原文:张俊林:由ChatGPT反思大语言模型(LLM)的技术精要(2)

02 学习者:从无尽数据到海量知识

从目前研究结果看,Transformer是足够强大的特征抽取器,尚不需要做特别的改进。那么通过预训练过程,Transformer学到了什么?知识是如何存取的?我们又如何修正错误知识?本节讲述这方面的研究进展。

1. 求知之路:LLM学到了什么知识

LLM从海量自由文本中学习了大量知识,如果把这些知识做粗略分类的话,可以分为语言类知识和世界知识两大类。

语言类知识指的是词法、词性、句法、语义等有助于人类或机器理解自然语言的知识。关于LLM能否捕获语言知识有较长研究历史,自从Bert出现以来就不断有相关研究,很早就有结论,各种实验充分证明LLM可以学习各种层次类型的语言学知识,这也是为何使用预训练模型后,各种语言理解类自然语言任务获得大幅效果提升的最重要原因之一。另外,各种研究也证明了浅层语言知识比如词法、词性、句法等知识存储在Transformer的低层和中层,而抽象的语言知识比如语义类知识,广泛分布在Transformer的中层和高层结构中。

世界知识指的是在这个世界上发生的一些真实事件(事实型知识,Factual Knowledge),以及一些常识性知识(Common Sense Knowledge)。比如“拜登是现任美国总统”、“拜登是美国人”、“乌克兰总统泽连斯基与美国总统拜登举行会晤”,这些都是和拜登相关的事实类知识;而“人有两只眼睛”、“太阳从东方升起”这些属于常识性知识。关于LLM模型能否学习世界知识的研究也有很多,结论也比较一致:LLM确实从训练数据中吸收了大量世界知识,而这类知识主要分布在Transformer的中层和高层,尤其聚集在中层。而且,随着Transformer模型层深增加,能够学习到的知识数量逐渐以指数级增加(可参考:BERTnesia: Investigating the capture and forgetting of knowledge in BERT)。其实,你把LLM看作是一种以模型参数体现的隐式知识图谱,如果这么理解,我认为是一点问题也没有的。

“When Do You Need Billions of Words of Pre-training Data?”这篇文章研究了预训练模型学习到的知识量与训练数据量的关系,它的结论是:对于Bert类型的语言模型来说,只用1000万到1亿单词的语料,就能学好句法语义等语言学知识,但是要学习事实类知识,则要更多的训练数据。这个结论其实也是在意料中的,毕竟语言学知识相对有限且静态,而事实类知识则数量巨大,且处于不断变化过程中。而目前研究证明了随着增加训练数据量,预训练模型在各种下游任务中效果越好,这说明了从增量的训练数据中学到的更主要是世界知识。

2. 记忆之地:LLM如何存取知识

由上可知,LLM确实从数据中学到了很多语言类及世界知识。那么,对于某条具体的知识,LLM把它存储到了哪里?又是如何提取出来的?这也是一个有意思的问题。

显然,知识一定存储在Transformer的模型参数里。从Transformer的结构看,模型参数由两部分构成:多头注意力(MHA)部分占了大约参数总体的三分之一,三分之二的参数集中在FFN结构中。MHA主要用于计算单词或知识间的相关强度,并对全局信息进行集成,更可能是在建立知识之间的联系,大概率不会存储具体知识点,那么很容易推论出LLM模型的知识主体是存储在Transformer的FFN结构里。

但这样的定位,粒度还是太粗,无法很好回答具体某条知识是如何存储与提取的,比如 “中国的首都是北京”这条知识,以三元组表达就是<北京,is-capital-of,中国>,其中“is-capital-of”代表实体间关系。这条知识它存储在LLM的哪里呢?

“Transformer Feed-Forward Layers Are Key-Value Memories”给出了一个比较新颖的观察视角,它把Transformer的FFN看成存储大量具体知识的Key-Value存储器。如上图所示(图左是原始论文图,其实不太好理解,可以看做了注释的图右,更好理解些),FFN的第一层是个MLP宽隐层,这是Key层;第二层是MLP窄隐层,是Value层。FFN的输入层其实是某个单词对应的MHA的输出结果Embedding,也就是通过Self Attention,将整个句子有关的输入上下文集成到一起的Embedding,代表了整个输入句子的整体信息。

Key层的每个神经元节点,记载了一对<Key,Value>信息。比如对于上图中FFN第一个隐层的第  个节点  ,也许就是它记载了<北京,is-capital-of,中国>这条知识。 节点对应的key向量,其实指的是节点  和输入层每个节点的权重向量;而对应的Value向量,指的是节点  和FFN第二层的Value层每个节点形成连接的权重向量。每个神经元的Key向量,用于识别输入中的某种语言或者知识模式,是一种模式探测器。如果输入中包含它要检测的某种模式,那么输入向量和  节点的key权重进行向量内积计算,加上Relu,形成  的大数值响应,意味着  检测到了这个模式,于是再把这个响应值,通过  节点的Value权重向量向FFN第二层传播。这等价于将Value向量的值,用响应值加权,然后传递并体现到第二层Value层每个节点的输出上。如此这般,FFN的正向传播计算过程,看起来就像是通过Key检测到某种知识模式,然后取出对应的Value,并把Value体现在FFN的第二层输出上。当然,FFN第二层每个节点,会收集FFN的Key层所有节点信息,所以是一种混合响应,而Value层所有节点的混合响应,可以解读为代表输出单词的概率分布信息。

听着可能还是比较复杂,我们用个极端的例子来说明。我们假设上图的节点  就是记载<北京,is-capital-of,中国>这条知识的Key-Value存储器,它的Key向量,用于检测”中国的首都是…”这个知识模式,它的Value向量,基本存储了与单词“北京”的Embedding比较接近的向量。当Transformer的输入是“中国的首都是[Mask]”的时候,  节点从输入层探测到这个知识模式,所以产生较大的响应输出。我们假设Key层其它神经元对这个输入都没有任何响应,那么对应的Value层的节点,其实只会接收到“北京”这个Value对应的单词embedding,并通过  的大响应值,进行了进一步的数值放大。于是,Mask位置对应的输出,就自然会输出“北京”这个单词。基本就是这么个过程,看着很复杂,其实很简单。

而且这篇文章还指出,Transformer低层对句子的表层模式作出反应,高层对语义模式作出反应,就是说低层FFN存储词法、句法等表层知识,中层和高层存储语义及事实概念知识,这和其它研究结论是一致的。

要我猜,把FFN看成Key-Value存储器这种思路,很可能不是最终的正确答案,但是距离最终正确答案的距离,估计也不太远。

3. 知识涂改液:如何修正LLM里存储的知识

既然我们已知具体的某条世界知识存储在某个或者某些FFN节点的参数里,自然会引发另外一个问题:我们能否修正LLM模型里存储的错误或者过时的知识呢?比如对于问题:“英国的现任首相是谁?”鉴于近年来英国首相频繁更迭,你猜LLM更倾向输出“鲍里斯”还是更青睐“苏纳克”?很明显训练数据中包含“鲍里斯”的数据会更多,这种情况很大可能LLM会给出错误回答,于是我们就有修正LLM里存储的过时知识的必要性。

如果归纳下,目前有三类不同方法来修正LLM里蕴含的知识:

第一类方法从训练数据的源头来修正知识。“Towards Tracing Factual Knowledge in Language Models Back to the Training Data”这篇文章的研究目标是:对于指定的某条知识,我们是否可以定位到是哪些训练数据导致LLM学会了这条知识?答案是肯定的,这意味着我们可以逆向追踪到某条知识对应的训练数据源头。如果利用这项技术,假设我们想要删除某条知识,则可首先定位到其对应的数据源头,删除数据源,然后重新预训练整个LLM模型,这样即可达成删除LLM中相关知识的目的。但是这里有个问题,如果修正一小部分知识,我们就需要重新做一次模型预训练,这样做明显成本太高。所以这种方法不会太有发展前景,可能比较适合那种对于某个特定类别数据的一次性大规模删除场合,不适合少量多次的常规知识修正场景,比如可能比较适合用来做去除偏见等去toxic内容的处理。

第二类方法是对LLM模型做一次fine-tuning来修正知识。一个直观能想到的方法是:我们可以根据要修正成的新知识来构建训练数据,然后让LLM模型在这个训练数据上做fine-tuning,这样指导LLM记住新的知识,遗忘旧的知识。这个方法简单直观,但是也有一些问题,首先它会带来灾难遗忘问题,就是说除了忘掉该忘的知识,还忘掉了不该忘的知识,导致这么做了之后有些下游任务效果下降。另外,因为目前的LLM模型规模非常大,即使是做fine-tuning,如果次数频繁,其实成本也相当高。对这种方法感兴趣的可以参考“Modifying Memories in Transformer Models”。

另外一类方法直接修改LLM里某些知识对应的模型参数来修正知识。假设我们想要把旧知识<英国,现任首相,鲍里斯>,修正到<英国,现任首相,苏纳克>。首先我们想办法在LLM模型参数中,定位到存储旧知识的FFN节点,然后可以强行调整更改FFN中对应的模型参数,将旧知识替换成新的知识。可以看出,这种方法涉及到两项关键技术:首先是如何在LLM参数空间中定位某条知识的具体存储位置;其次是如何修正模型参数,来实现旧知识到新知识的修正。关于这类技术的细节,可以参考“Locating and Editing Factual Associations in GPT”和“Mass-Editing Memory in a Transformer”。理解这个修正LLM知识的过程,其实对于更深入理解LLM的内部运作机制是很有帮助的。

03 规模效应:当LLM越来越大时会发生什么

我们知道,近年来,LLM模型规模在快速增长,目前效果最好的LLM模型,其参数规模大都超过了千亿(100B)参数规模。比如,OpenAI的GPT 3的规模为175B,Google的LaMDA规模为137B,PaLM的规模为540B,DeepMind的Gogher规模为280B等,不一而足。国内也有中文巨型模型,比如智源GLM规模130B,华为“盘古”规模200B,百度“文心”规模260B,浪潮“源1.0”规模245B。那么,一个很自然的问题就是:随着LLM模型规模不断增长,会发生些什么呢?

预训练模型的应用往往是两阶段的:预训练阶段,及具体场景应用阶段。在预训练阶段,其优化目标是交叉熵,对GPT这种自回归语言模型来说,也就是看LLM是否正确预测到了下一个单词;而场景应用阶段,一般要看具体场景的评价指标。一般我们的直觉是:如果LLM模型在预训练阶段的指标越好,自然它解决下游任务的能力就越强。然而,事实并非完全如此。现有研究已证明,预训练阶段的优化指标确实和下游任务表现出正相关关系,但是并非完全正相关。也就是说,只看预训练阶段的指标,来判断一个LLM模型是否够好,这是不够的。基于此,我们分头来看在这两个不同阶段,随着LLM模型增大,有什么影响。

首先,我们先看在预训练阶段,随着模型规模逐步增大,会发生什么。OpenAI在“Scaling Laws for Neural Language Models”中专门研究了这个问题,并提出LLM模型所遵循的“伸缩法则”(scaling law)。如上图所示,这个研究证明:当我们独立增加训练数据量、模型参数规模或者延长模型训练时间(比如从1个Epoch到2个Epoch),预训练模型在测试集上的Loss都会单调降低,也就是说模型效果越来越好。

既然三个因素都重要,那么我们在实际做预训练的时候,就有一个算力如何分配的决策问题:假设用于训练LLM的算力总预算(比如多少GPU小时或者GPU天)给定,那么是应该多增加数据量、减少模型参数呢?还是说数据量和模型规模同时增加,减少训练步数呢?此消彼长,某个要素规模增长,就要降低其它因素的规模,以维持总算力不变,所以这里有各种可能的算力分配方案。最终OpenAI选择了同时增加训练数据量和模型参数,但是采用早停策略(early stopping)来减少训练步数的方案。因为它证明了:对于训练数据量和模型参数这两个要素,如果只单独增加其中某一个,这不是最好的选择,最好能按照一定比例同时增加两者,它的结论是优先增加模型参数,然后才是训练数据量。假设用于训练LLM的算力总预算增加了10倍,那么应该增加5.5倍的模型参数量,1.8倍的训练数据量,此时模型效果最佳。

DeepMind的一项研究(参考:Training Compute-Optimal Large Language Models)更深入地探究了这个问题,其基本结论和OpenAI的结论差不多,比如确实需要同时增加训练数据量和模型参数,模型效果才会更好。而很多大模型在做预训练的时候,并没有考虑这一点,很多LLM大模型只是单调增加模型参数,而固定住了训练数据量,这个做法其实是不对的,限制了LLM模型的潜力。但是它修正了两者的比例关系,认为训练数据量和模型参数是同等重要的,也就是说,假设用于训练LLM的算力总预算增加了10倍,那么应该增加3.3倍的模型参数量,3.3倍的训练数据量,这样模型效果才最好。

这意味着:增加训练数据量的重要性,比我们之前所认为的,还要重要。基于这个认知,DeepMind在设计Chinchilla模型时,在算力分配上选择了另外一种配置:对标数据量300B、模型参数量280B的Gopher模型,Chinchilla选择增加4倍的训练数据,但是将模型参数降低为Gopher的四分之一,大约为70B。但是无论预训练指标,还是很多下游任务指标,Chinchilla效果都要优于规模更大的Gopher。

这带给我们如下启示:我们可以选择放大训练数据,并同比例地减少LLM模型参数,以达到在不降低模型效果的前提下,极大缩小模型规模的目的。缩小模型规模有很多好处,比如在应用的时候,推理速度会快很多等,无疑这是一个很有前途的LLM发展路线。

以上是从预训练阶段来看模型规模的影响,如果从LLM解决下游具体任务效果的角度来看,随着模型规模增大,不同类型的任务有不同的表现,具体而言,有以下三类情况。

第一类任务完美体现了LLM模型的scaling law,就是说随着模型规模逐步放大,任务的表现越来越好,如上图里的(a)图所示。这类任务通常符合如下共性:它们往往都是知识密集型任务,也就是说如果LLM模型包含的知识量越多,这类任务表现越好。而很多研究已经证明越大的LLM模型学习效率越高,也就是说相同训练数据量,模型越大任务效果越好,说明面对的即使是同样的一批训练数据,更大的LLM模型相对规模小一些的模型,从中学到了更多的知识。更何况一般情况下,在增大LLM模型参数的时候,往往会同步增加训练数据量,这意味着大模型可以从更多数据中学习更多的知识点。这些研究可以很好地解释上图,为何随着模型规模增大,这些知识密集型的任务效果越来越好。大多数传统的自然语言理解类任务,其实都属于这种知识密集型任务,而很多任务在近两年获得了极大的效果提升,甚至超过了人类表现。很明显,这大概率是LLM模型的规模增长带来的,而非归功于某项具体的技术改进。

第二类任务展现出LLM具备某种“涌现能力(Emergent Ability)”,如上图(b)所示。所谓“涌现能力”,指的是当模型参数规模未能达到某个阀值时,模型基本不具备解决此类任务的任何能力,体现为其性能和随机选择答案效果相当,但是当模型规模跨过阀值,LLM模型对此类任务的效果就出现突然的性能增长。也就是说,模型规模是解锁(unlock)LLM新能力的关键,随着模型规模越来越大,会逐渐解锁LLM越来越多的新能力。这是个很神奇的现象,因为它意味着如下让人对未来可报乐观预期的可能:或许很多任务,目前LLM还不能很好地解决,甚至站在现在这个时刻的我们看起来,LLM完全没有能力解决这类任务,但因LLM具备“涌现能力”,所以如果我们继续推大模型,也许某一天它的这项能力就被突然解锁了。LLM模型的规模增长会给我们带来意想不到的精彩礼物。

“Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models”这篇文章指出,这类体现出“涌现能力”的任务也有一些共性:这些任务一般由多步骤构成,要解决这些任务,往往需要先解决多个中间步骤,而逻辑推理能力在最终解决这类任务中发挥重要作用。思维链(Chain of Thought)Prompting是典型的增强LLM推理能力的技术,能大幅提升此类任务的效果,关于CoT技术,在随后小节内容会做解释,此处暂不展开。

问题是,为何LLM会出现这种“涌现能力”现象呢?上述文章以及“Emergent Abilities of Large Language Models”给出了几个可能的解释:

一种可能解释是有些任务的评价指标不够平滑。比如说有些生成任务的判断标准,它要求模型输出的字符串,要和标准答案完全匹配才算对,否则就是0分。所以,即使随着模型增大,其效果在逐步变好,体现为输出了更多的正确字符片段,但是因为没有完全对,只要有任何小错误都给0分,只有当模型足够大,输出片段全部正确才能得分。也就是说,因为指标不够平滑,所以不能体现LLM其实正在逐步改善任务效果这一现实,看起来就是“涌现能力”这种外在表现。

另外一种可能的解释是:有些任务由若干中间步骤构成,随着模型规模增大,解决每个步骤的能力也在逐步增强,但是只要有一个中间步骤是错的,最终答案就是错的,于是也会导致这种表面的“涌现能力”现象。

当然,上面的解释目前还都是猜想,至于为何LLM会出现这种现象,还需要进一步更深入的研究。

还有少部分任务,随着模型规模增长,任务的效果曲线展现出U形特性:随着模型规模逐渐变大,任务效果逐渐变差,但是当模型规模进一步增长,则效果开始越来越好,呈现出U形增长趋势,如上图所示的粉红色PaLM模型在两个任务上的指标****。为何这些任务表现得如此特殊呢?“Inverse scaling can become U-shaped”这篇文章给出了一种解释:这些任务,内部其实隐含了两种不同类型的子任务,一种是真正的任务,另外一种是“干扰任务(distractor task)”。当模型规模小的时候,无法识别任意一种子任务,所以模型的表现跟随机选择答案差不多,当模型增长到中等规模的时候,主要执行的是干扰任务,所以对真正的任务效果有负面影响,体现为真正任务效果的下降,而当进一步增加模型规模,则LLM可以忽略干扰任务,执行真正的任务,体现为效果开始增长。

对于那些随着模型规模增大,效果一直下降的任务,如果采用思维链(CoT)Prompting,则部分任务的表现转换为遵循Scaling law,即模型规模越大效果越好,而其它任务则转换为U性增长曲线。这其实侧面说明了:此类任务应属于推理类型的任务,所以加入CoT后任务表现会发生质的变化。

*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

张俊林:由ChatGPT反思大语言模型(LLM)的技术精要(2)相关推荐

  1. 张俊林:由ChatGPT反思大语言模型(LLM)的技术精要

    文|张俊林 源|知乎@张俊林 导读:ChatGPT出现后惊喜或惊醒了很多人.惊喜是因为没想到大型语言模型(LLM,Large Language Model)效果能好成这样:惊醒是顿悟到我们对LLM的认 ...

  2. 张俊林:万字长文讲述由ChatGPT反思大语言模型的技术精要

    每天给你送来NLP技术干货! 作者:张俊林 新浪微博 新技术研发负责人 来源:知乎@张俊林 排版:DataFunTalk 导读:ChatGPT出现后惊喜或惊醒了很多人.惊喜是因为没想到大型语言模型(L ...

  3. 由ChatGPT反思大语言模型(LLM)的技术精要

    人工智能与算法学习 作者:张俊林,   编辑:夕小瑶的卖萌屋 导读:ChatGPT出现后惊喜或惊醒了很多人.惊喜是因为没想到大型语言模型(LLM,Large Language Model)效果能好成这 ...

  4. 万字长文讲述由ChatGPT反思大语言模型的技术精要

    文|张俊林 源|知乎@张俊林 导读:ChatGPT出现后惊喜或惊醒了很多人.惊喜是因为没想到大型语言模型(LLM,Large Language Model)效果能好成这样:惊醒是顿悟到我们对LLM的认 ...

  5. 张俊林:当前炼制“大语言模型”的两个现象

    知乎:张俊林 链接:https://zhuanlan.zhihu.com/p/622365988 编辑:深度学习自然语言处理 公众号 先说第一个现象. 自从LLaMA和ChatGLM开源后,再加上各种 ...

  6. 复旦邱锡鹏:深度剖析 ChatGPT 类大语言模型的关键技术

    内容来源:ChatGPT 及大模型专题研讨会 分享嘉宾:复旦大学教授 邱锡鹏 分享主题:<对话式大型语言模型> 转载自CSDN稿件 求职/进NLP群->加入NLP交流群 ChapGP ...

  7. 开源大语言模型(LLM)汇总(持续更新中)

    开源大语言模型(LLM)汇总 随着ChatGPT的火爆,越来越多人希望在本地运行一个大语言模型.为此我维护了这个开源大语言模型汇总,跟踪每天不发的大语言模型和精调语言模型. 我将根据个模型采用的基础大 ...

  8. 【AI实战】给类ChatGPT的大语言模型外挂私有知识库

    [AI实战]给类ChatGPT的大语言模型外挂私有知识库 原理 准备 环境 代码 下载 chatglm-6b 模型权重文件 下载 Embedding 模型 GanymedeNil/text2vec-l ...

  9. Flink - 尚硅谷- 大数据高级 Flink 技术精讲 - 2

    七.Flink 时间语义与 Watermark 7.1 Flink 中的时间语义 7.2 设置 Event Time 7.3 水位线 - Watermark 7.3.1 基本概念 7.3.2 Wate ...

最新文章

  1. apue读书笔记-第十二章
  2. JFinal Extensions 2.0 发布,JFinal 扩展
  3. Libevent源码分析
  4. vscode运行python文件_vscode怎么运行python文件
  5. android drawable转bitmap_Android 内存泄漏优化汇总
  6. 三星Galaxy S21 Ultra相机再升级:1.08亿主摄+全新传感器夜景更强
  7. 音乐怎么生成html,如何制作自己喜欢的DJ舞曲(教你玩转音乐制作)
  8. java开发16g内存够吗_Java 内存模型 ,一篇就够了!
  9. onenote2019导入_将OneNote 2010笔记本导入Evernote
  10. [高通SDM450][Android9.0]PL2303G驱动升级
  11. 解决Mac电脑连接校园网不弹出登陆窗口问题汇总
  12. 图片太大怎么改小kb?简单的图片压缩方法分享
  13. python异常-TypeError: ‘tuple‘ object is not callable.当不同的环境下同一个语句运行结果不同时,不如重启程序、更改不相关变量试试
  14. 第一章:pycharm、anaconda、opencv、pytorch、tensorflow、paddlex等环境配置大全总结【图像处理py版本】
  15. Android使用ACTION_VIEW查看图片和视频
  16. 【通信原理】第七章 -- 数字调制技术
  17. Linux下IIC子系统和触摸屏驱动
  18. 【Callback Hell】一文让你轻松了解何为回调地狱?
  19. solidity 结构体01
  20. 支付后但是显示未支付,再次支付如果又支付成功了怎么办? 后端代码逻辑是什么?【杭州多测师_王sir】【杭州多测师】...

热门文章

  1. 软件工程专业大学生的一年半 | 2022年度总结
  2. 兔子--sdk版本与api的对应关系
  3. cordova NFC读卡(javascript)
  4. canvas画七巧板
  5. HTML图片和多行文字并列显示
  6. 修改Markdown表格对齐方式、markdown表格内单元格换行
  7. 入侵JVM?Java Agent原理浅析和实践(上)
  8. python是解释性语言!
  9. f4在计算机中的作用,F4键原来这么神奇!F4在办公时的妙用你知多少
  10. vue中将字符转换成数字的简单做法