←上一篇 ↓↑ 下一篇→
2.1 为什么要进行实例探究? 回到目录 2.3 残差网络

经典网络 (Classic Networks)

这节课,我们来学习几个经典的神经网络结构,分别是LeNet-5AlexNetVGGNet,开始吧。

首先看看LeNet-5的网络结构,假设你有一张32×32×1的图片,LeNet-5可以识别图中的手写数字,比如像这样手写数字7。LeNet-5是针对灰度图片训练的,所以图片的大小只有32×32×1。实际上LeNet-5的结构和我们上周讲的最后一个范例非常相似,使用6个5×5的过滤器,步幅为1。由于使用了6个过滤器,步幅为1,padding为0,输出结果为28×28×6,图像尺寸从32×32缩小到28×28。然后进行池化操作,在这篇论文写成的那个年代,人们更喜欢使用平均池化,而现在我们可能用最大池化更多一些。在这个例子中,我们进行平均池化,过滤器的宽度为2,步幅为2,图像的尺寸,高度和宽度都缩小了2倍,输出结果是一个14×14×6的图像。我觉得这张图片应该不是完全按照比例绘制的,如果严格按照比例绘制,新图像的尺寸应该刚好是原图像的一半。


接下来是卷积层,我们用一组16个5×5的过滤器,新的输出结果有16个通道。LeNet-5的论文是在1998年撰写的,当时人们并不使用padding,或者总是使用valid卷积,这就是为什么每进行一次卷积,图像的高度和宽度都会缩小,所以这个图像从14到14缩小到了10×10。然后又是池化层,高度和宽度再缩小一半,输出一个5×5×16的图像。将所有数字相乘,乘积是400。

下一层是全连接层,在全连接层中,有400个节点,每个节点有120个神经元,这里已经有了一个全连接层。但有时还会从这400个节点中抽取一部分节点构建另一个全连接层,就像这样,有2个全连接层。

最后一步就是利用这84个特征得到最后的输出,我们还可以在这里再加一个节点用来预测 y^\hat{y}y^​ 的值, y^\hat{y}y^​ 有10个可能的值,对应识别0-9这10个数字。在现在的版本中则使用softmax函数输出十种分类结果,而在当时,LeNet-5网络在输出层使用了另外一种,现在已经很少用到的分类器。

相比现代版本,这里得到的神经网络会小一些,只有约6万个参数。而现在,我们经常看到含有一千万到一亿个参数的神经网络,比这大1000倍的神经网络也不在少数。

不管怎样,如果我们从左往右看,随着网络越来越深,图像的高度和宽度在缩小,从最初的32×32缩小到28×28,再到14×14、10×10,最后只有5×5。与此同时,随着网络层次的加深,通道数量一直在增加,从1增加到6个,再到16个。


这个神经网络中还有一种模式至今仍然经常用到,就是一个或多个卷积层后面跟着一个池化层,然后又是若干个卷积层再接一个池化层,然后是全连接层,最后是输出,这种排列方式很常用。

对于那些想尝试阅读论文的同学,我再补充几点。接下来的部分主要针对那些打算阅读经典论文的同学,所以会更加深入。这些内容你完全可以跳过,算是对神经网络历史的一种回顾吧,听不懂也不要紧。

读到这篇经典论文时,你会发现,过去,人们使用sigmod函数和tanh函数,而不是ReLu函数,这篇论文中使用的正是sigmod函数和tanh函数。这种网络结构的特别之处还在于,各网络层之间是有关联的,这在今天看来显得很有趣。

比如说,你有一个 nH∗nW∗ncn_H*n_W*n_cnH​∗nW​∗nc​ 的网络,有 ncn_cnc​ 个通道,使用尺寸为 f∗f∗ncf*f*n_cf∗f∗nc​ 的过滤器,每个过滤器的通道数和它上一层的通道数相同。这是由于在当时,计算机的运行速度非常慢,为了减少计算量和参数,经典的LeNet-5网络使用了非常复杂的计算方式,每个过滤器都采用和输入模块一样的通道数量。论文中提到的这些复杂细节,现在一般都不用了。

我认为当时所进行的最后一步其实到现在也还没有真正完成,就是经典的LeNet-5网络在池化后进行了非线性函数处理,在这个例子中,池化层之后使用了sigmod函数。如果你真的去读这篇论文,这会是最难理解的部分之一,我们会在后面的课程中讲到。

下面要讲的网络结构简单一些,幻灯片的大部分类容来自于原文的第二段和第三段,原文的后几段介绍了另外一种思路。文中提到的这种图形变形网络如今并没有得到广泛应用,所以在读这篇论文的时候,我建议精读第二段,这段重点介绍了这种网络结构。泛读第三段,这里面主要是一些有趣的实验结果。

我要举例说明的第二种神经网络是AlexNet,是以论文的第一作者Alex Krizhevsky的名字命名的,另外两位合著者是ilya SutskeverGeoffery Hinton


AlexNet首先用一张227×227×3的图片作为输入,实际上原文中使用的图像是224×224×3,但是如果你尝试去推导一下,你会发现227×227这个尺寸更好一些。第一层我们使用96个11×11的过滤器,步幅为4,由于步幅是4,因此尺寸缩小到55×55,缩小了4倍左右。然后用一个3×3的过滤器构建最大池化层, f=3f=3f=3 ,步幅为2,卷积层尺寸缩小为27×27×96。接着再执行一个5×5的卷积,padding之后,输出是27×27×276。然后再次进行最大池化,尺寸缩小到13×13。再执行一次same卷积,相同的padding,得到的结果是13×13×384,384个过滤器。再做一次same卷积,就像这样。再做一次同样的操作,最后再进行一次最大池化,尺寸缩小到6×6×256。6×6×256等于9216,将其展开为9216个单元,然后是一些全连接层。最后使用softmax函数输出识别的结果,看它究竟是1000个可能的对象中的哪一个。

实际上,这种神经网络与LeNet有很多相似之处,不过AlexNet要大得多。正如前面讲到的LeNetLeNet-5大约有6万个参数,而AlexNet包含约6000万个参数。当用于训练图像和数据集时,AlexNet能够处理非常相似的基本构造模块,这些模块往往包含着大量的隐藏单元或数据,这一点AlexNet表现出色。AlexNetLeNet表现更为出色的另一个原因是它使用了ReLu激活函数。


同样的,我还会讲一些比较深奥的内容,如果你并不打算阅读论文,不听也没有关系。第一点,在写这篇论文的时候,GPU的处理速度还比较慢,所以AlexNet采用了非常复杂的方法在两个GPU上进行训练。大致原理是,这些层分别拆分到两个不同的GPU上,同时还专门有一个方法用于两个GPU进行交流。


论文还提到,经典的AlexNet结构还有另一种类型的层,叫作“局部响应归一化层”(Local Response Normalization),即LRN层,这类层应用得并不多,所以我并没有专门讲。局部响应归一层的基本思路是,假如这是网络的一块,比如是13×13×256,LRN要做的就是选取一个位置,比如说这样一个位置,从这个位置穿过整个通道,能得到256个数字,并进行归一化。进行局部响应归一化的动机是,对于这张13×13的图像中的每个位置来说,我们可能并不需要太多的高激活神经元。但是后来,很多研究者发现LRN起不到太大作用,这应该是被我划掉的内容之一,因为并不重要,而且我们现在并不用LRN来训练网络。

如果你对深度学习的历史感兴趣的话,我认为在AlexNet之前,深度学习已经在语音识别和其它几个领域获得了一些关注,但正是通过这篇论文,计算机视觉群体开始重视深度学习,并确信深度学习可以应用于计算机视觉领域。此后,深度学习在计算机视觉及其它领域的影响力与日俱增。如果你并不打算阅读这方面的论文,其实可以不用学习这节课。但如果你想读懂一些相关的论文,这是比较好理解的一篇,学起来会容易一些。

AlexNet网络结构看起来相对复杂,包含大量超参数,这些数字(55×55×96、27×27×96、27×27×256……)都是Alex Krizhevsky及其合著者不得不给出的。

这节课要讲的第三个,也是最后一个范例是VGG,也叫作VGG-16网络。值得注意的一点是,VGG-16网络没有那么多超参数,这是一种只需要专注于构建卷积层的简单网络。首先用3×3,步幅为1的过滤器构建卷积层,padding参数为same卷积中的参数。然后用一个2×2,步幅为2的过滤器构建最大池化层。因此VGG网络的一大优点是它确实简化了神经网络结构,下面我们具体讲讲这种网络结构。

假设要识别这个图像,在最开始的两层用64个3×3的过滤器对输入图像进行卷积,输出结果是224×224×64,因为使用了same卷积,通道数量也一样。VGG-16其实是一个很深的网络,这里我并没有把所有卷积层都画出来。


假设这个小图是我们的输入图像,尺寸是224×224×3,进行第一个卷积之后得到224×224×64的特征图,接着还有一层224×224×64,得到这样2个厚度为64的卷积层,意味着我们用64个过滤器进行了两次卷积。正如我在前面提到的,这里采用的都是大小为3×3,步幅为1的过滤器,并且都是采用same卷积,所以我就不再把所有的层都画出来了,只用一串数字代表这些网络。

接下来创建一个池化层,池化层将输入图像进行压缩,从224×224×64缩小到多少呢?没错,减少到112×112×64。然后又是若干个卷积层,使用129个过滤器,以及一些same卷积,我们看看输出什么结果,112×112×128. 然后进行池化,可以推导出池化后的结果是这样(56×56×128)。接着再用256个相同的过滤器进行三次卷积操作,然后再池化,然后再卷积三次,再池化。如此进行几轮操作后,将最后得到的7×7×512的特征图进行全连接操作,得到4096个单元,然后进行softmax激活,输出从1000个对象中识别的结果。

顺便说一下,VGG-16的这个数字16,就是指在这个网络中包含16个卷积层和全连接层。确实是个很大的网络,总共包含约1.38亿个参数,即便以现在的标准来看都算是非常大的网络。但VGG-16的结构并不复杂,这点非常吸引人,而且这种网络结构很规整,都是几个卷积层后面跟着可以压缩图像大小的池化层,池化层缩小图像的高度和宽度。同时,卷积层的过滤器数量变化存在一定的规律,由64翻倍变成128,再到256和512。作者可能认为512已经足够大了,所以后面的层就不再翻倍了。无论如何,每一步都进行翻倍,或者说在每一组卷积层进行过滤器翻倍操作,正是设计此种网络结构的另一个简单原则。这种相对一致的网络结构对研究者很有吸引力,而它的主要缺点是需要训练的特征数量非常巨大。

有些文章还介绍了VGG-19网络,它甚至比VGG-16还要大,如果你想了解更多细节,请参考幻灯片下方的注文,阅读由Karen SimonyanAndrew Zisserman撰写的论文。由于VGG-16的表现几乎和VGG-19不分高下,所以很多人还是会使用VGG-16。我最喜欢它的一点是,文中揭示了,随着网络的加深,图像的高度和宽度都在以一定的规律不断缩小,每次池化后刚好缩小一半,而通道数量在不断增加,而且刚好也是在每组卷积操作后增加一倍。也就是说,图像缩小的比例和通道数增加的比例是有规律的。从这个角度来看,这篇论文很吸引人。

以上就是三种经典的网络结构,如果你对这些论文感兴趣,我建议从介绍AlexNet的论文开始,然后就是VGG的论文,最后是LeNet的论文。虽然有些晦涩难懂,但对于了解这些网络结构很有帮助。

学过这些经典的网络之后,下节课我们会学习一些更先高级更强大的神经网络结构,下节课见。

课程板书





←上一篇 ↓↑ 下一篇→
2.1 为什么要进行实例探究? 回到目录 2.3 残差网络

2.2 经典网络-深度学习第四课《卷积神经网络》-Stanford吴恩达教授相关推荐

  1. 深度学习第四课——卷积神经网络(week 1)

    目录 一.前言 1.1 卷积 1.2 其他滤波器 1.3 Padding 1.3.1 解释 1.3.2 填充多少像素的选择 1.4 卷积步长 1.5 三维卷积 1.6 单层卷积网络 1.7 深度卷积神 ...

  2. 2.19 总结-深度学习-Stanford吴恩达教授

    ←上一篇 ↓↑ 下一篇→ 2.18 Logistic 损失函数的解释 回到目录 3.1 神经网络概览 文章目录 总结 习题 第 11 题 第 12 题 第 13 题 第 14 题 第 15 题 第 1 ...

  3. 1.8 简单卷积网络示例-深度学习第四课《卷积神经网络》-Stanford吴恩达教授

    ←上一篇 ↓↑ 下一篇→ 1.7 单层卷积网络 回到目录 1.9 池化层 简单卷积网络示例 (A Simple Convolution Network Example) 上节课,我们讲了如何为卷积网络 ...

  4. 4.11 一维到三维推广-深度学习第四课《卷积神经网络》-Stanford吴恩达教授

    ←上一篇 ↓↑ 下一篇→ 4.10 风格代价函数 回到目录 4.12 总结 一维到三维推广 (1D and 3D Generalizations of Models) 你已经学习了许多关于卷积神经网络 ...

  5. 1.9 池化层-深度学习第四课《卷积神经网络》-Stanford吴恩达教授

    ←上一篇 ↓↑ 下一篇→ 1.8 简单卷积网络示例 回到目录 1.10 卷积神经网络示例 池化层 (Pooling Layers) 除了卷积层,卷积网络也经常使用池化层来缩减模型的大小,提高计算速度, ...

  6. 4.1 什么是人脸识别-深度学习第四课《卷积神经网络》-Stanford吴恩达教授

    ←上一篇 ↓↑ 下一篇→ 3.11 总结 回到目录 4.2 One-Shot 学习 什么是人脸识别 (What is face recognition?) 欢迎来到第四周,即这门课卷积神经网络课程的最 ...

  7. 深度学习教程(6) | 神经网络优化算法(吴恩达·完整版)

    作者:韩信子@ShowMeAI 教程地址:https://www.showmeai.tech/tutorials/35 本文地址:https://www.showmeai.tech/article-d ...

  8. 机器学习和深度学习到底怎么学?顶尖专家吴恩达告诉你

    机器学习和深度学习到底怎么学? 在外国版知乎上,有位网友问:新手如何学习机器学习?学习完MOOC的课程后有没有能力阅读研究论文或者真正的做出一点研究成果? 这个困惑很多人的问题吴恩达给出了详细的回答, ...

  9. 3.12 总结-深度学习-Stanford吴恩达教授

    ←上一篇 ↓↑ 下一篇→ 3.11 随机初始化 回到目录 4.1 深层神经网络 文章目录 总结 习题 第 21 题 第 22 题 第 23 题 第 24 题 第 25 题 第 26 题 第 27 题 ...

最新文章

  1. 第一个程序 - Windows程序设计(SDK)001
  2. Qt串口通信类Posix_QextserialPort中flush()函数修正
  3. genius choice for gopro
  4. CHECKLIST TO USE BEFORE SUBMITTING A PAPER TO A JOURNAL
  5. python IO编程-StringIO和BytesIO
  6. 斯诺登:FBI需要苹果帮助才能解锁iPhone完全扯淡
  7. php在window,php在window上的问题
  8. 【洛谷p1464】 Function
  9. Cisco自反控制列表的应用
  10. ZeroMQ研究与应用分析
  11. java sort排序函数
  12. 缠论入门到精通理论到实战
  13. 如何查看或修改FANUC机器人的系统变量?
  14. JAVA求解一元二次方程
  15. lammps案例:水分子在石墨烯狭缝中流动的案例代码
  16. [嵌入式基础]-arm架构和x86架构区别
  17. Java整型变量和整型常量
  18. 趁着中秋节来临之际,学学如何做好团队管理
  19. UDT 最新源码分析(五) -- 网络数据收发
  20. 云信小课堂|如何实现音视频安全检测?

热门文章

  1. JavaScript学习记录总结(四)——js函数的特殊性
  2. 八种方法防止数据库被下载
  3. 常用口语绝佳句型100句(2)
  4. 2021-11-15UA OPTI512R 傅立叶光学导论20 夫琅禾费衍射
  5. UA MATH564 概率论VI 数理统计基础3 卡方分布上
  6. VC++非MFC项目中使用TRACE宏
  7. MFC视图滚动条的基本使用和C语言输出三角形的MFC版本
  8. idea使用maven-archetype-webapp方式创建web工程
  9. dnet 并行编程学习总结
  10. Hibernate Tools 学习总结