一、相关名词

|--表级锁(锁定整个表)

|--页级锁(锁定一页)

|--行级锁(锁定一行)

|--共享锁(S锁,MyISAM 叫做读锁)

|--排他锁(X锁,MyISAM 叫做写锁)

|--间隙锁(NEXT-KEY锁)

|--悲观锁(抽象性,不真实存在这个锁)

|--乐观锁(抽象性,不真实存在这个锁)

二、InnoDB与MyISAM

Mysql 在5.5之前默认使用 MyISAM 存储引擎,之后使用 InnoDB 。查看当前存储引擎:

show variables like '%storage_engine%';

MyISAM 操作数据都是使用的表锁,你更新一条记录就要锁整个表,导致性能较低,并发不高。当然同时它也不会存在死锁问题。

而 InnoDB 与 MyISAM 的最大不同有两点:一是 InnoDB 支持事务;二是 InnoDB 采用了行级锁。也就是你需要修改哪行,就可以只锁定哪行。

在 Mysql 中,行级锁并不是直接锁记录,而是锁索引。索引分为主键索引和非主键索引两种,如果一条sql 语句操作了主键索引,Mysql 就会锁定这条主键索引;如果一条语句操作了非主键索引,MySQL会先锁定该非主键索引,再锁定相关的主键索引。

InnoDB 行锁是通过给索引项加锁实现的,如果没有索引,InnoDB 会通过隐藏的聚簇索引来对记录加锁。也就是说:如果不通过索引条件检索数据,那么InnoDB将对表中所有数据加锁,实际效果跟表锁一样。因为没有了索引,找到某一条记录就得扫描全表,要扫描全表,就得锁定表。

三、共享锁与排他锁

1.首先说明:数据库的增删改操作默认都会加排他锁,而查询不会加任何锁。

mysql InnoDB引擎默认的修改数据语句,update,delete,insert都会自动给涉及到的数据加上排他锁,select语句默认不会加任何锁类型,如果加排他锁可以使用select ...for update语句,加共享锁可以使用select ... lock in share mode语句。所以加过排他锁的数据行在其他事务种是不能修改数据的,也不能通过for update和lock in share mode锁的方式查询数据,但可以直接通过select ...from...查询数据,因为普通查询没有任何锁机制。

|--共享锁:对某一资源加共享锁,自身可以读该资源,其他人也可以读该资源(也可以再继续加共享锁,即 共享锁可多个共存),但无法修改。要想修改就必须等所有共享锁都释放完之后。语法为:

select * from table lock in share mode

|--排他锁:对某一资源加排他锁,自身可以进行增删改查,其他人无法进行任何操作。语法为:

select * from table for update

这里用T1代表一个数据库执行请求,T2代表另一个请求,也可以理解为T1为一个线程,T2 为另一个线程。

例1:------------------------------------------------------------------------------------------

T1:  select * from table lock in share mode(假设查询会花很长时间,下面的例子也都这么假设)

T2:  update table set column1='hello'

过程:

T1运行(并加共享锁)

T2运行

if T1还没执行完

T2等......

else 锁被释放

T2执行

end if

T2 之所以要等,是因为 T2 在执行 update 前,试图对 table 表加一个排他锁,而数据库规定同一资源上不能同时共存共享锁和排他锁。所以 T2 必须等 T1 执行完,释放了共享锁,才能加上排他锁,然后才能开始执行 update 语句。

例2:------------------------------------------------------------------------------------------

T1:  select * from table lock in share mode

T2:  select * from table lock in share mode

这里T2不用等待T1执行完,而是可以马上执行。

分析:

T1运行,则 table 被加锁,比如叫lockA,T2运行,再对 table 加一个共享锁,比如叫lockB,两个锁是可以同时存在于同一资源上的(比如同一个表上)。这被称为共享锁与共享锁兼容。这意味着共享锁不阻止其它人同时读资源,但阻止其它人修改资源。

例3:------------------------------------------------------------------------------------------

T1:  select * from table lock in share mode

T2:  select * from table lock in share mode

T3:  update table set column1='hello'

T2 不用等 T1 运行完就能运行,T3 却要等 T1 和 T2 都运行完才能运行。因为 T3 必须等 T1 和 T2 的共享锁全部释放才能进行加排他锁然后执行 update 操作。

例4 (死锁的发生):------------------------------------------------------------------------------------------

T1:begin tran

select * from table lock in share mode

update table set column1='hello'

T2:begin tran

select * from table lock in share mode

update table set column1='world'

假设 T1 和 T2 同时达到 select,T1 对 table 加共享锁,T2 也对 table 加共享锁,当 T1 的 select 执行完,准备执行 update 时,根据锁机制,T1 的共享锁需要升级到排他锁才能执行接下来的 update。在升级排他锁前,必须等 table 上的其它共享锁(T2)释放,同理,T2 也在等 T1 的共享锁释放。于是死锁产生了。

例5:------------------------------------------------------------------------------------------

T1:begin tran

update table set column1='hello' where id=10

T2:begin tran

update table set column1='world' where id=20

这种语句虽然最为常见,很多人觉得它有机会产生死锁,但实际上要看情况

|--如果id是主键(默认有主键索引),那么T1会一下子找到该条记录(id=10的记录),然后对该条记录加排他锁,T2,同样,一下子通过索引定位到记录,然后对id=20的记录加排他锁,这样T1和T2各更新各的,互不影响。T2也不需要等。

|--如果id是普通的一列,没有索引。那么当T1对id=10这一行加排他锁后,T2为了找到id=20,需要对全表扫描。但因为T1已经为一条记录加了排他锁,导致T2的全表扫描进行不下去(其实是因为T1加了排他锁,数据库默认会为该表加意向锁,T2要扫描全表,就得等该意向锁释放,也就是T1执行完成),就导致T2等待。

死锁怎么解决呢?一种办法是,如下:

例6:------------------------------------------------------------------------------------------

T1:begin tran

select * from table for update

update table set column1='hello'

T2:begin tran

select * from table for update

update table set column1='world'

这样,当 T1 的 select 执行时,直接对表加上了排他锁,T2 在执行 select 时,就需要等 T1 事物完全执行完才能执行。排除了死锁发生。但当第三个 user 过来想执行一个查询语句时,也因为排他锁的存在而不得不等待,第四个、第五个 user 也会因此而等待。在大并发情况下,让大家等待显得性能就太友好了。

所以,有些数据库这里引入了更新锁(如Mssql,注意:Mysql不存在更新锁)。

例7:------------------------------------------------------------------------------------------

T1:begin tran

select * from table [加更新锁操作]

update table set column1='hello'

T2:begin tran

select * from table [加更新锁操作]

update table set column1='world'

更新锁其实就可以看成排他锁的一种变形,只是它也允许其他人读(并且还允许加共享锁)。但不允许其他操作,除非我释放了更新锁。T1 执行 select,加更新锁。T2 运行,准备加更新锁,但发现已经有一个更新锁在那儿了,只好等。当后来有 user3、user4...需要查询 table 表中的数据时,并不会因为 T1 的 select 在执行就被阻塞,照样能查询,相比起例6,这提高了效率。

后面还有意向锁和计划锁:

计划锁,和程序员关系不大,就没去了解。

意向锁(innodb特有)分意向共享锁和意向排他锁。

意向共享锁:表示事务获取行共享锁时,必须先得获取该表的意向共享锁;

意向排他锁:表示事务获取行排他锁时,必须先得获取该表的意向排他锁;

我们知道,如果要对整个表加锁,需保证该表内目前不存在任何锁。

因此,如果需要对整个表加锁,那么就可以根据:检查意向锁是否被占用,来知道表内目前是否存在共享锁或排他锁了。而不需要再一行行地去检查每一行是否被加锁。

四、乐观锁与悲观锁

首先说明,乐观锁和悲观锁都是针对读(select)来说的。

案例:

某商品,用户购买后库存数应-1,而某两个或多个用户同时购买,此时三个执行程序均同时读得库存为“n”,之后进行了一些操作,最后将均执行update table set 库存数=n-1,那么,很显然这是错误的。

解决:

使用悲观锁(其实说白了也就是排他锁)

|-- 程序A在查询库存数时使用排他锁(select * from table where id=10 for update)

|-- 然后进行后续的操作,包括更新库存数,最后提交事务。

|-- 程序B在查询库存数时,如果A还未释放排他锁,它将等待……

|-- 程序C同B……

使用乐观锁(靠表设计和代码来实现)

|-- 一般是在该商品表添加version版本字段或者timestamp时间戳字段

|-- 程序A查询后,执行更新变成了:

update table set num=num-1 where id=10 and version=23

这样,保证了修改的数据是和它查询出来的数据是一致的(其他执行程序肯定未进行修改)。当然,如果更新失败,表示在更新操作之前,有其他执行程序已经更新了该库存数,那么就可以尝试重试来保证更新成功。为了尽可能避免更新失败,可以合理调整重试次数(阿里巴巴开发手册规定重试次数不低于三次)。

总结:对于以上,可以看得出来乐观锁和悲观锁的区别:

悲观锁实际使用了排他锁来实现(select **** for update)。文章开头说到,innodb加行锁的前提是:必须是通过索引条件来检索数据,否则会切换为表锁。

因此,悲观锁在未通过索引条件检索数据时,会锁定整张表。导致其他程序不允许“加锁的查询操作”,影响吞吐。故如果在查询居多的情况下,推荐使用乐观锁。

“加锁的查询操作”:加过排他锁的数据行在其他事务中是不能修改的,也不能通过for update或lock in share mode的加锁方式查询,但可以直接通过select ...from...查询数据,因为普通查询没有任何锁机制。

乐观锁更新有可能会失败,甚至是更新几次都失败,这是有风险的。所以如果写入居多,对吞吐要求不高,可使用悲观锁。

也就是一句话:读用乐观锁,写用悲观锁。

间隙锁

1.什么叫间隙锁

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(NEXT-KEY)锁。

2.间隙锁的产生

上面的文字很抽象,现在举个栗子,介绍间隙锁是怎么产生的:

假设有以下表t_student:(其中id为PK,name为非唯一索引)

这个时候我们发出一条这样的加锁sql语句:

select id,name from t_student where id > 0 and id < 5 for update;

这时候,我们命中的数据为以下着色部分:

细心的朋友可能就会发现,这里缺少了条id为2的记录,我们的重点就在这里。

select ... for update这条语句,是会对数据记录加锁的,这里因为命中了索引,加的是行锁。从数据记录来看,这里排它锁锁住数据是id为1、3和4的这3条数据。

但是,看看前面我们的介绍——对于键值在条件范围内但不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁。

好了,我们这里,键值在条件范围但是不存在的记录,就是id为2的记录,这里会对id为2数据加上间隙锁。假设这时候如果有id=2的记录insert进来了,是要等到这个事务结束以后才会执行的

3.间隙锁的作用

总的来说,有2个作用:防止幻读和防止数据误删/改

(1)防止幻读

关于幻读的概念可以参考这篇文章 https://blog.csdn.net/mweibiao/article/details/80805031 ,这里就不多做解释了

假设有下面场景

如果没有间隙锁,事务A在T1和T4读到的结果是不一样的,有了间隙锁,读的就是一样的了

(2)防止数据误删/改

这个作用比较重要,假设以下场景:

这种情况下,如果没有间隙锁,会出现的问题是:id为2的记录,刚加进去,就被删除了,这种情况有时候对业务,是致命性的打击。加了间隙锁之后,由于insert语句要等待事务A执行完之后释放锁,避免了这种情况

4.使用间隙锁的隐患

最大的隐患就是性能问题

前面提到,假设这时候如果有id=2的记录insert进来了,是要等到这个事务结束以后才会执行的,假设是这种场景

这种情况,对插入的性能就有很大影响了,必须等到事务结束才能进行插入,性能大打折扣

更有甚者,如果间隙锁出现死锁的情况下,会更隐晦,更难定位

怎样避免死锁

1、以固定的顺序访问表和行。比如两个更新数据的事务,事务A 更新数据的顺序 为1,2;事务B更新数据的顺序为2,1。这样更可能会造成死锁。

2、大事务拆小。大事务更倾向于死锁,如果业务允许,将大事务拆小。

3、在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁概率。

4、降低隔离级别。如果业务允许,将隔离级别调低也是较好的选择,比如将隔离级别从RR调整为RC,可以避免掉很多因为gap锁造成的死锁。

5、为表添加合理的索引。可以看到如果不走索引将会为表的每一行记录添加上锁,死锁的概率大大增大。

资料出处:

https://blog.csdn.net/mweibiao/article/details/81672315?utm_source=blogxgwz8

https://blog.csdn.net/localhost01/article/details/78720727

mysql 排它锁_Mysql共享锁、排他锁、悲观锁、乐观锁相关推荐

  1. mysql悲观群_谈谈mysql的悲观和乐观锁

    悲观锁与乐观锁是两种常见的资源并发锁设计思路,也是并发编程中一个非常基础的概念.之前有写过一篇文章关于并发的处理思路和解决方案,这里我单独将对这两种常见的锁机制在数据库数据上的实现进行比较系统的介绍一 ...

  2. MySql悲观锁(行锁)和乐观锁

    什么是乐观锁,什么是悲观锁? 一.并发控制 当程序中可能出现并发的情况时,就需要保证在并发情况下数据的准确性,以此确保当前用户和其他用户一起操作时,所得到的结果和他单独操作时的结果是一样的.这就叫做并 ...

  3. mysql 开启事物_redis系列之——事物及乐观锁

    学习mysql的时候,我们常说mysql是有事物的,事物有ACID四个特性,原子性(Atomicity).一致性(Consistency).隔离性(Isolation).持久性(Durability) ...

  4. java中乐观锁_Java中乐观锁与悲观锁的实现

    锁(locking) 业务逻辑的实现过程中,往往需要保证数据访问的排他性.如在金融系统的日终结算 处理中,我们希望针对某个cut-off时间点的数据进行处理,而不希望在结算进行过程中 (可能是几秒种, ...

  5. 轻量级锁_一句话撸完重量级锁、自旋锁、轻量级锁、偏向锁、悲观、乐观锁等各种锁 不看后悔系列...

    重量级锁?自旋锁?自适应自旋锁?轻量级锁?偏向锁?悲观锁?乐观锁?执行一个方法咋这么辛苦,到处都是锁. 今天这篇文章,给大家普及下这些锁究竟是啥,他们的由来,他们之间有啥关系,有啥区别. 重量级锁 如 ...

  6. java乐观锁实现_Java 乐观锁原理与实战演练

    原标题:Java 乐观锁原理与实战演练 一. 前言 最近在做一个简单审批流程的项目,由于只有固定二级审批所以没有工作流组件,然后就遇到一个审批节点捞单时候,多个人同时审批时候如何保证业务正常运行的问题 ...

  7. mysql普通查询排他锁_MySql 共享锁 排他锁

    行级锁是 MySQL 中锁定粒度最细的一种锁,行级锁能大大减少数据库操作的冲突,行级锁分为共享锁和排他锁两种. 共享锁(Share Lock) 共享锁又称读锁,是读取操作创建的锁.其他用户可以并发读取 ...

  8. mysql行锁还需要乐观锁吗_mysql行锁、表锁。乐观锁,悲观锁

    锁定用于确保事务完整性和数据库一致性. 锁定可以防止用户读取其他用户正在更改的数据,并防止多个用户同时更改相同的数据. 如果不使用锁定,数据库中的数据可能在逻辑上变得不正确,而针对这些数据进行查询可能 ...

  9. 聊一聊数据库中的锁分类(乐观锁、悲观锁、共享锁、排它锁、表级锁、行级锁、页面锁)...

    乐观锁和悲观锁(从策略上划分) 乐观锁:乐观锁就如同他的名字一样,非常了乐观,每次去读数据都认为其它事务没有在写数据,总是认为别人不会修改数据,所以就不上锁,只有在线程提交数据时会通过检查版本号的形式 ...

最新文章

  1. MySQL 仅保留7天、一个月数据
  2. 一文详述Attention最新进展
  3. Xamarin XAML语言教程XAML文件结构与解析XAML
  4. 【uva11994】Happy Painting!【LCT】
  5. 将SVN的代码推送到码云的步骤
  6. C#调用JAVA接口WSSE方式用WebClient方式
  7. 服务器安装报告linux,linux – 在ubuntu服务器上安装了2TB磁盘,dmesg将其报告为9444732965540666 MB...
  8. 多级嵌套json格式
  9. 老生又长谈:HttpApplication,HttpModule,HttpContext及Asp.Net页生命周期
  10. 使用WildFly 8在Java EE7中自举Apache Camel
  11. 未发现数据源名称并且未指定默认驱动程序_看我如何发现NVIDIA GeForce Experience代码执行漏洞...
  12. 我就是那个一直拿着死工资的人
  13. vscode中文支持xp_VSCode (Visual Studio Code) V1.43.0下载并设置成中文语言的方法
  14. HTML+CSS制作彩色波动
  15. java zip_Java压缩技术(二) ZIP压缩——Java原生实现
  16. css hot loader,怎么针对依赖包的css 单独写一条loader的规则,不开启 css modules
  17. 【系列二之图像处理系列】波形处理(2)
  18. sw与matlab连接_solidworks与matlab联合仿真simMechnics下载及安装
  19. linux安装pcre错误,安装PCRE时出错
  20. iTunes导入歌曲和铃声到iphone

热门文章

  1. matlab绘制带阴影的曲线
  2. java lifecycle_一文带你了解Lifecycle(使用篇)
  3. 多元回归自变量存在共线性
  4. iOS 苹果开发者账号续费-图文教程
  5. HBase中的快照技术-原理和实践
  6. NOI2.3.6262 流感传染题解(C++)
  7. 模电学习7. 三极管特性曲线与静态工作点
  8. Java获取随机数的实现方法
  9. Nginx 启动配置文件
  10. node项目---编辑修改学生信息页面