【基本概念】

  1. 哈密尔顿通路:经过图中每个结点且仅经过一次的通路。
  2. 哈密尔顿回路:经过图中每个结点且仅经过一次的回路。
  3. 哈密尔顿图:存在哈密尔顿回路的图。
  4. 竞赛图:每对顶点之间都有一条边相连的有向图,n 个顶点的竞赛图称为 n 阶竞赛图。
  5. 与欧拉回路的对比:欧拉回路是指不重复地走过所有路径的回路;哈密尔顿回路是指不重复地走过所有点并且最后回到起点的回路。

【判定】

1.哈密尔顿通路的判定

设一无向图有 n 个顶点,u、v 为图中任意不相邻的两点,deg(x) 代表 x 的度数

若   成立,则图中存在哈密尔顿通路

2.哈密尔顿回路的判定:Dirac 定理

设一无向图有 n 个顶点,u、v 为图中任意不相邻的两点,deg(x) 代表 x 的度数

,则图中存在哈密尔顿回路

推论:对于  的无向图,若其任一一点 u 的度数 ,则图中存在哈密尔顿回路

3.竞赛图

对于  的竞赛图,一定存在哈密尔顿通路

【dfs 搜索求哈密尔顿回路】

以每个点为起点进行搜索,直到形成回路

#include <iostream>
#include <cstring>
#define N 101
using namespace std;
int n,m;
int u,v;
int g[N][N];
int vis[N],appear[N];
int ans[N],num[N];
int length;void dfs(int last,int i)//last表示上次访问的点
{  vis[i]=1;//标记为已经访问过  appear[i]=1;//标记为已在一张图中出现过  ans[length++]=i;//记录答案  for(int j=1;j<=num[i];j++)  {  if(g[i][j]==x&&g[i][j]!=last)//回到起点构成哈密顿环  {   ans[++length]=g[i][j];//存储答案for(int i=1;i<=length-1;i++) //找到了一个环,输出anscout<<ans[i]<<' ';  cout<<ans[length]<<endl;length--;//长度-1break;}  if(!vis[g[i][j]])//遍历与i相关联的所有未访问的点。  dfs(i,g[i][j]); }  length--;  vis[i]=0;//回溯
}
int main()
{  memset(vis,0,sizeof(vis));  memset(appear,0,sizeof(appear));  cin>>n>>m; //读入点数与边数for(int i=1;i<=m;i++){   cin>>u>>v; //读入两点g[u][++num[v]]=v;//记录u-v的边g[v][++num[u]]=u;//记录v-u的边}  for(x=1;x<=n;x++) //枚举每一个点,将其作为起点来尝试访问{  if(!appear[x])//如果点x不在之前曾经被访问过的图里  {  length=0;//记录答案的长度  dfs(0,x);  }  }  return 0;
}

【Dirac 定理下构造无向图的哈密顿回路】

1.过程

  1. 任意找两个相邻的节点 S 和 T,在其基础上扩展出一条尽量长的没有重复结点的路径,即如果 S 与结点 v 相邻,而且 v 不在路径 S -> T 上,则可以把该路径变成 v -> S -> T,然后 v 成为新的 S。从 S 和 T 分别向两头扩展,直到无法继续扩展为止,即所有与 S 或 T 相邻的节点都在路径 S -> T 上
  2. 若 S 与 T 相邻,则路径 S -> T 形成了一个回路
  3. 若 S 与 T 不相邻,可以构造出来一个回路。设路径 S -> T 上有 k+2 个节点,依次为 S, v1, v2, ..., vk, T。可以证明存在节点 vi(i属于[1, k]),满足 vi 与 T 相邻,且 vi+1 与 S 相邻,找到这个节点 vi,把原路径变成 S -> vi -> T -> vi+1 -> S,即形成了一个回路.
  4. 到此为止,已经构造出来了一个没有重复节点的的回路,如果其长度为 N,则哈密顿回路就找到了。如果回路的长度小于 N,由于整个图是连通的,所以在该回路上,一定存在一点与回路之外的点相邻。那么从该点处把回路断开,就变回了一条路径,同时还可以将与之相邻的点加入路径。再按照步骤 1 的方法尽量扩展路径,则一定有新的节点被加进来,接着回到路径 2

2.伪代码

设 s 为哈密顿回路的起始点,t 为哈密顿回路中终点 s 之前的点,ans[] 为最终的哈密顿回路

  1. 初始化,令 s = 1,t 为 s 的任意一个邻接点.
  2. 如果 ans[] 中元素的个数小于 n,则从 t 开始向外扩展,如果有可扩展点 v,放入 ans[] 的尾部,并且 t=v,并继续扩展,如无法扩展进入步骤 3
  3. 将当前得到的 ans[] 倒置,s 和 t 互换,从 t 开始向外扩展,如果有可扩展点 v,放入 ans[] 尾部,并且 t=v,并继续扩展,如无法扩展进入步骤 4
  4. 如果当前 s 和 t 相邻,进入步骤 5,否则,遍历 ans[],寻找点 ans[i],使得 ans[i] 与 t 相连并且 ans[i +1] 与 s 相连,将从 ans[i+1] 到 t 部分的 ans[] 倒置,t=ans[i+1],进入步骤 5
  5. 如果当前 ans[] 中元素的个数等于 n,算法结束,ans[] 中保存了哈密顿回路(可看情况是否加入点 s),否则,如果 s 与 t 连通,但是 ans[] 中的元素的个数小于 n,则遍历 ans[],寻找点 ans[i],使得 ans[i] 与 ans[] 外的一点(j)相连,则令 s=ans[i-1],t=j,将 ans[] 中 s 到 ans[i-1] 部分的 ans[] 倒置,将 ans[] 中的 ans[i] 到 t 的部分倒置,将点 j 加入到 ans[] 的尾部,转步骤 2

3.时间复杂度

如果说每次到步骤 5 算一轮的话,那么由于每一轮当中至少有一个节点被加入到路径 S -> T 中,所以总的轮数肯定不超过 n 轮,所以时间复杂度为O(n^2)

空间上由于边数非常多,所以采用邻接矩阵来存储比较适合

4.实现

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<ctime>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 1001
#define MOD 16007
#define E 1e-6
#define LL long long
using namespace std;
bool G[N][N];
bool vis[N];
int ans[N];void Reverse(int arv[N],int s,int t){//将数组anv从下标s到t的部分的顺序反向int temp;while(s<t){swap(arv[s],arv[t]);s++;t--;}
}void Hamilton(int n){int t;int s=1;//初始化取s为1号点for(int i=1;i<=n;i++)if(G[s][i]){t=i;//取任意邻接与s的点为tbreak;}memset(vis,false,sizeof(vis));vis[s]=true;vis[t]=true;ans[0]=s;ans[1]=t;int ansi=2;while(true){//从t向外扩展while(true){int i;for(i=1;i<=n;i++){if(G[t][i] && !vis[i]){ans[ansi++]=i;vis[i]=true;t=i;break;}}if(i>n)break;}//将当前得到的序列倒置Reverse(ans,0,ansi-1);//s和t互换swap(s,t);while(true){//从t继续扩展,相当于在原来的序列上从s向外扩展int i;for(i=1;i<=n;i++){if(G[t][i] && !vis[i]){ans[ansi++]=i;vis[i]=true;t=i;break;}}if(i>n)break;}//如果s和t不相邻,进行调整if(!G[s][t]){//取序列中的一点i,使得ans[i]与t相连,并且ans[i+1]与s相连int i;for(i=1;i<ansi-2;i++)if(G[ans[i]][t]&&G[s][ans[i+1]])break;i++;t=ans[i];Reverse(ans,i,ansi-1);//将从ans[i+1]到t部分的ans[]倒置}//此时s和t相连//如果当前序列包含n个元素,算法结束if(ansi==n)return;//当前序列中元素的个数小于n,寻找点ans[i],使得ans[i]与ans[]外的一个点相连int i,j;for(j=1;j<=n;j++){if(vis[j])continue;for(i=1;i<ansi-2;i++)if(G[ans[i]][j])break;if(G[ans[i]][j])break;}s=ans[i-1];t=j;//将新找到的点j赋给tReverse(ans,0,i-1);//将ans[]中s到ans[i-1]的部分倒置Reverse(ans,i,ansi-1);//将ans[]中ans[i]到t的部分倒置ans[ansi++]=j;//将点j加入到ans[]尾部vis[j]=true;}
}int main(){int n,m;while(scanf("%d%d",&n,&m)!=EOF&&(n||m)){n*=2;for(int i=0;i<=n;i++){for(int j=0;j<=n;j++){if(i==j){G[i][j]=false;G[j][i]=false;}else{G[i][j]=true;G[j][i]=true;}}}int ansi=0;memset(ans, 0, sizeof(ans));for(int i=1;i<=m;i++){int x,y;scanf("%d%d",&x,&y);G[y][x]=false;G[x][y]=false;}Hamilton(n);for(int i=0;i<n;i++)printf("%d ", ans[i]);printf("\n");}return 0;
}

【N 阶竞赛图下构造有向图的哈密顿通路】

含有N个顶点的有向图,且每对顶点之间都有一条边的图,一定存在哈密顿通路

int ans[105];
int map[105][105];
void Insert(int arv[], int &len, int index, int key){if(index>len)index=len;len++;for(int i=len-1; i>=0; i--){if(i!=index && i)arv[i]=arv[i-1];else{arv[i]=key;return;}}
}
void Hamilton(int n){int ansi = 1;ans[ansi++] = 1;for(int i=2; i<=n; i++){//第一种情况,直接把当前点添加到序列末尾if(map[i][ans[ansi-1]]==1)ans[ansi++]=i;else{int flag=0;//当前序列从后往前找到第一个满足条件的点j,使得存在<Vj,Vi>且<Vi,Vj+1>.for(int j=ansi-2; j>0; j--){if(map[i][ans[j]]==1){//找到后把该点插入到序列的第j+1个点前.flag=1;Insert(ans,ansi,j+1,i);break;}}if(!flag)//否则说明所有点都邻接自点i,则把该点直接插入到序列首端.Insert(ans,ansi,1,i);}}
}
int main(){int n,m;scanf("%d", &n);m=n*(n-1)/2;for(int i=0;i<m;i++){int u,v;scanf("%d%d",&u,&v);if(u<v)map[v][u]=1;}Hamilton(n);for(int i=1;i<=n;i++)printf(i==1? "%d":" %d",ans[i]);printf("\n");return 0;
}

图论 —— 图的遍历 —— 哈密顿问题相关推荐

  1. 图论 —— 图的遍历

    [概述] 图的遍历问题是从图中某一顶点出发,系统地访问图中所有顶点,使每个顶点恰好被访问一次. 目前,图的遍历问题分为四类: 欧拉通路与欧拉回路问题:遍历完所有的边而不能有重复,即一笔画问题 中国邮递 ...

  2. 图论 —— 图的遍历 —— 欧拉通路与欧拉回路问题

    [基本概念] 欧拉通路:通过图中所有边一次且仅一次行遍所有顶点的通路 欧拉回路:通过图中所有边一次且仅一次行遍所有顶点的回路 欧拉图:具有欧拉回路的图 半欧拉图:具有欧拉通路而无欧拉回路的图 奇度点: ...

  3. 图论——图的遍历(洛谷 P3916)

    题目选自洛谷P3916 反向建边 + dfs 按题目来每次考虑每个点可以到达点编号最大的点,不如考虑较大的点可以反向到达哪些点 循环从N到1,则每个点i能访问到的结点的A值都是i 每个点访问一次,这个 ...

  4. 图论算法——图的遍历

    图论算法也是非常基础且重要的算法(ps:好像没有不重要的......) 图的基本应用--图的遍历,从具体的题目着手,学习图的遍历方式及代码形式. 我们先来看一下题目,然后再具体分析图的遍历方式. 题目 ...

  5. c++ 遍历所有点且距离最短_L3图论第08课 图的遍历

    L3-图论-第08课 图的遍历 图的遍历是指,从给定图中任意指定的顶点(称为初始点)出发,按照某种搜索方法沿着图的边访问图中的所有顶点,使每个顶点仅被访问一次,这个过程称为图的遍历.遍历过程中得到的顶 ...

  6. 牛客网 【每日一题】5月21日题目 图的遍历

    链接: 文章目录 题目描述 题解 代码: 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit IO Format: %lld 题目描述 小s ...

  7. 图的遍历——深度优先搜索+广度优先搜索

    一:图的遍历--深度优先搜索 在本文其他内容中只是大体概括了主要的图论内容,更加详细的代码实现及算法分析在此给出. 深度优先搜索(DFS)类似树的先序遍历. 假设初始状态是图中所有顶点未曾被访问,则深 ...

  8. Java数据结构与算法:无向图,有向图,带权图,图的遍历,最小生成树

    文章目录 无向图 有向图 带权图 图的遍历 广度优先遍历 深度优先遍历 最小生成树 无向图 前面了解到树是有单一根结点的非线性结构,图(graph)也是一种非线性结构,其中的结点可以与许多其他的结点相 ...

  9. Python算法学习[5]—图、遍历、连通、最短路径代码演练

    图.遍历.连通.最短路径&代码演练 图是计算机科学中的一种数据结构,它由节点(顶点)和边组成.在实际应用中,图经常被用来表示复杂系统之间的关系,如社交网络.交通网络等.本文将介绍图的基本概念和 ...

最新文章

  1. 如何使用Docker暴露多个端口?
  2. 变量使用self.foo还是_foo
  3. (14)Verilog数据类型-基本语法(二)(第3天)
  4. 通用easyui查询页面组件
  5. LeetCode 77. Combinations
  6. kaggle房价预测特征意思_Kaggle竞赛丨房价预测(House Prices)
  7. 利用React/anu编写一个弹出层
  8. Linux日志终极指南
  9. Win10系统重装教程(纯净版)
  10. python数据表盘_构建一个简单地分析表盘
  11. Final swfplayer安卓系统中播放网页中的播放flash动画
  12. 三分钟了解大数据是什么
  13. ubuntu下文本标注工具BRAT全程离线安装
  14. Android学习-使用WebView在app上显示网页
  15. 数学中的Sin和Cos是什么意思?(转)
  16. AD19画板外框形状失败的解决办法
  17. Linux 网络之ss
  18. 「津津乐道播客」#182. 日本电车文化初探
  19. 【BA三维路径规划】基于matlab改进的蝙蝠算法农用无人机三维路径规划【含Matlab源码 1514期】
  20. 3DMAX里面的烘焙规范(一)

热门文章

  1. keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
  2. 实现Windows下Qt扫描U盘的两种方式
  3. Graph控件绘制图形从左往右显示方法,默认是从右往左
  4. 计算机图形设计论文 真实图形生成技术的发展,计算机图形设计论文真实图形生成技术的发展.docx...
  5. mosquitto接口流程图
  6. 一次就让你学懂java运算符
  7. 副主任医师计算机英语,医院职称的英语叫法
  8. 分区助手专业版5.0下载与使用方法
  9. 树的结点?结点的度?
  10. spyglass使用教程