关系

  1. 域:一组具有相同数据类型的值的集合(即取值范围)

  2. 笛卡尔积:域上的一种集合运算。结果为一个集合,集合的每一个元素是一个元组,元组的每一个分量来自不同的域。

  3. 基数:一个域允许的不同取值个数。

  4. 笛卡尔积的基数:每个域不同取值的个数的乘积,或者说元组的个数

  5. 关系:域的笛卡尔积的子集叫做在域上的关系,域的个数叫做关系的目或度。(即列数,属性的数目),注意广义上的笛卡尔积一般不能称为关系,因为存在无效的数据。

  6. 关系:表

    列:属性

    行:元组

  7. 候选码:某一属性组的值能唯一地标示一个元组,而其子集不能,则称该属性组为候选码

  8. 主属性:候选码中的属性都称为主属性,注意:主属性非空。

  9. 非主属性:候选码之外的属性称为非主属性

  10. 全码:关系模式的所有属性是这个关系模式的候选码

  11. 主码:从候选码中选取一组能唯一确定一个元组的属性组作为主码。

  12. 三类关系:

    1)基本关系:实际存在的表,是实际存储数据的逻辑表示

    2)查询表:查询结果对应的表

    3)视图表:由基本表或其他视图表导出的表,是虚表,不对应实际存储的数据。

    注意:关系数据模型中的关系必须是有限集合。

    关系的每一个列必须附加一个属性名,属性名不能重名,这种方法取消了关系属性的有序性。

  13. ① 列是同质的(Homogeneous):每一列中的分量来自同一个域,是同一类型的数据

    ② 不同的列可出自同一个域

    • 其中的每一列称为一个属性

    • 不同的属性要给予不同的属性名

    ③ 列的顺序无所谓, 列的次序可以任意交换

    ④ 任意两个元组的候选码不能相同:相同就不是候选码了

    ⑤ 行的顺序无所谓,行的次序可以任意交换

    ⑥ 分量必须取原子值(不允许表中套表)

关系模式

  1. 关系模式:对关系的描述,是静态的、稳定的

  2. 关系:是关系模式在某一时刻的状态或内容,是动态的、随时间不断变化的,指后边的那个关系

  3. 关系模式的形式化表示:

//关系模式
R(U, D, DOM, F)
R       关系名
U       组成该关系的属性名集合
D       属性组U中属性所来自的域
DOM     属性向域的映象集合
F       属性间的数据依赖关系集合//可以简记为
R (U)    或    R (A1,A2,…,An)
R: 关系名
A1,A2,…,An  : 属性名
注:域名及属性向域的映象常常直接说明为属性的类型、长度

关系数据库

  1. 在一个给定的应用领域中,所有关系的集合构成一个关系数据库

  2. 关系数据库的型与值,不是关系的型与值

    1)关系数据库的型也称关系数据库模式,是对关系数据库的描述

    2)关系数据库的值是关系模式在某一时刻对应的关系的集合,简称为关系数据库

基本的关系操作

  1. 常用的基本操作:

    **查询:**选择、投影、连接、除、并、交、差

    **数据更新:**插入、删除、修改

  2. **5种基本操作:**选择、投影、并、差、笛卡尔积 注意:不算交

  3. 关系操作的特点:

    集合操作方式:操作的对象和结果都是集合,一次一集合的方式,操作对象是集合,操作结果亦为集合。

关系的完整性

实体完整性(即主属性非空)

  1. 若属性A是基本关系R的主属性,则属性A不能取空值

参照完整性

  1. 关系间的引用:关系与关系之间存在着联系

  2. 外码:设F是基本关系R的一个或一组属性,但不是关系R的主码Ks是基本关系S的主码。如果F与Ks相对应,则称F是基本关系R的外码,外码所在的基本关系叫做参照关系,Ks所在的关系叫做被参照关系。

    注:

    1)R、S不一定是不同的关系。

    2)目标关系S的主码Ks 和参照关系的外码F必须定义在同一个(或一组)域上

    3)外码并不一定要与相应的主码同名,当外码与相应的主码属于不同关系时,往往取相同的名字,以便于识别

    4)外码的取值:如果外码是参照关系的主属性,则不能为空(实体完整性),只能为被参照关系中主码的取值。如果外码不是参照关系的主属性,则可以取空或者被参照关系主码的取值

  3. 两个不变性:指实体完整性和参照完整性

用户定义完整性

  1. 针对某一具体关系数据库的约束条件,反映某一具体应用所涉及的数据必须满足的语义要求

  2. 关系模型应提供定义和检验这类完整性的机制,以便用统一的系统的方法处理它们,而不要由应用程序承担这一功能

关系代数

传统的集合运算

  1. 传统的关系运算:

    并、交、差、笛卡尔积

  1. 操作对象关系:

    操作方式:同数学中的并、交、差、笛卡尔积。只不过操作对象的元素是元组。另外需要注意能进行运算所需要满足的条件。

    对于并、交、差需要满足的关系:1)属性的数目相同;2)相应的属性取自同一个域

专门的关系运算

常见的关系运算有选择、投影、连接、除

选择:

在关系R中选择满足给定条件的诸元组。

表达式:$\sigma_F(R) = {t | t \in R \and F(t) = ''true''}$

F:为选择条件,是一个逻辑表达式,基本形式为:$X_1 \theta Y_1$,其中$\theta$为大于、小于、等于、不等于等。

举例:

选择:$\sigma_{Sdept = "IS"}(Student)$

​​​​​​​

投影:

从R中选择出若干属性列组成新的关系

表达式:$\prod_{A} (R)= {t[A] | t\in R}$

A为属性列,即从R中选择A中属性列的元组,当然选择之后可能会删掉一些元组,因为避免重复。

举例:还是上方的关系,经过投影$\prod_{Sname, Sdept}(Student)$,结果如下:

连接

1)**一般连接:**从两个关系的笛卡尔积中选取属性间满足一定条件的元组

(1)表达式:$R\bowtie_ {A \theta B} S = {t_r^ \frown t_s | t_r \in R \and t_s \in S \and t_r[A] \theta t_s[B] }$

(2)A和B:分别为R和S上度数相等且可比的属性组

(3)$\theta$表示比较运算符,

(4)连接运算从R和S的广义笛卡尔积R×S中选取(R关系)在A属性组上的值与(S关系)在B属性组上值满足比较关系θ的元组

2)**等值连接:**当上述的运算符为等于号的时候

(1)含义:从关系R与S的广义笛卡尔积中选取A、B属性值相等的那些元组,即等值连接为:

(2)表达式:$R\bowtie_ {A = B} S = {t_r^ \frown t_s | t_r \in R \and t_s \in S \and t_r[A] = t_s[B] }$

(3)仍然是从行的角度进行运算,而不涉及列

(4)属性组可以不同

3)**自然连接:**一种特殊的等值连接

(1)与等值连接的不同:两个关系R和S必须具有相同的属性组

(2)将结果中相同的属性列去掉

(3)表达式:$R\bowtie S = {t_r^ \frown t_s | t_r \in R \and t_s \in S \and t_r[A] = t_s[B] }$

4)由自然连接所引发的一系列问题:

(1)悬浮元组:在做自然连接的时候被舍弃的元组

(2)外连接:如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接,外连接 = 左外连接 + 右外连接

(3)左外连接:如果只把左边关系R中要舍弃的元组保留就叫做左外连接

(4)右外连接:如果只把右边关系S中要舍弃的元组保留就叫做右外连接

1)除运算的意义:

(1)假设关系R,S,RS,R关系拥有的属性是姓名,S关系拥有的属性是课程,RS关系拥有的属性是姓名和课程的联系,则RS/S表示选出所有至少选了表S中所列课程的学生的元组。

(2)如下图:

注:RS/S得到的关系:张三和李四构成的表,表示选修了全部课程的同学的集合。

举例:

R:

A B C
a1 b1 c2
a2 b3 c7
a3 b4 c6
a1 b2 c3
a4 b6 c6
a2 b2 c3
a1 b2 c1

S:

B C D
b1 c2 d1
b2 c1 d1
b2 c3 d2

R÷S

A
a1

(1) 找S与R的共同属性,即公式中的Y属性

(2)计算R中每个X属性的象集,如果某个象集包含S在Y属性上的投影,则该属为R/S结果中的一个值。

解答如下:

在关系R中,A可以取四个值{a1,a2,a3,a4},其中:

a1的象集为:{(b1,c2),(b2,c3),(b2,c1)}

a2的象集为:{(b3,c7),(b2,c3)}

a3的象集为:{(b4,c6)}

a4的象集为:{(b6,c6)}

S在(B,C)上的投影为{(b1,c2),(b2,c3),(b2,c1)}。

显然只有R的象集a1包含S在(B,C)属性组上的投影,所以R÷S={a1}。

关系数据库——关系数据语言相关推荐

  1. 关系数据库——关系操作和关系完整性

    文章目录 一.关系操作 1.基本的关系操作 2.关系数据语言的分类 关系代数语言 关系演算语言 具有关系代数和关系演算双重特点的语言 二.关系的完整性 1.实体完整性(Entity Integrity ...

  2. 在时间关系数据上AutoML:一个新的前沿

    作者:Flytxt 翻译:张恬钰 校对:李海明 本文1600字,建议阅读8分钟. 本文介绍了AutoML的发展历史及其在时间关系数据上的应用方案. 现实世界中的机器学习系统需要数据科学家和领域专家来建 ...

  3. 【数据库原理及应用】经典题库附答案(14章全)——第五章:关系数据理论

    [数据库原理及应用]经典题库附答案(14章全)--第一章:数据库基础知识 [数据库原理及应用]经典题库附答案(14章全)--第二章:关系数据库知识 [数据库原理及应用]经典题库附答案(14章全)--第 ...

  4. (数据库系统概论|王珊)第六章关系数据理论-第一节:为什么要研究关系数据理论

    文章目录 一:概念回顾:关系模式 二:数据依赖 三:一个例子:不遵循关系数据理论导致的问题 一句话,研究关系数据库理论就是为了设计出合适的关系模式,也即合适.高效的表 一:概念回顾:关系模式 相关文章 ...

  5. 在Spring中使用JDBC访问关系数据

    在Spring中使用JDBC访问关系数据 本指南将引导您完成使用Spring访问关系数据的过程. 你会建立什么 您将构建一个使用Spring JdbcTemplate访问存储在关系数据库中的数据的应用 ...

  6. 【数据库系统设计】关系数据理论(函数依赖、码、范式、模式分解)

    关系数据理论 6.1 为什么要学习关系数据理论 什么是好的数据库逻辑设计 什么是数据依赖 关系模式的简化表示 6.2 规范化 - 关系的规范化理论 6.2.1 函数依赖 1.函数依赖 2.平凡函数依赖 ...

  7. 数据库——关系数据理论学习笔记

    关系数据理论 问题的提出 关系数据库逻辑设计 具体问题构造适合数据库模式 数据库逻辑设计的工具----关系数据库的规范化理论 概念回顾 关系 关系模式 关系数据库 关系数据库的模式 关系模式的形式化定 ...

  8. 第6章 关系数据理论—范式的介绍

    第6章 关系数据理论-范式的介绍 本文全部内容来自数据库系统概论(第5版)-王珊.萨师煊著 部分函数依赖图,出于自己的理解,如有错误,请大家评论指正! 范式:关系数据库中需要满足的一定要求的规范形式. ...

  9. 第6章 关系数据理论 习题6

    (一)大家根据自己了解的.所使用的.所设计的数据库系统,举例说明以下术语的定义(可查阅相关材料),要求理解并熟练掌握. 1.函数依赖 设R(U)是一个属性集U上的关系模式,X和Y是U的子集.若对于R( ...

最新文章

  1. Android应用程序的调试
  2. cookie session token区别_彻底理解cookie,session,token
  3. CKEditor 4编辑器已与Vue.js集成
  4. 轻松弄懂var、let、const之间的区别
  5. Google Guice 一个轻量级的依赖注入框架
  6. Python数据可视化案例三:使用Slider组件调整曲线参数
  7. 我的世界服务器自定义代码,《我的世界》服务器指令代码秘籍大全
  8. 线性时间选择_马鞍山非线性分析工具了解详情_南京凯安软件
  9. Java多线程(join方法)
  10. congruent matrix
  11. 编译安装Nginx以及配置运行Drupal 8,实现上传进度功能
  12. mysql sql语句递归查询语句_SQL实现MYSQL递归查询的方法
  13. 二级域名 免费+免备案
  14. Qt发布版权问题,是否需要公开源码?开源版与商业版的区别?
  15. 认识uclinux(与LINUX区别)
  16. MotionEvent和TouchSlop
  17. Angular学习笔记——自定义指令directive参数详解
  18. python毕业设计作品基于django框架的鲜花水果商城毕设成品(3)后台管理功能
  19. 解决浏览器 Microsoft Edge主页被hao123恶意篡改
  20. android 读取excel表格数据(暂时只支持xls格式)

热门文章

  1. 电脑屏保海底世界_炸弹测深出来的海底一万米,都藏有何种玄机?
  2. java删除集合元素吗_java如何删除集合中的元素
  3. wince6.0驱动开发
  4. usb长包数据结束判断_如何判断南桥好坏 判断南桥好坏方法介绍【详解】
  5. hibernate mysql 性能_MyBatis和Hibernate相比,优势在哪里?
  6. 通过VisualSVN的POST-COMMIT钩子自动部署代码
  7. 13建造者模式(Builder)
  8. 【转】C#打包文件夹成zip格式(包括文件夹和子文件夹下的所有文件)
  9. 一步步编写操作系统 2 部署工作环境 2
  10. Qt生成的exe中为什么会带有不该有的盾牌?