Spring Cloud Bus除了支持RabbitMQ的自动化配置之外,还支持现在被广泛应用的Kafka。在本文中,我们将搭建一个Kafka的本地环境,并通过它来尝试使用Spring Cloud Bus对Kafka的支持,实现消息总线的功能。由于本文会以之前Rabbit的实现作为基础来修改,所以先阅读《Spring Cloud构建微服务架构(七)消息总线》有助于理解本文。

Kafka简介

Kafka是一个由LinkedIn开发的分布式消息系统,它于2011年初开源,现在由著名的Apache基金会维护与开发。Kafka使用Scala实现,被用作LinkedIn的活动流和运营数据处理的管道,现在也被诸多互联网企业广泛地用作为数据流管道和消息系统。

Kafka是基于消息发布/订阅模式实现的消息系统,其主要设计目标如下:

  • 消息持久化:以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的访问性能。
  • 高吞吐:在廉价的商用机器上也能支持单机每秒100K条以上的吞吐量
  • 分布式:支持消息分区以及分布式消费,并保证分区内的消息顺序
  • 跨平台:支持不同技术平台的客户端(如:Java、PHP、Python等)
  • 实时性:支持实时数据处理和离线数据处理
  • 伸缩性:支持水平扩展

Kafka中涉及的一些基本概念:

  • Broker:Kafka集群包含一个或多个服务器,这些服务器被称为Broker。
  • Topic:逻辑上同Rabbit的Queue队列相似,每条发布到Kafka集群的消息都必须有一个Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个Broker上,但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
  • Partition:Partition是物理概念上的分区,为了提供系统吞吐率,在物理上每个Topic会分成一个或多个Partition,每个Partition对应一个文件夹(存储对应分区的消息内容和索引文件)。
  • Producer:消息生产者,负责生产消息并发送到Kafka Broker。
  • Consumer:消息消费者,向Kafka Broker读取消息并处理的客户端。
  • Consumer Group:每个Consumer属于一个特定的组(可为每个Consumer指定属于一个组,若不指定则属于默认组),组可以用来实现一条消息被组内多个成员消费等功能。

快速入门

在对Kafka有了一些基本了解之后,下面我们来尝试构建一个Kafka服务端,并体验一下基于Kafka的消息生产与消费。

环境安装

首先,我们需要从官网上下载安装介质。下载地址为:http://kafka.apache.org/downloads.html。本例中采用的版本为:Kafka-0.10.0.1

在解压Kafka的安装包之后,可以看到其目录结构如下:

kafka+-bin
    +-windows+-config+-libs+-logs+-site-docs

由于Kafka的设计中依赖了ZooKeeper,所以我们可以在binconfig目录中除了看到Kafka相关的内容之外,还有ZooKeeper相关的内容。其中bin目录存放了Kafka和ZooKeeper的命令行工具,bin根目录下是适用于Linux/Unix的shell,而bin/windows下的则是适用于windows下的bat。我们可以根据实际的系统来设置环境变量,以方便后续的使用和操作。而在config目录中,则是用来存放了关于Kafka与ZooKeeper的配置信息。

启动测试

下面我们来尝试启动ZooKeeper和Kafka来进行消息的生产和消费。示例中所有的命令均已配置了Kafka的环境变量为例。

  • 启动ZooKeeper,执行命令:zookeeper-server-start config/zookeeper.properties,该命令需要指定zookeeper的配置文件位置才能正确启动,kafka的压缩包中包含了其默认配置,开发与测试环境不需要修改。
[2016-09-28 08:05:34,849] INFO Reading configuration from: config\zookeeper.properties (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
[2016-09-28 08:05:34,850] INFO autopurge.snapRetainCount set to 3 (org.apache.zookeeper.server.DatadirCleanupManager)
[2016-09-28 08:05:34,851] INFO autopurge.purgeInterval set to 0 (org.apache.zookeeper.server.DatadirCleanupManager)
[2016-09-28 08:05:34,851] INFO Purge task is not scheduled. (org.apache.zookeeper.server.DatadirCleanupManager)
[2016-09-28 08:05:34,852] WARN Either no config or no quorum defined in config, running  in standalone mode (org.apache.zookeeper.server.quorum.QuorumPeerMain)
[2016-09-28 08:05:34,868] INFO Reading configuration from: config\zookeeper.properties (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
[2016-09-28 08:05:34,869] INFO Starting server (org.apache.zookeeper.server.ZooKeeperServerMain)
...
[2016-09-28 08:05:34,940] INFO binding to port 0.0.0.0/0.0.0.0:2181 (org.apache.zookeeper.server.NIOServerCnxnFactory)

从控制台信息中,我们可以看到ZooKeeper从指定的config/zookeeper.properties配置文件中读取信息并绑定2181端口启动服务。有时候启动失败,可查看一下端口是否被占用,可以杀掉占用进程或通过修改config/zookeeper.properties配置文件中的clientPort内容以绑定其他端口号来启动ZooKeeper。

  • 启动Kafka,执行命令:kafka-server-start config/server.properties,该命令也需要指定Kafka配置文件的正确位置,如上命令中指向了解压目录包含的默认配置。若在测试时,使用外部集中环境的ZooKeeper的话,我们可以在该配置文件中通过zookeeper.connect参数来设置ZooKeeper的地址和端口,它默认会连接本地2181端口的ZooKeeper;如果需要设置多个ZooKeeper节点,可以为这个参数配置多个ZooKeeper地址,并用逗号分割。比如:zookeeper.connect=127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002

  • 创建Topic,执行命令:kafka-topics --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test,通过该命令,创建一个名为“test”的Topic,该Topic包含一个分区一个Replica。在创建完成后,可以使用kafka-topics --list --zookeeper localhost:2181命令来查看当前的Topic。

另外,如果我们不使用kafka-topics命令来手工创建,直接进行下面的内容进行消息创建时也会自动创建Topics来使用。

  • 创建消息生产者,执行命令:kafka-console-producer --broker-list localhost:9092 --topic testkafka-console-producer命令可以启动Kafka基于命令行的消息生产客户端,启动后可以直接在控制台中输入消息来发送,控制台中的每一行数据都会被视为一条消息来发送。我们可以尝试输入几行消息,由于此时并没有消费者,所以这些输入的消息都会被阻塞在名为test的Topics中,直到有消费者将其消费掉位置。

  • 创建消息消费者,执行命令:kafka-console-consumer --zookeeper localhost:2181 --topic test --from-beginningkafka-console-consumer命令启动的是Kafka基于命令行的消息消费客户端,在启动之后,我们马上可以在控制台中看到输出了之前我们在消息生产客户端中发送的消息。我们可以再次打开之前的消息生产客户端来发送消息,并观察消费者这边对消息的输出来体验Kafka对消息的基础处理。

整合Spring Cloud Bus

在上一篇使用Rabbit实现消息总线的案例中,我们已经通过引入spring-cloud-starter-bus-amqp模块,完成了使用RabbitMQ来实现的消息总线。若我们要使用Kafka来实现消息总线时,只需要把spring-cloud-starter-bus-amqp替换成spring-cloud-starter-bus-kafka模块,在pom.xml的dependenies节点中进行修改,具体如下:

<dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-bus-kafka</artifactId>
</dependency>

如果我们在启动Kafka时均采用了默认配置,那么我们不需要再做任何其他配置就能在本地实现从RabbitMQ到Kafka的切换。我们可以尝试把刚刚搭建的ZooKeeper、Kafka启动起来,并将修改为spring-cloud-starter-bus-kafka模块的config-server和config-client启动起来。

在config-server启动时,我们可以在控制台中看到如下输出:

2016-09-28 22:11:29.627  INFO 15144 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder    : Using kafka topic for outbound: springCloudBus
2016-09-28 22:11:29.642  INFO 15144 --- [-localhost:2181] org.I0Itec.zkclient.ZkEventThread        : Starting ZkClient event thread.
...
016-09-28 22:11:30.290  INFO 15144 --- [           main] o.s.i.kafka.support.ProducerFactoryBean  : Using producer properties => {bootstrap.servers=localhost:9092, linger.ms=0, acks=1, compression.type=none, batch.size=16384}
2016-09-28 22:11:30.298  INFO 15144 --- [           main] o.a.k.clients.producer.ProducerConfig    : ProducerConfig values:
...
2016-09-28 22:11:30.322  INFO 15144 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder$1  : Adding {message-handler:outbound.springCloudBus} as a subscriber to the 'springCloudBusOutput' channel
2016-09-28 22:11:30.322  INFO 15144 --- [           main] o.s.integration.channel.DirectChannel    : Channel 'config-server:7001.springCloudBusOutput' has 1 subscriber(s).
2016-09-28 22:11:30.322  INFO 15144 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder$1  : started outbound.springCloudBus
...
2016-09-28 22:11:31.465  INFO 15144 --- [           main] s.i.k.i.KafkaMessageDrivenChannelAdapter : started org.springframework.integration.kafka.inbound.KafkaMessageDrivenChannelAdapter@4178cb34
2016-09-28 22:11:31.467  INFO 15144 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder$7  : Adding {message-handler:inbound.springCloudBus.anonymous.8b9e6c7b-6a50-48c5-b981-8282a0d5a30b} as a subscriber to the 'bridge.springCloudBus' channel
2016-09-28 22:11:31.467  INFO 15144 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder$7  : started inbound.springCloudBus.anonymous.8b9e6c7b-6a50-48c5-b981-8282a0d5a30b

从控制台的输出内容,我们可以看到config-server连接到了Kafka中,并使用了名为springCloudBus的Topic。

此时,我们可以使用kafka-topics --list --zookeeper localhost:2181命令来查看当前Kafka中的Topic,若已成功启动了config-server并配置正确,我们就可以在Kafka中看到已经多了一个名为springCloudBus的Topic。

我们再启动配置了spring-cloud-starter-bus-kafka模块的config-client,可以看到控制台中输出如下内容:

2016-09-28 22:43:55.067  INFO 6136 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder    : Using kafka topic for outbound: springCloudBus
2016-09-28 22:43:55.078  INFO 6136 --- [-localhost:2181] org.I0Itec.zkclient.ZkEventThread        : Starting ZkClient event thread.
...
2016-09-28 22:50:38.584  INFO 828 --- [           main] o.s.i.kafka.support.ProducerFactoryBean  : Using producer properties => {bootstrap.servers=localhost:9092, linger.ms=0, acks=1, compression.type=none, batch.size=16384}
2016-09-28 22:50:38.592  INFO 828 --- [           main] o.a.k.clients.producer.ProducerConfig    : ProducerConfig values:
...
2016-09-28 22:50:38.615  INFO 828 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder$1  : Adding {message-handler:outbound.springCloudBus} as a subscriber to the 'springCloudBusOutput' channel
2016-09-28 22:50:38.616  INFO 828 --- [           main] o.s.integration.channel.DirectChannel    : Channel 'didispace:7002.springCloudBusOutput' has 1 subscriber(s).
2016-09-28 22:50:38.616  INFO 828 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder$1  : started outbound.springCloudBus
...
2016-09-28 22:50:39.162  INFO 828 --- [           main] s.i.k.i.KafkaMessageDrivenChannelAdapter : started org.springframework.integration.kafka.inbound.KafkaMessageDrivenChannelAdapter@60cf855e
2016-09-28 22:50:39.162  INFO 828 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder$7  : Adding {message-handler:inbound.springCloudBus.anonymous.f8fc9c0c-ccd3-46dd-9537-07198f4ee216} as a subscriber to the 'bridge.springCloudBus' channel
2016-09-28 22:50:39.163  INFO 828 --- [           main] o.s.c.s.b.k.KafkaMessageChannelBinder$7  : started inbound.springCloudBus.anonymous.f8fc9c0c-ccd3-46dd-9537-07198f4ee216

可以看到,config-client启动时输出了类似的内容,他们都订阅了名为springCloudBus的Topic。

在启动了config-server和config-client之后,为了更明显地观察消息总线刷新配置的效果,我们可以在本地启动多个不同端口的config-client。此时,我们的config-server以及多个config-client都已经连接到了由Kafka实现的消息总线上。我们可以先访问各个config-client上的/from请求,查看他获取到的配置内容。然后,修改Git中对应的参数内容,再访问各个config-client上的/from请求,可以看到配置内容并没有改变。最后,我们向config-server发送POST请求:/bus/refresh,此时我们再去访问各个config-client上的/from请求,就能获得到最新的配置信息,各客户端上的配置都已经加载为最新的Git配置内容。

从config-client的控制台中,我们可以看到如下内容:

2016-09-29 08:20:34.361  INFO 21256 --- [ kafka-binder-1] o.s.cloud.bus.event.RefreshListener      : Received remote refresh request. Keys refreshed [from]

RefreshListener监听类记录了收到远程刷新请求,并刷新了from属性的日志。

Kafka配置

在上面的例子中,由于Kafka、ZooKeeper均运行于本地,所以我们没有在测试程序中通过配置信息来指定Kafka和ZooKeeper的配置信息,就完成了本地消息总线的试验。但是我们实际应用中,Kafka和ZooKeeper一般都会独立部署,所以在应用中都需要来为Kafka和ZooKeeper配置一些连接信息等。Kafka的整合与RabbitMQ不同,在Spring Boot 1.3.7中并没有直接提供的Starter模块,而是采用了Spring Cloud Stream的Kafka模块,所以对于Kafka的配置均采用了spring.cloud.stream.kafka的前缀,比如:

属性名 说明 默认值
spring.cloud.stream.kafka.binder.brokers Kafka的服务端列表 localhost
spring.cloud.stream.kafka.binder.defaultBrokerPort Kafka服务端的默认端口,当brokers属性中没有配置端口信息时,就会使用这个默认端口 9092
spring.cloud.stream.kafka.binder.zkNodes Kafka服务端连接的ZooKeeper节点列表 localhost
spring.cloud.stream.kafka.binder.defaultZkPort ZooKeeper节点的默认端口,当zkNodes属性中没有配置端口信息时,就会使用这个默认端口 2181

更多配置参数请参考官方文档

本文完整示例:

  • 开源中国:http://git.oschina.net/didispace/SpringCloud-Learning/tree/master/Chapter1-1-7
  • GitHub:https://github.com/dyc87112/SpringCloud-Learning/tree/master/Chapter1-1-7

Spring Cloud构建微服务架构(七)消息总线(续:Kafka)相关推荐

  1. Spring Cloud构建微服务架构:消息驱动的微服务(核心概念)【Dalston版】

    通过<Spring Cloud构建微服务架构:消息驱动的微服务(入门)>一文,相信大家对Spring Cloud Stream的工作模式已经有了一些基础概念,比如:输入.输出通道的绑定,通 ...

  2. Spring Cloud构建微服务架构:消息驱动的微服务(消费分区)【Dalston版】

    通过上一篇<消息驱动的微服务(消费组)>的学习,我们已经能够在多实例环境下,保证同一消息只被一个消费者实例进行接收和处理.但是,对于一些特殊场景,除了要保证单一实例消费之外,还希望那些具备 ...

  3. Spring Cloud构建微服务架构:消息驱动的微服务(消费组)【Dalston版】

    通过之前的<消息驱动的微服务(入门)>一文,相信很多朋友已经对Spring Cloud Stream有了一个初步的认识.但是,对于<消息驱动的微服务(核心概念)>一文中提到的一 ...

  4. Spring Cloud构建微服务架构:消息驱动的微服务(入门)【Dalston版】

    之前在写Spring Boot基础教程的时候写过一篇<Spring Boot中使用RabbitMQ>.在该文中,我们通过简单的配置和注解就能实现向RabbitMQ中生产和消费消息.实际上我 ...

  5. Spring Cloud构建微服务架构:分布式服务跟踪(整合zipkin)【Dalston版】

    通过上一篇<分布式服务跟踪(整合logstash)>,我们虽然已经能够利用ELK平台提供的收集.存储.搜索等强大功能,对跟踪信息的管理和使用已经变得非常便利.但是,在ELK平台中的数据分析 ...

  6. Spring Cloud构建微服务架构:服务容错保护(Hystrix断路器)

    断路器 断路器模式源于Martin Fowler的Circuit Breaker一文."断路器"本身是一种开关装置,用于在电路上保护线路过载,当线路中有电器发生短路时," ...

  7. Spring Cloud构建微服务架构:Hystrix监控数据聚合【Dalston版】

    上一篇我们介绍了使用Hystrix Dashboard来展示Hystrix用于熔断的各项度量指标.通过Hystrix Dashboard,我们可以方便的查看服务实例的综合情况,比如:服务调用次数.服务 ...

  8. Spring Cloud构建微服务架构:分布式服务跟踪(整合logstash)【Dalston版】

    通过之前的<入门示例>,我们已经为两个由SpringCloud构建的微服务项目 trace-1和 trace-2引入了Spring Cloud Sleuth的基础模块 spring-clo ...

  9. Spring Cloud构建微服务架构:分布式服务跟踪(跟踪原理)

    通过上一篇<分布式服务跟踪(入门)>的例子,我们已经通过Spring Cloud Sleuth往微服务应用中添加了实现分布式跟踪具备的基本要素.下面通过本文来详细说说实现分布式服务跟踪的一 ...

最新文章

  1. MAC: Homebrew(代替yum)安装
  2. Java 并发框架全览,这个牛逼!
  3. Tkinter编写Mac应用(-)
  4. 浮点数:一种有漏洞的抽象【译】
  5. Java Main Differences between HashMap HashTable and ConcurrentHashMap
  6. 6.1bash编程入门值变量类型、for循环和算术运算
  7. mysql分析语句方法_Mysql分析-常用分析语句总结
  8. 51单片机学习路程(一)
  9. 新手卖家如何获得更多流量?这些关键词优化技巧你GET了吗
  10. 学以致用——Java源码——使用Graphics2D类draw方法绘制立方体(Drawing Cubes)
  11. 弘辽科技:淘宝新店扶持是人人享有的权益吗?
  12. 【深度优先搜索】leetcode 1905. 统计子岛屿
  13. 2019年终总结核医学相关研究分享
  14. 无线家庭生活 教你如何设置无线路由器1
  15. 网狐棋牌客户端连接服务器修改方法
  16. 三菱Q系列PLC ,QD77MS16走总线控制伺服项目 8个伺服,PLC程序有完整的注释
  17. 蜗居里的海藻谁演的?
  18. FLIR E95 在8层楼看马路上行驶的CAR的热成像形态?
  19. java后台获取和js拼接展示信息
  20. 练习 ~黑马程序员匠心之作-第二阶段实战-P72~P83-通讯录管理系统

热门文章

  1. 5.在MVC中使用泛型仓储模式和工作单元来进行增删查改
  2. cocos2dx[3.2](18)——屏幕截图ScreenShot
  3. A damn at han’s Windows phone book 笔记(2:Flashlight)
  4. 【机器学习】梯度提升树(GBDT)的原理小结
  5. 采用SIMULINK SimPowerSystems的光伏并网阵列仿真
  6. OpenGl 绘制一个立方体
  7. OpenCV学习笔记(3)——Scalar数据类型理解
  8. OpenGL:ImGUI在GLFW库和GLAD/GLEW库的环境下使用
  9. 吴恩达深度学习课程deeplearning.ai课程作业:Class 1 Week 3 assignment3
  10. Pygame:编写一个小游戏