csdn无人驾驶汽车

The first self-driving vehicles were ships. After centuries of wrestling with wind and waves, ancient sailors devised contraptions that harnessed these forces of nature to fill in for man. They were simple but ingenious solutions, like the sheet-to-tiller system, which is still used today.

吨他第一次自驾车车辆是船舶。 经过数个世纪的风浪搏斗,古老的水手们设计出了各种装置,利用这些自然力量来为人类填充。 它们是简单但巧妙的解决方案,例如如今仍在使用的单页纸耕机系统。

To rig it, you simply take the jib sheet (the rope that controls the smaller sail up front) and run it around a pulley and back across the deck. Finish by tying the bitter end to the tiller (the stick that steers the boat). Now, when a gust hits and the boat starts to round up into the wind, the jib will pull the rope around the pulley and yank the tiller, steering the vessel back the opposite way.

钻机它,只需采取悬臂片(是c ontrols较小帆前面的绳)并运行它围绕滑轮和横跨甲板背面。 通过将苦味的一端绑到分till(操纵船的棍棒)上来完成。 现在,当阵风袭来,船开始向风转弯时,副臂将拉动滑轮周围的绳索并拉起分till,使船向相反方向行驶。

Tricks like this helped clever mariners relieve the fatigue of long shifts at the helm during the Age of Sail. You can use it to crack open a cold one and enjoy the spray as your yacht plows through the whitecaps like a train on rails. And while tillers were repurposed to steer the first automobiles, this old technique didn’t make the leap from sea to land — though we can imagine some frightful, fruitless attempts to make it do so. By 1891, the introduction of the steering wheel, by Benz, put the matter to rest.

这样的技巧帮助聪明的水手减轻了航海时代掌舵时长班轮的疲劳。 您可以使用它来裂开寒冷的空气,并在游艇像铁轨上的火车一样驶过白帽时享受喷雾。 尽管将耕作机重新用于驾驶第一批汽车,但这项古老的技术并没有实现从海上到陆地的飞跃,尽管我们可以想象到一些可怕而徒劳的尝试。 到1891年,奔驰引入了方向盘,此事才得以解决。

On land, self-steering actually got harder when machines replaced animals. Motorization was a vast improvement over draft animals’ muscle power, but the gain came at the expense of brain power. It had long been common for riders on horseback, and even cart drivers, to fall asleep at the reins. Their dutiful animals would simply keep following the road or stop dead in their tracks.

在陆地上,当机器代替动物时,自我指导实际上变得更加困难。 机动化是对牲畜的肌肉力量的巨大改进,但是获得却是以脑力为代价的。 长期以来,骑马者甚至手推车司机都在at绳上入睡。 他们尽职尽责的动物只会继续走这条路,或者死在他们的足迹上。

Cars and trucks, however, needed drivers to guide them second by second. Their soaring popularity, combined with the growing risks posed by their weight and speed, birthed a variety of experimental self-steering schemes. One 1925 demonstration of a remotely controlled vehicle in New York City offered a glimpse of driverless autos to come, simultaneously tantalizing and terrifying the public. Cruising down Broadway before thousands of onlookers, the optimistically named American Wonder drove “as if a phantom hand were at the wheel,” reported the New York Times.

但是,汽车和卡车需要驾驶员一秒钟地引导他们。 他们的声望飙升,再加上体重和速度带来的风险不断增加,催生了各种实验性的自我指导方案。 1925年在纽约市进行的一次遥控车辆演示展示了即将到来的无人驾驶汽车,同时也激怒了公众并使他们感到恐惧。 据《纽约时报 》报道,乐观地命名为《美国奇迹》的美国人在百老汇前向百老汇巡游,开车“就像幻影般的手在操纵方向”

In the 1920s, motor vehicles claimed tens of thousands of lives annually — a death rate 18 times higher than today. This new technology promised to render city streets safe once again. But those hopes were soon dashed when the futuristic vehicle’s operators lost control — first at Sixty-Second Street and again moments later at Columbus Circle — before finally crashing the would-be wonder into another vehicle.

在1920年代,机动车辆每年夺走数万人的生命,死亡率比今天高18倍。 这项新技术有望再次使城市街道安全。 但是,当这辆未来派汽车的操作员失去控制时,这些希望很快破灭了-首先在第六十二街,然后在哥伦布圆环(Columbus Circle)失去了时机-最终使可能的奇迹撞上了另一辆车。

Despite this early misstep, the auto industry continued to daydream about remote-controlled cars. At the 1939 World’s Fair, the Futurama exhibit by General Motors featured an enormous motorized diorama of an American city. Free-flowing highways plied by self-driving cars, trucks, and buses crisscrossed bustling districts of slender skyscrapers. There was even a “traffic control tower” where, the future city’s designers imagined, dispatchers would direct the movements of tens of thousands of vehicles by radio. By the 1950s, guide wires embedded in the road surface had replaced radio as the preferred technology for remote-controlled vehicles. Ironically, it was RCA, the Radio Corporation of America, that staged the first successful demonstration of this approach in the 1950s.

尽管出现了这些早期失误,但汽车行业仍在幻想着遥控汽车。 在1939年的世界博览会上,通用汽车的Futurama展品展示了美国城市巨大的电动立体模型。 无人驾驶的汽车,卡车和公共汽车在通行的高速公路上纵横交错,遍布繁华的细长摩天大楼。 甚至有一座“交通管制塔”,在这座未来城市的设计师想象中,调度员将通过无线电指挥成千上万辆汽车的行驶。 到1950年代,嵌入在路面中的导丝已取代无线电,成为遥控车辆的首选技术。 具有讽刺意味的是,美国无线电公司RCA在1950年代首次成功演示了这种方法。

These early prototypes showed the technical feasibility of automated driving, but their high cost and the lackluster demand for such features meant that neither radio-controlled nor wire-guided cars caught on. The price tag for guided-vehicle highways was thought to be as high as $200,000 per lane-mile. If fully built out, this road upgrade might have added more than 40 percent to the cost of building the Interstate Highway System, already the largest public works project in American history. Meanwhile, despite the dangers and drudgery of long or late-night drives, automakers were still riding a wave of consumer excitement about driving. They focused on producing powerful new cars that were exhilarating to drive.

这些早期的原型展示了自动驾驶的技术可行性,但是它们的高成本和对此类功能的低迷需求意味着无线电控制和有线引导汽车都不会流行。 有人认为,引导车辆的高速公路的价格高达每车道英里20万美元。 如果完全修好,道路升级可能会增加州际公路系统建设成本的40%以上,该系统已经是美国历史上最大的公共工程项目。 同时,尽管长途或深夜驾驶有危险和烦恼,但汽车制造商仍然在消费者对驾驶的兴趣激增的浪潮中。 他们致力于生产令人振奋的强大新车。

These early dreams imagined a self-driving future based on external guidance. But by the 1960s, the focus had shifted to harnessing the new technology of computers to design vehicles that could truly, independently drive themselves autonomously, without outside help. At Stanford University, for the first time anywhere, researchers built robots that used cameras to see and computers to navigate. In highly controlled experiments, these early droids followed white lines and avoided obstacles placed in their path.

这些早期的梦想设想了基于外部指导的自动驾驶未来。 但是到了1960年代,重点已经转移到利用计算机的新技术来设计能够真正独立地自动驾驶而无需外界帮助的车辆。 在斯坦福大学,研究人员首次在任何地方建造了机器人,这些机器人使用相机进行查看,并使用计算机进行导航。 在高度受控的实验中,这些早期机器人沿白线行驶,并避免在其路径上放置障碍物。

Self-driving wasn’t confined to the laboratory for long. CPUs and image-processing techniques improved, so that by the late 1970s engineers at the University of Tsukuba’s Mechanical Engineering Lab were able to test the world’s first self-driving passenger vehicle, on Japanese roads. Traveling at speeds up to 20 miles per hour, these first AVs used two video cameras to visually detect street markings. In the 1980s the action moved to Europe, where Ernst Dickmanns, a professor at West Germany’s Armed Forces University, retrofitted a Mercedes-Benz van with self-driving gadgets of his own design, launching a decade-long collaboration with auto giant Daimler.

自动驾驶并没有长期局限于实验室。 CPU和图像处理技术得到了改进,因此到1970年代末,筑波大学机械工程实验室的工程师已经能够在日本的道路上测试世界上第一辆自动驾驶乘用车。 这些首批自动驾驶汽车以最高时速20英里的时速行驶,使用两个摄像机来视觉检测街道标记。 在1980年代,行动转移到了欧洲,在那里,西德武装大学的教授恩斯特·迪克曼斯(Ernst Dickmanns)用自己设计的自动驾驶小工具改装了梅赛德斯-奔驰面包车,与汽车巨头戴姆勒展开了长达十年的合作。

Finally, it was the Americans’ turn, as Carnegie Mellon University took the lead in the 1990s. As the competition to build self-driving machines spread worldwide, the software improved quickly and computers got ever faster, unlocking new possibilities. By the decade’s end, the first cross-country trips under automated control — in the U.S., Germany, and Japan — were in the record books.

最终,轮到美国人了,卡内基梅隆大学在1990年代率先。 随着制造自动驾驶机器的竞争遍及全球,软件Swift改进,计算机变得越来越快,从而开辟了新的可能性。 到本世纪末,在美国,德国和日本的自动控制下的首次越野旅行已记录在案。

The most intense period of AV development was still to come. In the early 2000s, the Pentagon took a growing interest in this emerging technology. To focus the efforts of scattered research groups and catalyze stronger ties with the defense and auto industries, the Defense Advanced Research Projects Agency — the U.S. military’s most independent research-funding arm — organized a series of open competitions in 2004, 2005, and 2007. These “Grand Challenges,” as they were called, offered millions of dollars in prize money and priceless prestige, and attracted dozens of teams from academia and industry.

视听技术发展最紧张的时期仍将到来。 在2000年代初期,五角大楼对这项新兴技术的兴趣日益浓厚。 为了集中分散的研究小组的努力并促进与国防和汽车工业的更紧密联系,美国国防部最高级的研究资助机构美国国防高级研究计划局(Defense Advanced Research Projects Agency)在2004年,2005年和2007年组织了一系列公开比赛。这些被称为“大挑​​战”的比赛提供了数百万美元的奖金和无价的声望,并吸引了来自学术界和工业界的数十支团队。

Putting their best hardware and software to the test, the competitors watched from afar as their AVs tried to traverse both open country and more suburban settings on an abandoned military base. The 2004 race ended without a winner — none of the entrants reached the finish line. But a year later, Stanford University’s winning vehicle claimed the $2 million prize.

测试人员测试了他们最好的硬件和软件后,远远地观看了他们的AV试图穿越一个废弃的军事基地穿越空旷国家和郊区的情况。 2004年的比赛在没有获胜者的情况下结束-没有参赛者到达终点。 但是一年后,斯坦福大学的获奖车辆获得了200万美元的奖金。

The DARPA contests accelerated the development of driverless vehicles. Stanford’s first-place finish in 2005 was the result of its pioneering use of machine learning, an A.I. programming technique, in processing road imagery. But more important, the contests focused attention on the emerging technology’s possibilities. No one was shocked by the military’s rising interest in AVs. But it was the potential civilian applications that set off a sudden wave of speculation. For the first time, the practical commercial use of self-driving technology seemed within reach.

DARPA竞赛加快了无人驾驶汽车的发展。 斯坦福大学在2005年获得第一名的成绩是它在处理道路图像中率先使用了AI学习技术即机器学习技术的结果。 但更重要的是,比赛将注意力集中在新兴技术的可能性上。 军方对自动驾驶汽车的兴趣日益浓厚,没有人感到震惊。 但是,潜在的民用应用引发了突然的猜测。 第一次,自动驾驶技术在商业上的实际应用似乎触手可及。

It was a wake-up call for the auto industry. But not everyone heard it. Most companies were preoccupied with the financial crisis of 2007–2008 and the global recession that followed. U.S. automakers in particular were hamstrung when it came to capitalizing on the opportunity of AVs, which would require substantial further investment for the journey from lab to market. The automakers were going bankrupt or getting bailed out by the federal government. Instead, Silicon Valley moved forward. By 2009, the head of the winning Stanford University team, Sebastian Thrun, was leading a new self-driving-car project at Google. The search giant had bet big on Android, its highly successful operating system for mobile phones. Cars could become the next big computing platform, it seemed. Could Google stake a claim on the future of automotive software? It appeared to be a smart bet, bolstered by CEO and cofounder Larry Page’s lifelong interest in AVs.

这是汽车行业的警钟。 但并非所有人都听到了。 大多数公司全神贯注于2007-2008年的金融危机以及随之而来的全球衰退。 在利用自动驾驶汽车的机会方面,尤其是美国汽车制造商受到了阻碍,这需要大量的进一步投资才能从实验室到市场。 汽车制造商已经破产或被联邦政府纾困。 相反,硅谷前进了。 到2009年,斯坦福大学获奖团队的负责人塞巴斯蒂安·特伦(Sebastian Thrun)领导了Google的新自动驾驶汽车项目。 这家搜索巨头在Android上押注了很大的钱,它的手机操作系统非常成功。 看起来,汽车可能会成为下一个大型计算平台。 Google可以对汽车软件的未来提出主张吗? 首席执行官兼联合创始人拉里·佩奇(Larry Page)对视听设备的终生兴趣增强了这笔赌注。

A new Google self-driving car is on display at Google X in Mountain View, California on May 13, 2015. Photo: Kim Kulish/Getty Images
2015年5月13日,一辆新的Google自动驾驶汽车将在加利福尼亚山景城的Google X上展出。照片:Kim Kulish / Getty Images

Google’s move took a few years to sink in, but once it did, all hell broke loose — not only in the car business, but in the computer and cab industries as well. Suddenly, every major automaker, every ride-hail company, and competing cloudware giants like Apple hastily mobilized efforts to develop self-driving vehicles, too. When in-house projects failed to produce convincing results, many companies simply acquired promising startups to get hold of the needed technology instead. In a two-year period during 2016 and 2017 alone, some $80 billion surged into self-driving vehicle technologies.

Google的举动花了几年时间,但一旦成功,一切就彻底崩溃了–不仅在汽车行业,而且在计算机和驾驶室行业。 突然,每个主要的汽车制造商,每个叫车服务的公司,以及像苹果公司这样的竞争云软件巨头都匆忙动员起来,开发自动驾驶汽车。 当内部项目无法产生令人信服的结果时,许多公司只是简单地收购了有前途的初创公司来掌握所需的技术。 仅在2016年和2017年的两年中,自动驾驶汽车技术就激增了约800亿美元。

The biggest deal, Intel’s panicked 2017 acquisition of computer-vision pioneer Mobileye, an Israel-based maker of computer-vision systems, was valued at an eye-watering $15 billion. As this flurry of mergers and acquisitions unfolded, the web of partnerships and cross holdings linking automakers and the tech sector grew ever more tangled. Two of the world’s biggest consumer industries — computers and cars — had seen their future in each other. But they couldn’t decide whether they wanted to get together or gobble each other up.

最大的一笔交易是英特尔在2017年惊慌失措地收购了计算机视觉先驱Mobileye,后者是以色列计算机视觉系统制造商,其估值达到了惊人的150亿美元。 随着一连串的并购活动的展开,将汽车制造商与科技行业联系起来的伙伴关系和交叉持股网络变得越来越纠结。 世界上最大的两个消费行业-计算机和汽车-彼此见证了他们的未来。 但是他们无法决定他们是否想聚在一起或互相吞噬。

By 2018 the hard work and high finance had paid off. In December, Google spin-off Waymo quietly unwrapped the world’s first truly self-driving taxi service, in Chandler, Arizona. More than 40 years after the first AV test-drive at Tsukuba, and nearly a decade after recruiting Thrun, the company started taking requests for driverless rides through the Phoenix suburbs. Reports said the tech giant had set aside more than $10 billion to build out its self-driving empire. At last, it seemed, the long and painful birthing of the AV was finally over.

到2018年,辛勤的工作和高昂的财务状况得到了回报。 去年12月,谷歌的分拆Waymo在亚利桑那州的钱德勒悄悄地推出了世界上第一个真正的自动驾驶出租车服务。 在筑波市进行首次AV试驾40多年后,以及招募Thrun的将近十年之后,该公司开始接受在凤凰城郊区进行无人驾驶的请求。 报道称,这家科技巨头已经拨出超过100亿美元来建立自己的自动驾驶帝国。 终于,AV的漫长而痛苦的诞生终于结束了。

“There is hardly a task that horse-drawn vehicles can do which cannot be done as well, and possibly better, with automobiles,” reported the New York Times on January 12, 1903, as one of the world’s first big auto shows opened its doors inside Madison Square Garden, then located at Twenty-Sixth Street and Madison Avenue. The Times was still at it a century later, this time hawking the engineering marvels of the self-driving age with a similar enthusiasm. “On my fourth day in a semi-driverless car,” wrote columnist David Leonhardt in 2018, “I was ready to make a leap into the future.”

1903年1月12日, 《纽约时报 》报道说: “在这里,用马拉的车辆几乎不可能完成汽车所能完成的任务,甚至可能做得更好。”这是世界上最早的大型车展之一它的门位于麦迪逊广场花园内,然后位于第二十六街和麦迪逊大街。 一个世纪后,《 泰晤士报》仍处在这个时代 ,这次以类似的热情勾销了自动驾驶时代的工程奇迹。 专栏作家戴维·莱昂哈特(David Leonhardt)在2018年写道:“在我开着半自动驾驶汽车的第四天,我已经准备好迈向未来。”

The paper of record isn’t alone. Much like the automobile, AVs have unleashed bold speculation about the new technology’s benefits to individuals and society. But what does that future promise?

记录纸并不孤单。 就像汽车一样,自动驾驶汽车对新技术对个人和社会的好处进行了大胆的猜测。 但是,未来的前景如何?

First, self-driving technology can eliminate nearly all of the deaths caused by automobiles, say its champions. An estimated 60 million people were killed in motor vehicle crashes in the 20th century. That’s more than all of the military and civilian deaths during World War II. But even as cars have become much safer, the killing continues, as motor vehicles spread to new countries where skilled drivers and traffic regulations are in short supply. As auto use booms in China and India, more than 1.4 million road deaths occur worldwide every single year — stealing enough souls to fill a city the size of Dallas, Texas; Birmingham, England; or Kobe, Japan. The vast majority of these crashes would have been prevented with self-driving technology, advocates claim.

首先,自动驾驶技术可以消除几乎所有由汽车造成的死亡。 在20世纪,估计有6000万人死于汽车撞车事故。 这超过了第二次世界大战期间所有军事和平民死亡人数。 但是,即使汽车变得更加安全,杀人仍在继续,因为汽车传播到了缺乏熟练驾驶员和交通法规的新国家。 随着中国和印度汽车使用量的激增,全球每年有140万以上的道路交通事故死亡-偷走了足够多的人,以填满德克萨斯州达拉斯市的整个城市。 英国伯明翰; 或日本神户。 提倡者声称,这些碰撞中的绝大多数将通过自动驾驶技术避免。

Second, AV boosters boast, traffic congestion as we know it will disappear. The economic toll of overcrowded roads is enormous, and is easier to measure than ever, thanks to location-tracking devices embedded in ubiquitous mobile phones. Using the vast troves of travel records these phones leave behind, telematics firm Inrix estimated that in the U.S. alone, the cost of drivers’ time wasted in traffic was over $305 billion a year, or nearly $1,500 per driver. The argument for AVs is that software-piloted cars can safely pack more cars closer together at highway speeds, thanks to faster braking reflexes. But AVs might also reduce some bottlenecks by simply spreading human populations farther apart, splaying settlements out over a wider expanse of land. When passengers in AVs can use travel time for work or leisure instead of keeping eyes on the road, the thinking goes, longer rides to less-congested areas won’t be a bother.

其次,视音频增强器自吹自traffic,因为我们知道交通拥堵将消失。 由于嵌入在无处不在的移动电话中的位置跟踪设备,拥挤的道路造成的经济损失是巨大的,而且比以往任何时候都更容易衡量。 使用这些手机留下的大量旅行记录,远程信息处理公司Inrix估计,仅在美国,驾驶员浪费在交通上的时间的成本每年就超过3050亿美元,或每位驾驶员近1500美元。 对于自动驾驶汽车的观点是,由于更快的制动React,软件驾驶的汽车可以安全地将更多的汽车以高速公路速度更近地打包在一起。 但是,AV可能还会通过简单地将人口分散到更远的地方,在更广阔的土地上扩大定居点来减少某些瓶颈。 当自动驾驶汽车的乘客可以将旅行时间用于工作或休闲而不是盯着道路行驶时,人们就会想到,长时间乘车去较不拥挤的区域将不会造成麻烦。

Third, no one will be left behind by AVs, advocates hope. Cars expanded mobility for hundreds of millions of people in the 20th century, but when the automobile’s success dispersed the population and siphoned funds from mass transit, many found themselves facing new barriers to freely getting around. In the U.S. alone, more than 25 million people have disabilities that limit travel — nearly one-sixth of the workforce. Not only will AVs bring automobile travel to those physically unable to drive, it is believed, they will open up new travel options for the very old, the very young, and those who can’t afford cars of their own. As disabled people come off the sidelines and enter the workforce, as senior citizens get easier access to medical care, and as children enjoy access to a wider range of educational and enrichment opportunities, the social and economic benefits could be enormous.

第三,倡导者希望,AV不会留下任何人。 汽车在20世纪为成千上万人提供了出行便利,但是当汽车的成功驱散了人口并从公共交通中抽走了资金时,许多人发现自己面临着自由出行的新障碍。 仅在美国,就有超过2500万的残疾人限制出行,几乎占劳动力的六分之一。 人们相信,自动驾驶汽车不仅会给身体无法驾驶的人带来汽车旅行,而且还将为年纪大,年幼的人和无力负担自己的汽车的人开辟新的旅行选择。 随着残疾人离开场外进入劳动力市场,随着老年人更容易获得医疗服务,以及随着儿童获得更多的教育和致富机会,社会和经济利益将是巨大的。

When will this utopia arrive, you ask? Today AVs are still a novelty. Despite all the hassles, dangers, and drudgery of driving, we remain the most cost-effective “technology” suited to the task. By the time you read this, in the early 2020s, even if the wildest predictions come to pass, there will still be fewer than one million truly self-driving vehicles plying the world’s highways, streets, and sidewalks. But AVs’ numbers are destined to grow quickly as the decade rolls on. By 2030 the global headcount of smart cars, trucks, and buses could creep into the tens of millions. They’ll share the road with some two billion human-driven cars and trucks (give or take a few hundred million). Even then, it seems, AVs will be but a rounding error in the global population of automobiles. But the revolution will strike with surprise, surgical precision, and overwhelming force. As cyberpunk novelist William Gibson once famously said, “The future is already here — it’s just not very evenly distributed.”

您会问这个乌托邦何时到达? 如今,AV仍然是新事物。 尽管有种种麻烦,危险和驾驶烦恼,但我们仍然是最适合该任务的具有成本效益的“技术”。 到您读这篇文章时,在2020年代初,即使做出最疯狂的预测,在全球的高速公路,街道和人行道上行驶的真正无人驾驶汽车仍将少于一百万。 但是随着十年的到来,自动驾驶汽车的数量注定会Swift增长。 到2030年,智能汽车,卡车和公共汽车的全球人数可能攀升至数千万。 他们将与大约20亿辆人力驱动的汽车和卡车共享道路(付出或花费几亿美元)。 看来,即使到那时,AV仍将是全球汽车总数中的四舍五入错误。 但是革命将以惊人的速度,精确的手术和压倒性的力量进行打击。 正如赛博朋克小说家威廉·吉布森(William Gibson)曾说过的那样:“未来已经来临-分布不均匀。”

Pilot models of the Uber self-driving car are displayed at the Uber Advanced Technologies Center on September 13, 2016 in Pittsburgh, Pennsylvania. Photo: AFP/Stringer/Getty Images
2016年9月13日在宾夕法尼亚州匹兹堡的Uber先进技术中心展示了Uber自动驾驶汽车的飞行员模型。 照片:法新社/斯特林格/盖蒂图片社

The first changes we notice will occur in taxis. Most market analysts agree that all taxis in the industrialized nations will be automated by 2030. In the U.S., that’s 300,000 vehicles. Add in all the Ubers and Lyfts and the total is closer to 1,000,000 in all. Swarming from our airports and resorts through our most beloved downtowns, driverless cabs could become the face of automation for a generation, and the gateway drug to driverless mobility for billions of passengers every year. The arrival of driverless cabs could radically change consumers’ perception of cars. When computerized chauffeurs are a tap and a swipe away, and robotaxi rides are dirt cheap, people may opt out of auto ownership altogether. If we make the shift en masse, far fewer vehicles will be needed to move the same number of people that private cars do today.

我们注意到的第一个变化将发生在出租车上。 大多数市场分析家都同意,到2030年,工业化国家的所有出租车都将实现自动化。在美国,这是30万辆汽车。 将所有Uber和Lyfts加起来,总数总计接近1,000,000。 无人驾驶室从我们的机场和度假胜地到我们最受人欢迎的市中心涌现,无人驾驶出租车可能会成为一代人自动化的代名词,每年都有数十亿乘客通向无人驾驶的门户药物。 无人驾驶出租车的到来可能从根本上改变消费者对汽车的看法。 当轻便的轻便司机和轻便的机器人司机一去不复返时,人们可能会完全放弃使用汽车所有权。 如果我们进行大规模转移,那么与如今的私家车一样,移动相同数量的人所需的车辆将更少。

But this silver lining may not come to be. Automation will also make private automobiles more useful, and software will radically reduce the hassles of ownership. Think about it for a moment. Automated cars will do more than drive for you — they’ll also park themselves, take themselves to the garage for fuel and repairs, and pay their own insurance bills (with your money, of course). It’s entirely likely that we’ll simply swap our stupid cars for smart ones, and go on cruising around as we have.

但这种一线希望可能不会成为现实。 自动化也将使私家车更加有用,而软件将从根本上减少所有权的麻烦。 考虑一下。 自动驾驶汽车为您提供的不仅仅是开车服务,它们还将自己停车,带自己去车库加油和维修,并支付自己的保险费(当然是用您的钱)。 我们完全有可能只是将愚蠢的汽车换成智能汽车,然后继续四处行驶。

In the long run we’ll likely see a mix of both worlds. By 2040, even if shared AVs take over and new-car sales fall by 50 percent — a sea change, indeed — automakers will still be churning out some 30 million self-driving cars worldwide every year. Half will end up in China, another quarter in America, and the rest scattered across the EU, Japan, and emerging markets. Yet even as the business of making cars shrinks, the business of using cars — and vans, and scooters, and everything else that goes — will grow. What’s left of today’s $2 trillion global auto manufacturing industry will be subsumed into a much larger market for “personal transportation services” that’s projected to reach $7 to $10 trillion a year by mid-century, roughly the size of the entire EU economy today. Waymo alone wants to capture a $1.7 trillion annual share by 2030. But Uber, Amazon, and Alibaba — not to mention Ford, GM, and VW, among others — aren’t ceding this new frontier without a fight. They have their own designs on the service businesses of the self-driving future, too.

从长远来看,我们可能会看到两个世界的混合。 到2040年,即使共享的自动驾驶汽车接手,新车销量下降50%(的确是天翻地覆的变化),汽车制造商每年仍将在全球范围内生产约3000万辆自动驾驶汽车。 一半将在中国结束,另一半在美国结束,其余将分散在欧盟,日本和新兴市场。 然而,即使随着汽车制造业务的萎缩,使用汽车(面包车,踏板车以及其他所有东西)的业务也会增长。 当今全球2万亿美元的汽车制造业中,剩下的将被归入“个人运输服务”更大的市场,到本世纪中叶,这一市场预计每年将达到7至10万亿美元,大致相当于当今整个欧盟经济的规模。 仅Waymo一家就希望在2030年之前夺取每年1.7万亿美元的份额。但是,Uber,亚马逊和阿里巴巴(更不用说福特,通用汽车和大众汽车等公司)也不会在不战而退的新领域。 他们在自动驾驶未来的服务业务上也有自己的设计。

So while the driverless revolution starts with a trickle, before long that slow drip will become a torrent. By 2050 or thereabouts, most human-driven cars will be gone. A smaller, smarter fleet of self-driving vehicles of many shapes and sizes will have replaced them. Some will be private, some will be shared. Some will move a single person, some will haul a hundred or more. Many won’t carry anyone at all, and instead will busy themselves with shuttling around an unceasing flood of goods unleashed by the triumph of online shopping. Some will help us by simply watching over our urban world or directing traffic. All told, our diverse fleet of AVs will log vastly more miles than our cars do today.

因此,尽管无人驾驶的革命始于a细流,但不久之后,缓慢的滴灌将成为洪流。 到2050年左右,大多数人类驾驶的汽车都将消失。 规模更小,更智能的多种形状和尺寸的自动驾驶汽车将取代它们。 一些将是私有的,一些将被共享。 有些会移动一个人,有些会拖一百或更多。 许多人根本不会带任何人,而是忙于穿梭于在线购物的胜利所释放出的不断涌入的大量商品中。 有些人将仅通过监视我们的城市世界或指挥交通来为我们提供帮助。 总而言之,我们多样化的AV车队行驶的里程数比今天的汽车要远得多。

It’s tempting to see the driverless revolution as a repeat of our 20th-century experience with cars, only on a larger, computer-choreographed scale. But nothing in our past can prepare us for what lies ahead. At full tilt, the pace of change will bewilder us. In the U.S., full motorization took about 60 years — from roughly 1920, when cars started arriving in cities in large numbers, to 1980, when metro areas everywhere started to choke on their vast numbers. The next 40 years, from 1980 to 2020, was a period of saturation.

诱人的是,无人驾驶革命是我们20世纪汽车体验的重演,只是在更大的计算机编排规模上。 但是,过去的一切都无法使我们为即将到来的事情做好准备。 全面倾斜,变化的步伐将使我们感到困惑。 在美国,完全的机动化花费了大约60年的时间-从大约1920年开始,当时汽车开始大量进入城市,到1980年,当时世界各地的都会区开始大量拥挤。 从1980年到2020年,接下来的40年是一个饱和期。

The average number of hours spent in traffic by commuters nearly tripled, and the economic cost of traffic congestion grew tenfold, to $166 billion annually. We have spent much of this time seeking ways to curb auto use and invest in alternatives.

通勤者平均在交通上花费的时间增加了三倍,交通拥堵的经济成本增长了十倍,达到每年1,660亿美元。 我们花了很多时间来寻找抑制汽车使用和投资替代品的方法。

But automation could play out in as little as 20 to 30 years — the span of a single generation. If our history with the automobile does teach us anything — it is that the future we find in the driverless revolution won’t be the one we expected.

但是自动化可以在短短20到30年内发挥作用-一代人的时间跨度。 如果我们的汽车历史确实能教给我们任何东西,那就是我们在无人驾驶革命中发现的未来不会是我们所期望的。

From Ghost Road: Beyond the Driverless Car published by W. W. Norton & Company. © 2020 by Anthony M. Townsend
由《 幽灵路:超越无人驾驶汽车 》由WW Norton&Company发布。 ©2020年,安东尼·汤森(Anthony M. Townsend)

翻译自: https://onezero.medium.com/the-100-year-history-of-self-driving-vehicles-10b8546a3318

csdn无人驾驶汽车

http://www.taodudu.cc/news/show-863539.html

相关文章:

  • 无监督学习 k-means_无监督学习-第2部分
  • regex 正则表达式_使用正则表达式(Regex)删除HTML标签
  • 精度,精确率,召回率_了解并记住精度和召回率
  • 如何在Python中建立回归模型
  • 循环神经网络 递归神经网络_了解递归神经网络中的注意力
  • 超参数优化 贝叶斯优化框架_mlmachine-使用贝叶斯优化进行超参数调整
  • 使用线性回归的预测建模
  • 机器学习 处理不平衡数据_在机器学习中处理不平衡数据
  • 目标检测迁移学习_使用迁移学习检测疟疾
  • 深度学习cnn人脸检测_用于对象检测的深度学习方法:解释了R-CNN
  • 人口预测和阻尼-增长模型_使用分类模型预测利率-第2部分
  • jupyter 共享_可共享的Jupyter笔记本!
  • 图像分割过分割和欠分割_使用图割的图像分割
  • 跳板机连接数据库_跳板数据科学职业生涯回顾
  • 模糊图像处理 去除模糊_图像模糊如何工作
  • 使用PyTorch进行手写数字识别,在20 k参数中获得99.5%的精度。
  • openai-gpt_您可以使用OpenAI GPT-3语言模型做什么?
  • 梯度下降和随机梯度下降_梯度下降和链链接系统
  • 三行情书代码_用三行代码优化您的交易策略
  • 词嵌入 网络嵌入_词嵌入简介
  • 如何成为数据科学家_成为数据科学家的5大理由
  • 大脑比机器智能_机器大脑的第一步
  • 嵌入式和非嵌入式_我如何向非技术同事解释词嵌入
  • ai与虚拟现实_将AI推向现实世界
  • bert 无标记文本 调优_使用BERT准确标记主观问答内容
  • 机器学习线性回归学习心得_机器学习中的线性回归
  • 安全警报 该站点安全证书_深度学习如何通过实时犯罪警报确保您的安全
  • 现代分层、聚集聚类算法_分层聚类:聚集性和分裂性-解释
  • 特斯拉自动驾驶使用的技术_使用自回归预测特斯拉股价
  • 熊猫分发_实用熊猫指南

csdn无人驾驶汽车_无人驾驶汽车100年历史相关推荐

  1. arduino 无人驾驶小车_无人驾驶小车的实现也没那么复杂

    无人驾驶小车的实现也没那么复杂​mp.weixin.qq.com 2020-01-02 19:10 本文作者:吴东昱,北京钢铁侠科技深度学习算法工程师,主要研究深度学习.无人驾驶等. 我在观察历届智能 ...

  2. 无人驾驶运动学模型——线性时变模型预测控制的思路推演过程_百叶书的博客-CSDN博客_线性时变模型预测控制 转

    无人驾驶运动学模型--线性时变模型预测控制的思路推演过程_百叶书的博客-CSDN博客_线性时变模型预测控制

  3. python无人驾驶_无人驾驶入门

    你将学到什么 Python.C++.矩阵和微积分知识 了解基础计算机视觉和机器学习 获得无人驾驶入门基石纳米学位认证! 课程概况 只需编程基础,迈出成为百万年薪工程师第一步! 跟随 Google 无人 ...

  4. dc综合与pt静态时序分析(中文)_新能源汽车小三电系统(PDU/DC/OBC)技术研究详解...

    0 引言 近几年,在国家政策的支持下,新能源汽车产销量保持了较快增长,随着规模效应,国家逐步降低对新能源汽车的补贴,新能源行业也启动新一轮优胜劣汰,对于新能源整车企业,成本压力越来越大.新能源汽车发展 ...

  5. 数影周报:小米汽车供应商被罚100万,1688延迟下线“1688买家旺旺”

    本周看点:小米汽车供应商被罚100万:特斯拉将在硅谷招聘AI 人才:阳光出行等25款 App涉违规收集使用个人信息等:1688延迟于2月8日下线"1688买家旺旺":微蚁科技完成数 ...

  6. java模拟加速匀速减速_【JavaSE练习】面向对象_练习_模拟汽车的自动驾驶系统

    [JavaSE练习]面向对象_练习_模拟汽车的自动驾驶系统 [JavaSE练习]面向对象_练习_模拟汽车的自动驾驶系统 模拟汽车驾驶系统 定义一个交通工具的类,包括: 属性:速度 方法:设置速度,加速 ...

  7. python计算汽车的平均油耗_聊聊汽车油耗怎么计算

    随着油价的上涨,有车的朋友越来越关注爱车的实际耗油量.油耗是跟我们用车养车息息相关的数据,它不仅可以帮助车主了解车辆的实际油耗,跑个远门就能更好规划到哪里加油,而且还更利于车主用户全方位了解车辆油耗情 ...

  8. 倍福ads通讯软件_软件定义汽车“性感”吗?东软睿驰有自己的答案

    在中国汽车行业,有一家非常特殊的软件公司.成立于1991年的东软集团是中国第一家上市的软件公司,依靠软件外包起家,很早就开始涉足汽车座舱信息娱乐系统领域. 五年前,作为面向汽车智能网联转型变革做出的战 ...

  9. 东软村医管理平台_软件定义汽车“性感”吗?东软睿驰有自己的答案

    在中国汽车行业,有一家非常特殊的软件公司.成立于1991年的东软集团是中国第一家上市的软件公司,依靠软件外包起家,很早就开始涉足汽车座舱信息娱乐系统领域. 五年前,作为面向汽车智能网联转型变革做出的战 ...

最新文章

  1. Android使用popueWindow自定义Spinner
  2. 【推荐】如何使用好阿里云的网络安全隔离?深入分享阿里云ECS安全组实践经验...
  3. Retrofit学习笔记
  4. 如何删除springboot中的子项目
  5. [RabbitMQ]什么是MQ
  6. 数据聚合Spring Data MongoDB:嵌套结果
  7. linux 驱动日志,Linux上的自由空间驱动的日志轮换?
  8. 宿华、程一笑上市演讲:上市是接受更大机遇和挑战的新起点
  9. 两个iphone怎么大量传照片_外出旅行、出差时,同品牌手机如何实现面对面零流量秒传照片?...
  10. selenium对浏览器属性操作的方法
  11. Java之美[从菜鸟到高手演变]之设计模式三
  12. SQL注入 详解 有图有真相
  13. Debian Linux安装Android ABD工具
  14. ajax下载Excel文件
  15. mysql:mysql的基本函数
  16. 好课堂Scratch编程10 趣学篇(六)听题!格里芬的挑战
  17. 线性代数 --- 什么叫线性组合 Linear Combination(个人笔记扫描版)
  18. 匈牙利算法(月老牵线问题)
  19. java 引用数据类型Scanner类 Random类
  20. 什么是推特群控?推特群控的优势是什么?

热门文章

  1. JavaScript DOM 6 - 节点的创建,插入,替换,删除
  2. C#日期时间类型格式化大全集 C#DateTime 类型格式化大全集
  3. 华章7-8月份新书简介(2015年)
  4. IT新潮关键词汇整理
  5. 2007年10月小记
  6. pcie ep 应该支持哪种interrupt_7寸国产笔记本评测,酷睿处理器+8G+256G,还支持手写笔...
  7. html js脚本限制 正则,简单谈谈JS中的正则表达式
  8. linux系统调试网络,linux系统命令(网络相关的调试命令)
  9. sap 分摊分配不产生会计凭证的原因_MM 物料凭证没有产生相应的会计凭证...
  10. mysql 唯一索引 二叉法_mysql 唯一索引