二分图:又叫二部图,图G中顶点集V可以分成互不相交的子集(X,Y),并且图中的每一条边所关联的点分别属于两个不同的顶点集,则图G叫二分图。(不含奇环)

二分图的匹配:给定一个二分图G的子图M,M的边集中任意两条边都不依附于同一个顶点(点单独配对),则称M是一个匹配。

二分图的最大匹配:边数最大的一个匹配就是二分图的最大匹配。

看上去二分图匹配好像没有什么用途,但以下三个定理会有大用处:

1.二分图的最小点覆盖(x或y中的都行) = 最大匹配;

2.二分图的最大独立集 = 顶点数 - 最大匹配;

(最大独立集是从图中找出最多的顶点数并且顶点两两之间没有边)

3.有向无环图的最小路径覆盖 = 顶点数- 最大匹配。

二分图最大匹配——匈牙利算法

这个算法说白了就是最大流的算法,但是它跟据二分图匹配这个问题的特点,把最大流算法做了简化,提高了效率。最大流算法的核心问题就是找增广路(augment path)。匈牙利算法也不例外,它的基本模式就是:

初始时最大匹配为空
while 找得到增广路径
    do 把增广路径加入到最大匹配中去

可见和最大流算法是一样的。但是这里的增广路径就有它一定的特殊性,下面我来分析一下。
(注:匈牙利算法虽然根本上是最大流算法,但是它不需要建网络模型,所以图中不再需要源点和汇点,仅仅是一个二分图。每条边也不需要有方向。)

图一                                          图二

图1是我给出的二分图中的一个匹配:〔1,5〕和〔2,6〕。图2就是在这个匹配的基础上找到的一条增广路径:3->6->2->5->1->4。我们借由它来描述一下二分图中的增广路径的性质

(1)有奇数条边。
(2)起点在二分图的左半边,终点在右半边。
(3)路径上的点一定是一个在左半边,一个在右半边,交替出现。(其实二分图的性质就决定了这一点,因为二分图同一边的点之间没有边相连,不要忘记哦。)
(4)整条路径上没有重复的点。
(5)起点和终点都是目前还没有配对的点,而其它所有点都是已经配好对的。(如图1、图2所示,〔1,5〕和〔2,6〕在图1中是两对已经配好对的点;而起点3和终点4目前还没有与其它点配对。)
(6)路径上的所有第奇数条边都不在原匹配中,所有第偶数条边都出现在原匹配中。(如图1、图2所示,原有的匹配是〔1,5〕和〔2,6〕,这两条配匹的边在图2给出的增广路径中分边是第2和第4条边。而增广路径的第1、3、5条边都没有出现在图1给出的匹配中。)
(7)最后,也是最重要的一条,把增广路径上的所有第奇数条边加入到原匹配中去,并把增广路径中的所有第偶数条边从原匹配中删除(这个操作称为增广路径的取反),则新的匹配数就比原匹配数增加了1个。(如图2所示,新的匹配就是所有蓝色的边,而所有红色的边则从原匹配中删除。则新的匹配数为3。)

不难想通,在最初始时,还没有任何匹配时,图1中的两条灰色的边本身也是增广路径。因此在这张二分图中寻找最大配匹的过程可能如下:

(1)找到增广路径1->5,把它取反,则匹配数增加到1。
(2)找到增广路径2->6,把它取反,则匹配数增加到2。
(3)找到增广路径3->6->2->5->1->4,把它取反,则匹配数增加到3。
(4)再也找不到增广路径,结束。

当然,这只是一种可能的流程。也可能有别的找增广路径的顺序,或者找到不同的增广路径,最终的匹配方案也可能不一样。但是最大匹配数一定都是相同的。

对于增广路径还可以用一个递归的方法来描述。这个描述不一定最准确,但是它揭示了寻找增广路径的一般方法:
“从点A出发的增广路径”一定首先连向一个在原匹配中没有与点A配对的点B。如果点B在原匹配中没有与任何点配对,则它就是这条增广路径的终点;反之,如果点B已与点C配对,那么这条增广路径就是从A到B,再从B到C,再加上“从点C出发的增广路径”。并且,这条从C出发的增广路径中不能与前半部分的增广路径有重复的点。

比如图2中,我们要寻找一条从3出发的增广路径,要做以下3步:
(1)首先从3出发,它能连到的点只有6,而6在图1中已经与2配对,所以目前的增广路径就是3->6->2再加上从2出发的增广路径。
(2)从2出发,它能连到的不与前半部分路径重复的点只有5,而且5确实在原匹配中没有与2配对。所以从2连到5。但5在图1中已经与1配对,所以目前的增广路径为3->6->2->5->1再加上从1出发的增广路径。
(3)从1出发,能连到的不与自已配对并且不与前半部分路径重复的点只有4。因为4在图1中没有与任何点配对,所以它就是终点。所以最终的增广路径是3->6->2->5->1->4。

但是严格地说,以上过程中从2出发的增广路径(2->5->1->4)和从1出发的增广路径(1->4)并不是真正的增广路径。因为它们不符合前面讲过的增广路径的第5条性质,它们的起点都是已经配过对的点。我们在这里称它们为“增广路径”只是为了方便说明整个搜寻的过程。而这两条路径本身只能算是两个不为外界所知的子过程的返回结果。
显然,从上面的例子可以看出,搜寻增广路径的方法就是DFS,可以写成一个递归函数。当然,用BFS也完全可以实现。

至此,理论基础部份讲完了。但是要完成匈牙利算法,还需要一个重要的定理:

如果从一个点A出发,没有找到增广路径,那么无论再从别的点出发找到多少增广路径来改变现在的匹配,从A出发都永远找不到增广路径。

要用文字来证明这个定理很繁,话很难说,要么我还得多画一张图,我在此就省了。其实你自己画几个图,试图举两个反例,这个定理不难想通的。(给个提示。如果你试图举个反例来说明在找到了别的增广路径并改变了现有的匹配后,从A出发就能找到增广路径。那么,在这种情况下,肯定在找到别的增广路径之前,就能从A出发找到增广路径。这就与假设矛盾了。)
有了这个定理,匈牙利算法就成形了。如下:

初始时最大匹配为空
for 二分图左半边的每个点i
    do 从点i
出发寻找增广路径。如果找到,则把它取反(即增加了总了匹配数)

如果二分图的左半边一共有n个点,那么最多找n条增广路径。如果图中共有m条边,那么每找一条增广路径(DFS或BFS)时最多把所有边遍历一遍,所花时间也就是m。所以总的时间大概就是O(n * m)。

代码可参照二分图最大匹配之——月老的难题。。。

二分图最大匹配—匈牙利算法相关推荐

  1. 二分图最大匹配-匈牙利算法

    今天介绍 匈牙利算法 : 匈牙利算法,是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,由匈牙利数学家Edmonds于1965年提出,因而得名. 先介绍一下 ...

  2. 二分图最大匹配 - 匈牙利算法

    问题描述: X集合(编号1~m),Y集合(编号m+1~n).n,m<100. 给出若干组合(x, y)(相当于映射x->y),问最都能同时有几个组合(分配). 分析: 题目可能简化描述得不 ...

  3. 二分图最大匹配——匈牙利算法

    二分图最大匹配 (一).二分图的介绍 1.定义 2.充要条件 (二).二分图的匹配 1.二分图的最大匹配 2.增广路径 3.匈牙利算法 (1).复杂度 (2).算法思路 (3).代码实现 (一).二分 ...

  4. 二分图最大匹配(匈牙利算法Dinic算法)

    二分图最大匹配: 给出一个二分图,左边有若干个节点,右边有若干个节点,左边的节点想到匹配右边的节点,每个左边的节点每个都有若干个可以选择的对象,每个左边节点只能选择一个右边节点,每个右边节点也只能被选 ...

  5. 二分图最大匹配(匈牙利算法) POJ 3020 Antenna Placement

    题目传送门 1 /* 2 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 3 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 4 */ 5 ...

  6. NYOJ 题目239 月老的难题 (二分图最大匹配-匈牙利算法模板)

    月老的难题 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 月老准备给n个女孩与n个男孩牵红线,成就一对对美好的姻缘. 现在,由于一些原因,部分男孩与女孩可能结成幸福的一 ...

  7. NYOJ - 239 - 月老的难题 ( 二分图最大匹配 匈牙利算法 )

    描述 月老准备给n个女孩与n个男孩牵红线,成就一对对美好的姻缘. 现在,由于一些原因,部分男孩与女孩可能结成幸福的一家,部分可能不会结成幸福的家庭. 现在已知哪些男孩与哪些女孩如果结婚的话,可以结成幸 ...

  8. 二分图最大匹配 -- 匈牙利算法

    Algorithm.( Augmenting Path Algorithm ) Input:     An X-Y bigraph G, a matching M in G,     and the ...

  9. [HDOJ2819]Swap(二分图最大匹配, 匈牙利算法)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2819 题意:给一张n*n的01矩阵,可以任意交换其中的行或者列,问是否可以交换出来一个对角 ...

最新文章

  1. python控制树莓派led_Python 控制树莓派 GPIO 输出:控制 LED 灯
  2. TYVJ P1062 合并傻子 Label:环状dp
  3. C++Primer学习之一引用和指针
  4. 常见笔顺错误的字_最全汉字笔顺正确写法,建议家长为孩子收藏
  5. springcloud问题
  6. T-SQL Apply的用法
  7. 在php中 urlencode函数解决乱码问题
  8. 彻底搞懂使用MyBatis时为什么Dao层不需要@Repository
  9. Java之父:Solaris前景堪忧
  10. 安装vc6出现couldn't find acme setup的解决办法
  11. 数据结构(C语言版清华严蔚敏)
  12. 服务器(Windows镜像)自建git服务器超详细教程
  13. 圆锥体积等于1/3圆柱体积咋来的
  14. error: RPC failed; curl 56 OpenSSL SSL_read: SSL_ERROR_SYSCALL, errno 10054解决方法
  15. 需求分析之矩阵分析法
  16. 计算机的音量找不到了,win7旗舰版64位系统右下角音量小喇叭图标不见了怎么找回...
  17. 计算机专业技能考核方案,计算机专业技能课教学考核方案
  18. python北京房价预测_Python爬虫告诉你北京房价有多高
  19. Introduction to Modern cryptograhy阅读笔记(二)
  20. 用生物知识解读“新冠病毒”,生物竞赛、高考考点,先马后看!

热门文章

  1. EasyExcel导入和导出excel数据表格用法示例
  2. 软件测试需求评审目的,需求评审的重要性
  3. SQL Server Management Studio (SSMS)
  4. 【算法】矩阵连乘(MatrixMultiply)
  5. cip查询(中国新闻出版信息网cip查询)
  6. 查询IP信息接口罗列
  7. XSY contest1586 proB
  8. 事件绑定-addEventListener()和attachEvent()的区别及用法
  9. 2021-2027全球与中国触控板市场现状及未来发展趋势
  10. 谭浩强c程序设计试题汇编第三版 第四章解析