Environment

pandas 0.21.0

python 3.6

jupyter notebook

开始

习惯上,我们导入如下:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

对象创建

具体参阅数据结构介绍

通过传递一个值列表来创建一个 Series,让 pandas 创建一个默认的整数索引:

In [4]: s = pd.Series([1,3,5,np.nan,6,8])

In [5]: s

Out[5]:

0 1.0

1 3.0

2 5.0

3 NaN

4 6.0

5 8.0

dtype: float64

通过传递具有日期时间索引和标签列的 numpy 数组来创建一个 DataFrame:

In [6]: dates = pd.date_range('20130101', periods=6)

In [7]: dates

Out[7]:

DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',

'2013-01-05', '2013-01-06'],

dtype='datetime64[ns]', freq='D')

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

In [9]: df

Out[9]:

A B C D

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632

2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

2013-01-05 -0.424972 0.567020 0.276232 -1.087401

2013-01-06 -0.673690 0.113648 -1.478427 0.524988

通过传递一个可以转换为一系列对象的字典来创建一个 DataFrame。

In [10]: df2 = pd.DataFrame({ 'A' : 1.,

....: 'B' : pd.Timestamp('20130102'),

....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),

....: 'D' : np.array([3] * 4,dtype='int32'),

....: 'E' : pd.Categorical(["test","train","test","train"]),

....: 'F' : 'foo' })

....:

In [11]: df2

Out[11]:

A B C D E F

0 1.0 2013-01-02 1.0 3 test foo

1 1.0 2013-01-02 1.0 3 train foo

2 1.0 2013-01-02 1.0 3 test foo

3 1.0 2013-01-02 1.0 3 train foo

有特定的 dtypes

In [12]: df2.dtypes

Out[12]:

A float64

B datetime64[ns]

C float32

D int32

E category

F object

dtype: object

如果您使用 IPython,按下 TAB 将提示补全。以下是将要完成的属性的子集:

In [13]: df2.

df2.A df2.bool

df2.abs df2.boxplot

df2.add df2.C

df2.add_prefix df2.clip

df2.add_suffix df2.clip_lower

df2.align df2.clip_upper

df2.all df2.columns

df2.any df2.combine

df2.append df2.combine_first

df2.apply df2.compound

df2.applymap df2.consolidate

df2.D

如您所见,列 A,B,C 和 D 自动完成。 E 也在那里;为了简洁,其余的属性被省略。

查看数据

In [14]: df.head()

Out[14]:

A B C D

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632

2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

2013-01-05 -0.424972 0.567020 0.276232 -1.087401

In [15]: df.tail(3)

Out[15]:

A B C D

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

2013-01-05 -0.424972 0.567020 0.276232 -1.087401

2013-01-06 -0.673690 0.113648 -1.478427 0.524988

显示索引,列和底层 numpy 数据

In [16]: df.index

Out[16]:

DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',

'2013-01-05', '2013-01-06'],

dtype='datetime64[ns]', freq='D')

In [17]: df.columns

Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

In [18]: df.values

Out[18]:

array([[ 0.4691, -0.2829, -1.5091, -1.1356],

[ 1.2121, -0.1732, 0.1192, -1.0442],

[-0.8618, -2.1046, -0.4949, 1.0718],

[ 0.7216, -0.7068, -1.0396, 0.2719],

[-0.425 , 0.567 , 0.2762, -1.0874],

[-0.6737, 0.1136, -1.4784, 0.525 ]])

描述显示您的数据的快速统计结果( std 是标准偏差)

In [19]: df.describe()

Out[19]:

A B C D

count 6.000000 6.000000 6.000000 6.000000

mean 0.073711 -0.431125 -0.687758 -0.233103

std 0.843157 0.922818 0.779887 0.973118

min -0.861849 -2.104569 -1.509059 -1.135632

25% -0.611510 -0.600794 -1.368714 -1.076610

50% 0.022070 -0.228039 -0.767252 -0.386188

75% 0.658444 0.041933 -0.034326 0.461706

max 1.212112 0.567020 0.276232 1.071804

转置数据

In [20]: df.T

Out[20]:

2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06

A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690

B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648

C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427

D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

按轴排序

In [21]: df.sort_index(axis=1, ascending=False)

Out[21]:

D C B A

2013-01-01 -1.135632 -1.509059 -0.282863 0.469112

2013-01-02 -1.044236 0.119209 -0.173215 1.212112

2013-01-03 1.071804 -0.494929 -2.104569 -0.861849

2013-01-04 0.271860 -1.039575 -0.706771 0.721555

2013-01-05 -1.087401 0.276232 0.567020 -0.424972

2013-01-06 0.524988 -1.478427 0.113648 -0.673690

按值排序

In [22]: df.sort_values(by='B')

Out[22]:

A B C D

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632

2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-06 -0.673690 0.113648 -1.478427 0.524988

2013-01-05 -0.424972 0.567020 0.276232 -1.087401

选择

直接选择

选择一个产生 Series 的列,相当于 df.A

In [23]: df['A']

Out[23]:

2013-01-01 0.469112

2013-01-02 1.212112

2013-01-03 -0.861849

2013-01-04 0.721555

2013-01-05 -0.424972

2013-01-06 -0.673690

Freq: D, Name: A, dtype: float64

选择通过 [] ,哪些切片的行。

In [24]: df[0:3]

Out[24]:

A B C D

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632

2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

In [25]: df['20130102':'20130104']

Out[25]:

A B C D

2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

按标签选择

In [26]: df.loc[dates[0]]

Out[26]:

A 0.469112

B -0.282863

C -1.509059

D -1.135632

Name: 2013-01-01 00:00:00, dtype: float64

通过标签选择多列

In [27]: df.loc[:,['A','B']]

Out[27]:

A B

2013-01-01 0.469112 -0.282863

2013-01-02 1.212112 -0.173215

2013-01-03 -0.861849 -2.104569

2013-01-04 0.721555 -0.706771

2013-01-05 -0.424972 0.567020

2013-01-06 -0.673690 0.113648

显示标签切片,包括两个端点

In [28]: df.loc['20130102':'20130104',['A','B']]

Out[28]:

A B

2013-01-02 1.212112 -0.173215

2013-01-03 -0.861849 -2.104569

2013-01-04 0.721555 -0.706771

减少返回的对象的维度

In [29]: df.loc['20130102',['A','B']]

Out[29]:

A 1.212112

B -0.173215

Name: 2013-01-02 00:00:00, dtype: float64

获得标量值

In [30]: df.loc[dates[0],'A']

Out[30]: 0.46911229990718628

快速访问标量(等同于之前的方法)

In [31]: df.at[dates[0],'A']

Out[31]: 0.46911229990718628

按位置选择

In [32]: df.iloc[3]

Out[32]:

A 0.721555

B -0.706771

C -1.039575

D 0.271860

Name: 2013-01-04 00:00:00, dtype: float64

通过整数片,类似于 numpy / python

In [33]: df.iloc[3:5,0:2]

Out[33]:

A B

2013-01-04 0.721555 -0.706771

2013-01-05 -0.424972 0.567020

整数位置的位置列表,类似于 numpy / python 风格

In [34]: df.iloc[[1,2,4],[0,2]]

Out[34]:

A C

2013-01-02 1.212112 0.119209

2013-01-03 -0.861849 -0.494929

2013-01-05 -0.424972 0.276232

用于明确地切割行

In [35]: df.iloc[1:3,:]

Out[35]:

A B C D

2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

用于明确地切分列

In [36]: df.iloc[:,1:3]

Out[36]:

B C

2013-01-01 -0.282863 -1.509059

2013-01-02 -0.173215 0.119209

2013-01-03 -2.104569 -0.494929

2013-01-04 -0.706771 -1.039575

2013-01-05 0.567020 0.276232

2013-01-06 0.113648 -1.478427

为了明确地获取一个值

In [37]: df.iloc[1,1]

Out[37]: -0.17321464905330858

为了快速访问标量(等同于之前的方法)

In [38]: df.iat[1,1]

Out[38]: -0.17321464905330858

布尔索引

使用单个列的值来选择数据。

In [39]: df[df.A > 0]

Out[39]:

A B C D

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632

2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

从满足布尔条件的 DataFrame 中选择值。

In [40]: df[df > 0]

Out[40]:

A B C D

2013-01-01 0.469112 NaN NaN NaN

2013-01-02 1.212112 NaN 0.119209 NaN

2013-01-03 NaN NaN NaN 1.071804

2013-01-04 0.721555 NaN NaN 0.271860

2013-01-05 NaN 0.567020 0.276232 NaN

2013-01-06 NaN 0.113648 NaN 0.524988

使用 isin()方法进行过滤:

In [41]: df2 = df.copy()

In [42]: df2['E'] = ['one', 'one','two','three','four','three']

In [43]: df2

Out[43]:

A B C D E

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one

2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two

2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three

2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three

In [44]: df2[df2['E'].isin(['two','four'])]

Out[44]:

A B C D E

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two

2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

设置

设置新列自动按索引排列数据

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))

In [46]: s1

Out[46]:

2013-01-02 1

2013-01-03 2

2013-01-04 3

2013-01-05 4

2013-01-06 5

2013-01-07 6

Freq: D, dtype: int64

In [47]: df['F'] = s1

通过标签设置值

In [48]: df.at[dates[0],'A'] = 0

按位置设置值

In [49]: df.iat[0,1] = 0

通过分配一个 numpy 数组进行设置

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

事先设置操作的结果

In [51]: df

Out[51]:

A B C D F

2013-01-01 0.000000 0.000000 -1.509059 5 NaN

2013-01-02 1.212112 -0.173215 0.119209 5 1.0

2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0

2013-01-04 0.721555 -0.706771 -1.039575 5 3.0

2013-01-05 -0.424972 0.567020 0.276232 5 4.0

2013-01-06 -0.673690 0.113648 -1.478427 5 5.0

一个 where 操作与设置。

In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2

Out[54]:

A B C D F

2013-01-01 0.000000 0.000000 -1.509059 -5 NaN

2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0

2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0

2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0

2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0

2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

缺失数据

熊猫主要使用值 np.nan 来表示缺失的数据。这是默认情况下不包括在计算中。查看缺失数据(http://pandas.pydata.org/pandas-docs/stable/missing_data.html#missing-data)

Reindexing 允许您更改/添加/删除指定轴上的索引。这将返回数据的副本。

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

In [56]: df1.loc[dates[0]:dates[1],'E'] = 1

In [57]: df1

Out[57]:

A B C D F E

2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0

2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN

2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN

删除任何缺少数据的行。

In [58]: df1.dropna(how='any')

Out[58]:

A B C D F E

2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

填写缺少的数据

In [59]: df1.fillna(value=5)

Out[59]:

A B C D F E

2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0

2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0

2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0

获取值为 nan 的布尔值

In [60]: pd.isna(df1)

Out[60]:

A B C D F E

2013-01-01 False False False False True False

2013-01-02 False False False False False False

2013-01-03 False False False False False True

2013-01-04 False False False False False True

操作

统计

一般操作不包括丢失的数据。

执行描述性统计

In [61]: df.mean()

Out[61]:

A -0.004474

B -0.383981

C -0.687758

D 5.000000

F 3.000000

dtype: float64

相同的操作在另一个轴上

In [62]: df.mean(1)

Out[62]:

2013-01-01 0.872735

2013-01-02 1.431621

2013-01-03 0.707731

2013-01-04 1.395042

2013-01-05 1.883656

2013-01-06 1.592306

Freq: D, dtype: float64

使用具有不同维度和需要对齐的对象进行操作。另外,大熊猫会沿指定的尺寸自动变化。

In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)

In [64]: s

Out[64]:

2013-01-01 NaN

2013-01-02 NaN

2013-01-03 1.0

2013-01-04 3.0

2013-01-05 5.0

2013-01-06 NaN

Freq: D, dtype: float64

In [65]: df.sub(s, axis='index')

Out[65]:

A B C D F

2013-01-01 NaN NaN NaN NaN NaN

2013-01-02 NaN NaN NaN NaN NaN

2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0

2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0

2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0

2013-01-06 NaN NaN NaN NaN NaN

应用(apply)

将函数应用于数据

In [66]: df.apply(np.cumsum)

Out[66]:

A B C D F

2013-01-01 0.000000 0.000000 -1.509059 5 NaN

2013-01-02 1.212112 -0.173215 -1.389850 10 1.0

2013-01-03 0.350263 -2.277784 -1.884779 15 3.0

2013-01-04 1.071818 -2.984555 -2.924354 20 6.0

2013-01-05 0.646846 -2.417535 -2.648122 25 10.0

2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0

In [67]: df.apply(lambda x: x.max() - x.min())

Out[67]:

A 2.073961

B 2.671590

C 1.785291

D 0.000000

F 4.000000

dtype: float64

直方图化(Histogramming)

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

In [69]: s

Out[69]:

0 4

1 2

2 1

3 2

4 6

5 4

6 4

7 6

8 4

9 4

dtype: int64

In [70]: s.value_counts()

Out[70]:

4 5

6 2

2 2

1 1

dtype: int64

字符串方法

Series 在 str 属性中配备了一组字符串处理方法,使得在数组的每个元素上操作都变得很容易,如下面的代码片段所示。请注意,str中的模式匹配通常默认使用正则表达式(在某些情况下始终使用它们)。在矢量化字符串方法(http://pandas.pydata.org/pandas-docs/stable/text.html#text-string-methods)中查看更多。

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()

Out[72]:

0 a

1 b

2 c

3 aaba

4 baca

5 NaN

6 caba

7 dog

8 cat

dtype: object

合并

Concat

在连接/合并类型操作的情况下,熊猫提供了各种功能,可以方便地将 Series,DataFrame 和 Panel 对象与索引和关系代数功能的各种设置逻辑组合在一起。

请参阅合并部分(http://pandas.pydata.org/pandas-docs/stable/merging.html#merging)

连接 pandas 对象和 concat():

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df

Out[74]:

0 1 2 3

0 -0.548702 1.467327 -1.015962 -0.483075

1 1.637550 -1.217659 -0.291519 -1.745505

2 -0.263952 0.991460 -0.919069 0.266046

3 -0.709661 1.669052 1.037882 -1.705775

4 -0.919854 -0.042379 1.247642 -0.009920

5 0.290213 0.495767 0.362949 1.548106

6 -1.131345 -0.089329 0.337863 -0.945867

7 -0.932132 1.956030 0.017587 -0.016692

8 -0.575247 0.254161 -1.143704 0.215897

9 1.193555 -0.077118 -0.408530 -0.862495

# break it into pieces

In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)

Out[76]:

0 1 2 3

0 -0.548702 1.467327 -1.015962 -0.483075

1 1.637550 -1.217659 -0.291519 -1.745505

2 -0.263952 0.991460 -0.919069 0.266046

3 -0.709661 1.669052 1.037882 -1.705775

4 -0.919854 -0.042379 1.247642 -0.009920

5 0.290213 0.495767 0.362949 1.548106

6 -1.131345 -0.089329 0.337863 -0.945867

7 -0.932132 1.956030 0.017587 -0.016692

8 -0.575247 0.254161 -1.143704 0.215897

9 1.193555 -0.077118 -0.408530 -0.862495

Join

SQL 风格合并。请参阅数据库样式的 joining

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left

Out[79]:

key lval

0 foo 1

1 foo 2

In [80]: right

Out[80]:

key rval

0 foo 4

1 foo 5

In [81]: pd.merge(left, right, on='key')

Out[81]:

key lval rval

0 foo 1 4

1 foo 1 5

2 foo 2 4

3 foo 2 5

另一个可以给出的例子是:

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [84]: left

Out[84]:

key lval

0 foo 1

1 bar 2

In [85]: right

Out[85]:

key rval

0 foo 4

1 bar 5

In [86]: pd.merge(left, right, on='key')

Out[86]:

key lval rval

0 foo 1 4

1 bar 2 5

Append

将行附加到数据框。见 Appending

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [88]: df

Out[88]:

A B C D

0 1.346061 1.511763 1.627081 -0.990582

1 -0.441652 1.211526 0.268520 0.024580

2 -1.577585 0.396823 -0.105381 -0.532532

3 1.453749 1.208843 -0.080952 -0.264610

4 -0.727965 -0.589346 0.339969 -0.693205

5 -0.339355 0.593616 0.884345 1.591431

6 0.141809 0.220390 0.435589 0.192451

7 -0.096701 0.803351 1.715071 -0.708758

In [89]: s = df.iloc[3]

In [90]: df.append(s, ignore_index=True)

Out[90]:

A B C D

0 1.346061 1.511763 1.627081 -0.990582

1 -0.441652 1.211526 0.268520 0.024580

2 -1.577585 0.396823 -0.105381 -0.532532

3 1.453749 1.208843 -0.080952 -0.264610

4 -0.727965 -0.589346 0.339969 -0.693205

5 -0.339355 0.593616 0.884345 1.591431

6 0.141809 0.220390 0.435589 0.192451

7 -0.096701 0.803351 1.715071 -0.708758

8 1.453749 1.208843 -0.080952 -0.264610

分类

通过 “group by”,我们指的是涉及一个或多个以下步骤的过程

Splitting 根据一些标准将数据分组

Applying 根据一些标准将数据分组

Combining 将结果组合成一个数据结构

In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',

....: 'foo', 'bar', 'foo', 'foo'],

....: 'B' : ['one', 'one', 'two', 'three',

....: 'two', 'two', 'one', 'three'],

....: 'C' : np.random.randn(8),

....: 'D' : np.random.randn(8)})

....:

In [92]: df

Out[92]:

A B C D

0 foo one -1.202872 -0.055224

1 bar one -1.814470 2.395985

2 foo two 1.018601 1.552825

3 bar three -0.595447 0.166599

4 foo two 1.395433 0.047609

5 bar two -0.392670 -0.136473

6 foo one 0.007207 -0.561757

7 foo three 1.928123 -1.623033

分组,然后将函数总和应用于结果组。

In [93]: df.groupby('A').sum()

Out[93]:

C D

A

bar -2.802588 2.42611

foo 3.146492 -0.63958

按多列分组会形成一个分层索引,然后我们应用这个函数。

In [94]: df.groupby(['A','B']).sum()

Out[94]:

C D

A B

bar one -1.814470 2.395985

three -0.595447 0.166599

two -0.392670 -0.136473

foo one -1.195665 -0.616981

three 1.928123 -1.623033

two 2.414034 1.600434

重塑

堆(Stack)

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',

....: 'foo', 'foo', 'qux', 'qux'],

....: ['one', 'two', 'one', 'two',

....: 'one', 'two', 'one', 'two']]))

....:

In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [98]: df2 = df[:4]

In [99]: df2

Out[99]:

A B

first second

bar one 0.029399 -0.542108

two 0.282696 -0.087302

baz one -1.575170 1.771208

two 0.816482 1.100230

stack()方法“压缩” DataFrame 列中的级别。

In [100]: stacked = df2.stack()

In [101]: stacked

Out[101]:

first second

bar one A 0.029399

B -0.542108

two A 0.282696

B -0.087302

baz one A -1.575170

B 1.771208

two A 0.816482

B 1.100230

dtype: float64

对于“堆叠的” DataFrame 或 Series(以MultiIndex为索引),stack()的逆操作是 unstack(),默认情况下,它将卸载最后一层:

In [102]: stacked.unstack()

Out[102]:

A B

first second

bar one 0.029399 -0.542108

two 0.282696 -0.087302

baz one -1.575170 1.771208

two 0.816482 1.100230

In [103]: stacked.unstack(1)

Out[103]:

second one two

first

bar A 0.029399 0.282696

B -0.542108 -0.087302

baz A -1.575170 0.816482

B 1.771208 1.100230

In [104]: stacked.unstack(0)

Out[104]:

first bar baz

second

one A 0.029399 -1.575170

B -0.542108 1.771208

two A 0.282696 0.816482

B -0.087302 1.100230

数据透视表

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,

.....: 'B' : ['A', 'B', 'C'] * 4,

.....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,

.....: 'D' : np.random.randn(12),

.....: 'E' : np.random.randn(12)})

.....:

In [106]: df

Out[106]:

A B C D E

0 one A foo 1.418757 -0.179666

1 one B foo -1.879024 1.291836

2 two C foo 0.536826 -0.009614

3 three A bar 1.006160 0.392149

4 one B bar -0.029716 0.264599

5 one C bar -1.146178 -0.057409

6 two A foo 0.100900 -1.425638

7 three B foo -1.035018 1.024098

8 one C foo 0.314665 -0.106062

9 one A bar -0.773723 1.824375

10 two B bar -1.170653 0.595974

11 three C bar 0.648740 1.167115

我们可以很容易地从这些数据生成数据透视表:

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])

Out[107]:

C bar foo

A B

one A -0.773723 1.418757

B -0.029716 -1.879024

C -1.146178 0.314665

three A 1.006160 NaN

B NaN -1.035018

C 0.648740 NaN

two A NaN 0.100900

B -1.170653 NaN

C NaN 0.536826

时间序列

熊猫具有用于在频率转换期间执行重采样操作(例如,其次将数据转换为5分钟数据)的简单,强大且高效的功能。这在金融应用中非常普遍,但不限于此。请参阅时间系列(http://pandas.pydata.org/pandas-docs/stable/timeseries.html#timeseries)

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [110]: ts.resample('5Min').sum()

Out[110]:

2012-01-01 25083

Freq: 5T, dtype: int64

时区表示

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [113]: ts

Out[113]:

2012-03-06 0.464000

2012-03-07 0.227371

2012-03-08 -0.496922

2012-03-09 0.306389

2012-03-10 -2.290613

Freq: D, dtype: float64

In [114]: ts_utc = ts.tz_localize('UTC')

In [115]: ts_utc

Out[115]:

2012-03-06 00:00:00+00:00 0.464000

2012-03-07 00:00:00+00:00 0.227371

2012-03-08 00:00:00+00:00 -0.496922

2012-03-09 00:00:00+00:00 0.306389

2012-03-10 00:00:00+00:00 -2.290613

Freq: D, dtype: float64

转换到另一个时区

In [116]: ts_utc.tz_convert('US/Eastern')

Out[116]:

2012-03-05 19:00:00-05:00 0.464000

2012-03-06 19:00:00-05:00 0.227371

2012-03-07 19:00:00-05:00 -0.496922

2012-03-08 19:00:00-05:00 0.306389

2012-03-09 19:00:00-05:00 -2.290613

Freq: D, dtype: float64

在时间跨度表示之间进行转换

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')

In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [119]: ts

Out[119]:

2012-01-31 -1.134623

2012-02-29 -1.561819

2012-03-31 -0.260838

2012-04-30 0.281957

2012-05-31 1.523962

Freq: M, dtype: float64

In [120]: ps = ts.to_period()

In [121]: ps

Out[121]:

2012-01 -1.134623

2012-02 -1.561819

2012-03 -0.260838

2012-04 0.281957

2012-05 1.523962

Freq: M, dtype: float64

In [122]: ps.to_timestamp()

Out[122]:

2012-01-01 -1.134623

2012-02-01 -1.561819

2012-03-01 -0.260838

2012-04-01 0.281957

2012-05-01 1.523962

Freq: MS, dtype: float64

周期和时间戳之间的转换可以使用一些方便的算术功能。在下面的例子中,我们将季度结束时间从11月份转换为季末结束时的上午9点:

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [126]: ts.head()

Out[126]:

1990-03-01 09:00 -0.902937

1990-06-01 09:00 0.068159

1990-09-01 09:00 -0.057873

1990-12-01 09:00 -0.368204

1991-03-01 09:00 -1.144073

Freq: H, dtype: float64

分类

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

将原始等级转换为分类数据类型。

In [128]: df["grade"] = df["raw_grade"].astype("category")

In [129]: df["grade"]

Out[129]:

0 a

1 b

2 b

3 a

4 a

5 e

Name: grade, dtype: category

Categories (3, object): [a, b, e]

将类别重命名为更有意义的名称(指定到 Series.cat.categories 就是!)

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

重新排列类别并同时添加缺少的类别(Series .cat 下的方法默认返回一个新的系列)。

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [132]: df["grade"]

Out[132]:

0 very good

1 good

2 good

3 very good

4 very good

5 very bad

Name: grade, dtype: category

Categories (5, object): [very bad, bad, medium, good, very good]

排序是按类别排序的,而不是词汇顺序。

In [133]: df.sort_values(by="grade")

Out[133]:

id raw_grade grade

5 6 e very bad

1 2 b good

2 3 b good

0 1 a very good

3 4 a very good

4 5 a very good

按分类列分组也显示空白类别。

In [134]: df.groupby("grade").size()

Out[134]:

grade

very bad 1

bad 0

medium 0

good 2

very good 3

dtype: int64

绘制(Plotting)

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))

In [136]: ts = ts.cumsum()

In [137]: ts.plot()

Out[137]:

在 DataFrame 上,plot()方便绘制所有带标签的列:

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,

.....: columns=['A', 'B', 'C', 'D'])

.....:

In [139]: df = df.cumsum()

In [140]: plt.figure(); df.plot(); plt.legend(loc='best')

Out[140]:

数据输入/输出

CSV

In [141]: df.to_csv('foo.csv')

In [142]: pd.read_csv('foo.csv')

Out[142]:

Unnamed: 0 A B C D

0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860

1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953

2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536

3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896

4 2000-01-05 0.578117 0.511371 0.103552 -2.428202

5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409

6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753

.. ... ... ... ... ...

993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940

994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107

995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740

996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439

997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593

998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560

999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 5 columns]

HDF5

In [143]: df.to_hdf('foo.h5','df')

读取 HDF5

In [144]: pd.read_hdf('foo.h5','df')

Out[144]:

A B C D

2000-01-01 0.266457 -0.399641 -0.219582 1.186860

2000-01-02 -1.170732 -0.345873 1.653061 -0.282953

2000-01-03 -1.734933 0.530468 2.060811 -0.515536

2000-01-04 -1.555121 1.452620 0.239859 -1.156896

2000-01-05 0.578117 0.511371 0.103552 -2.428202

2000-01-06 0.478344 0.449933 -0.741620 -1.962409

2000-01-07 1.235339 -0.091757 -1.543861 -1.084753

... ... ... ... ...

2002-09-20 -10.628548 -9.153563 -7.883146 28.313940

2002-09-21 -10.390377 -8.727491 -6.399645 30.914107

2002-09-22 -8.985362 -8.485624 -4.669462 31.367740

2002-09-23 -9.558560 -8.781216 -4.499815 30.518439

2002-09-24 -9.902058 -9.340490 -4.386639 30.105593

2002-09-25 -10.216020 -9.480682 -3.933802 29.758560

2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 4 columns]

Excel

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

从 Excel 文件中读取

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])

Out[146]:

A B C D

2000-01-01 0.266457 -0.399641 -0.219582 1.186860

2000-01-02 -1.170732 -0.345873 1.653061 -0.282953

2000-01-03 -1.734933 0.530468 2.060811 -0.515536

2000-01-04 -1.555121 1.452620 0.239859 -1.156896

2000-01-05 0.578117 0.511371 0.103552 -2.428202

2000-01-06 0.478344 0.449933 -0.741620 -1.962409

2000-01-07 1.235339 -0.091757 -1.543861 -1.084753

... ... ... ... ...

2002-09-20 -10.628548 -9.153563 -7.883146 28.313940

2002-09-21 -10.390377 -8.727491 -6.399645 30.914107

2002-09-22 -8.985362 -8.485624 -4.669462 31.367740

2002-09-23 -9.558560 -8.781216 -4.499815 30.518439

2002-09-24 -9.902058 -9.340490 -4.386639 30.105593

2002-09-25 -10.216020 -9.480682 -3.933802 29.758560

2002-09-26 -11.856774 -10.671012 -3.216025 29.369368

[1000 rows x 4 columns]

陷阱

如果你正在尝试一个操作,你会看到一个异常:

>>> if pd.Series([False, True, False]):

print("I was true")

Traceback

...

ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

技术交流群:238757010

python pandas stack_10分钟上手 Python pandas相关推荐

  1. python上手_10分钟上手python pandas

    Environment pandas 0.21.0 python 3.6 jupyter notebook 开始 习惯上,我们导入如下: import pandas as pd import nump ...

  2. python同时满足两个条件_「小白学Python」3分钟掌握Python条件语句if

    Python有三类语句: 一是顺序语句,程序一行一行顺序执行,直到程序最后. 二是条件语句,程序运行到条件语句会进行判断,如果符合条件则运行其后的语句,如果不符合,则直接跳过.if条件语句. 三是循环 ...

  3. python手势识别_10分钟用python实现手势识别

    import os import cv2 from aip import AipBodyAnalysis from aip import AipSpeech from threading import ...

  4. 学会python能做什么-学会python可以做什么

    广告关闭 腾讯云双11爆品提前享,精选热门产品助力上云,云服务器首年88元起,买的越多返的越多,最高满返5000元! 现在学会python之后,可以编写一些查询收录,排名,自动生成网络地图的程序,解决 ...

  5. python使用教程pandas-十分钟搞定pandas(入门教程)

    本文是对pandas官方网站上<10Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯上 ...

  6. 每天10分钟用python学数据分析_用Python做数据分析,Numpy,Pandas,matp

    该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 用Python做数据分析,Numpy,Pandas,matplotlib是怎么也绕不开的三个包,我最开始学习pandas是看的<利用Python进行 ...

  7. python中pandas是指什么_Python中的神器Pandas,但是有人说Pandas慢...

    原标题:Python中的神器Pandas,但是有人说Pandas慢... 如果你从事大数据工作,用Python的Pandas库时会发现很多惊喜.Pandas在数据科学和分析领域扮演越来越重要的角色,尤 ...

  8. python神器pandas_Python中的神器Pandas,但是有人说Pandas慢...

    事实上,使用姿势正确的话,Pandas确实很快. 在使用Pandas时,使用纯"python"式代码并不是最效率的选择.和NumPy一样,Pandas专为向量化操作而设计,它可在一 ...

  9. python做数据分析的包_用Python做数据分析,Numpy,Pandas,matp

    该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 用Python做数据分析,Numpy,Pandas,matplotlib是怎么也绕不开的三个包,我最开始学习pandas是看的<利用Python进行 ...

最新文章

  1. 文档服务器连接未响应,win7DNS服务器未响应或者未连接问题的解决
  2. 深入理解ceph-disk prepare 源码逻辑
  3. OpenCV实战中:blender-feed(img_warped_s, mask_warped, corners[img_idx]);这里有异常的处理方法
  4. 全球及中国奢华高档服装行业发展规划及投资价值评估报告2021年版
  5. 《Java核心技术 卷Ⅱ 高级特性(原书第10版)》一导读
  6. modbus3-关于Modicon Modbus Protocol和modscan32
  7. robot:接口入参为图片时如何发送请求
  8. angularjs 同步請求_angularjs $q、$http 处理多个异步请求
  9. 用java编写一个课表串口,安卓课程表源代码
  10. ##CSP 201803-2 碰撞的小球(C语言)100分
  11. 拼多多API SDK【拼多多开放平台】
  12. WPF3D图片轮播效果
  13. 基于历史使用数据的虚拟机动态整合研究( 文献阅读与问题理解)
  14. html基础dw,HTML基础DW使用教程
  15. 基于FPGA的数据采集—信号产生篇
  16. 初学者LDPC码扫盲
  17. 1+X Web前端开发初级考试 模拟试题(一)
  18. 量化投资学习——股指期货研究(六)
  19. ChatGPT 速通手册——模仿唐诗宋词,和模仿莎士比亚十四行诗的中英文差距
  20. tk芯片智能机刷机方法_滴,欢迎回家!凯迪仕智能锁 TK2 使用小记

热门文章

  1. 【实验】编译原理——编译器认知实验
  2. 抛弃传统IPO,直接上市,你准备好了吗?
  3. 计算机英语brain,人类大脑纪录片《脑力大挑战 Test Your Brain》全3季 英语中字 标清/1080P高清纪录片...
  4. 农历天干地支算法源代码大全(javascript、vbscript、C#、flash、C++、C等等)
  5. 计算机专业常见面试题目汇总
  6. 互联网晚报 | 11月23日 星期二 | 格力电器宣布实行双休工作制;知乎月活跃用户首次突破1亿大关;微博入局英雄联盟...
  7. 最大流算法之一——EK算法
  8. Quarkus Camel 入门学习
  9. 多投影完美拼接——边缘融合投影技术
  10. 电脑计算机显示向程序发送命令时出现问题,向程序发送命令时出现问题,教您如何解决Excel表格提示向程序发送命令时出现问...