta_k * og * (1 - tanh_c * tanh_c) * c_prev *self.gate_activator.backward(fg))delta_i = (delta_k * og * (1 - tanh_c * tanh_c) * ct *self.gate_activator.backward(ig))delta_ct = (delta_k * og * (1 - tanh_c * tanh_c) * ig *self.output_activator.backward(ct))delta_h_prev = (np.dot(delta_o.transpose(), self.Woh) +np.dot(delta_i.transpose(), self.Wih) +np.dot(delta_f.transpose(), self.Wfh) +np.dot(delta_ct.transpose(), self.Wch)).transpose()# 保存全部delta值self.delta_h_list[k-1] = delta_h_prevself.delta_f_list[k] = delta_fself.delta_i_list[k] = delta_iself.delta_o_list[k] = delta_oself.delta_ct_list[k] = delta_ctdef calc_gradient(self, x):# 初始化遗忘门权重梯度矩阵和偏置项self.Wfh_grad, self.Wfx_grad, self.bf_grad = (self.init_weight_gradient_mat())# 初始化输入门权重梯度矩阵和偏置项self.Wih_grad, self.Wix_grad, self.bi_grad = (self.init_weight_gradient_mat())# 初始化输出门权重梯度矩阵和偏置项self.Woh_grad, self.Wox_grad, self.bo_grad = (self.init_weight_gradient_mat())# 初始化单元状态权重梯度矩阵和偏置项self.Wch_grad, self.Wcx_grad, self.bc_grad = (self.init_weight_gradient_mat())# 计算对上一次输出h的权重梯度for t in range(self.times, 0, -1):# 计算各个时刻的梯度(Wfh_grad, bf_grad,Wih_grad, bi_grad,Woh_grad, bo_grad,Wch_grad, bc_grad) = (self.calc_gradient_t(t))# 实际梯度是各时刻梯度之和self.Wfh_grad += Wfh_gradself.bf_grad += bf_gradself.Wih_grad += Wih_gradself.bi_grad += bi_gradself.Woh_grad += Woh_gradself.bo_grad += bo_gradself.Wch_grad += Wch_gradself.bc_grad += bc_grad# 计算对本次输入x的权重梯度xt = x.transpose()self.Wfx_grad = np.dot(self.delta_f_list[-1], xt)self.Wix_grad = np.dot(self.delta_i_list[-1], xt)self.Wox_grad = np.dot(self.delta_o_list[-1], xt)self.Wcx_grad = np.dot(self.delta_ct_list[-1], xt)def init_weight_gradient_mat(self):'''初始化权重矩阵'''Wh_grad = np.zeros((self.state_width,self.state_width))Wx_grad = np.zeros((self.state_width,self.input_width))b_grad = np.zeros((self.state_width, 1))return Wh_grad, Wx_grad, b_graddef calc_gradient_t(self, t):'''计算每个时刻t权重的梯度'''h_prev = self.h_list[t-1].transpose()Wfh_grad = np.dot(self.delta_f_list[t], h_prev)bf_grad = self.delta_f_list[t]Wih_grad = np.dot(self.delta_i_list[t], h_prev)bi_grad = self.delta_f_list[t]Woh_grad = np.dot(self.delta_o_list[t], h_prev)bo_grad = self.delta_f_list[t]Wch_grad = np.dot(self.delta_ct_list[t], h_prev)bc_grad = self.delta_ct_list[t]return Wfh_grad, bf_grad, Wih_grad, bi_grad, \Woh_grad, bo_grad, Wch_grad, bc_graddef reset_state(self):# 当前时刻初始化为t0self.times = 0       # 各个时刻的单元状态向量cself.c_list = self.init_state_vec()# 各个时刻的输出向量hself.h_list = self.init_state_vec()# 各个时刻的遗忘门fself.f_list = self.init_state_vec()# 各个时刻的输入门iself.i_list = self.init_state_vec()# 各个时刻的输出门oself.o_list = self.init_state_vec()# 各个时刻的即时状态c~self.ct_list = self.init_state_vec()def data_set():x = [np.array([[1], [2], [3]]),np.array([[2], [3], [4]])]d = np.array([[1], [2]])return x, d
def test():l = LstmLayer(3, 2, 1e-3)x, d = data_set()l.forward(x[0])l.forward(x[1])l.backward(x[1], d, IdentityActivator())return l

lstm网络python代码实现相关推荐

  1. 控制论python_[干货]深入浅出LSTM及其Python代码实现

    人工神经网络在近年来大放异彩,在图像识别.语音识别.自然语言处理与大数据分析领域取得了巨大的成功,而长短期记忆网络LSTM作为一种特殊的神经网络模型,它又有哪些特点呢?作为初学者,如何由浅入深地理解L ...

  2. 理解LSTM网络+Python实现

    文章目录 前言 一.传统RNN 二.RNN带来的缺陷 1.梯度爆炸和梯度弥散 2.memory记忆不足 三.LSTM理解 1.LSTM原理 2.LSTM公式 前向传播 反向传播 四.LSTM实践(Py ...

  3. unet网络python代码详解_python网络编程详解

    最近在看<UNIX网络编程 卷1>和<FREEBSD操作系统设计与实现>这两本书,我重点关注了TCP协议相关的内容,结合自己后台开发的经验,写下这篇文章,一方面是为了帮助有需要 ...

  4. 贝叶斯网络python代码_贝叶斯网络,看完这篇我终于理解了(附代码)!

    1. 对概率图模型的理解 概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布.由图灵奖获得者Pearl开发出来. 如果用一个词来形容概率图 ...

  5. BP网络Python实现代码

    ➤00 说明 本文后面给出的BP网络Python代码主要依据 <飞浆PaddlePaddle深度学习实战> 中给出的示例进行总结而得. AC20KHz.AVI 无线充电系统 裁判系统的简介 ...

  6. python 代码-python经典代码

    广告关闭 2017年12月,云+社区对外发布,从最开始的技术博客到现在拥有多个社区产品.未来,我们一起乘风破浪,创造无限可能. 在昨天的文章中,我们介绍了关于python列表推导式 的使用,字典推导式 ...

  7. 视频教程-深度学习原理详解及Python代码实现-深度学习

    深度学习原理详解及Python代码实现 大学教授,美国归国博士.博士生导师:人工智能公司专家顾问:长期从事人工智能.物联网.大数据研究:已发表学术论文100多篇,授权发明专利10多项 白勇 ¥88.0 ...

  8. 教你用深度学习LSTM网络预测流行音乐趋势(附代码)

    来源:大数据挖掘DT数据分析 本文长度为1500字,建议阅读5分钟 本文为你介绍LSTM网络原理及其在流行音乐趋势预测赛题中的应用. 后台回复关键词"音乐",下载完整代码及数据集 ...

  9. 从Tensorflow代码中理解LSTM网络

    目录 RNN LSTM 参考文档与引子 缩略词  RNN (Recurrent neural network) 循环神经网络  LSTM (Long short-term memory) 长短期记忆人 ...

最新文章

  1. ie下面兼容性问题的一些总结(转)
  2. 期末总结:LINUX内核分析与设计期末总结
  3. 【转】Service深入分析
  4. qss样式表笔记大全(一):qss名词解析(包含相关示例)
  5. java代码上传exel,excle上传服务器并解析!求excel上传到服务器的java代码
  6. sencha touch 类的使用
  7. Web 网页开发的一点心得
  8. java宿舍管理系统代码_JAVA学生宿舍管理系统
  9. RSA加密解密中pkcs1与pkcs8格式私钥互相转换
  10. Kali [Nmap]端口扫描工具
  11. 2007年日历带农历表_2007年日历表,2007年农历表(阴历阳历节日对照表)
  12. 黄海广:那些年做的学术公益——你不是一个人在战斗
  13. CANopen协议中文文档
  14. 调用科大讯飞语音合成离线SDK的基础上调用pyqt5模块编写gui界面
  15. 爬虫四步曲大神一步一步来教你,使用python抓取网页数据并储存
  16. MTCNN配置及训练详细步骤
  17. 一个技术创业者的自白:你为什么想创业?
  18. 模版之AnyType
  19. Quartz的使用说明
  20. linux安装SecureCRT安装教学

热门文章

  1. jane street information session on pythonandocaml
  2. Heinz College of Information Systems and Public Policy Carnegie Mellon University
  3. Disruptor-net
  4. U3D非常诡异的【结构体引用】现象-个例
  5. 模拟noj——打扑克
  6. leetcode 225 用队列实现栈(JS)
  7. 项目托管到GitHub及简单使用
  8. vue动画效果配置和弹层css sticky footer
  9. JAVA截取字符串方法
  10. Java HashMap的死循环问题