文章目录

  • 1. aes.c
  • 2. aes.h
  • 3. 示例
AESECB C语言代码实现

1. aes.c

/*This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.The implementation is verified against the test vectors in:National Institute of Standards and Technology Special Publication 800-38A 2001 EDECB-AES128
----------plain-text:6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710key:2b7e151628aed2a6abf7158809cf4f3cresulting cipher3ad77bb40d7a3660a89ecaf32466ef97f5d3d58503b9699de785895a96fdbaaf43b1cd7f598ece23881b00e3ed0306887b0c785e27e8ad3f8223207104725dd4NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)You should pad the end of the string with zeros if this is not the case.For AES192/256 the key size is proportionally larger.*//*****************************************************************************/
/* Includes:                                                                 */
/*****************************************************************************/
#include <string.h>// CBC mode, for memset
#include "../inc/aes.h"/*****************************************************************************/
/* Defines:                                                                  */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4#if defined(AES256) && (AES256 == 1)#define Nk 8#define Nr 14
#elif defined(AES192) && (AES192 == 1)#define Nk 6#define Nr 12
#else#define Nk 4// The number of 32 bit words in a key.#define Nr 10// The number of rounds in AES Cipher.
#endif// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION#define MULTIPLY_AS_A_FUNCTION 0
#endif/*****************************************************************************/
/* Private variables:                                                        */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {//0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };static const uint8_t rsbox[256] = {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
*  up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*//*****************************************************************************/
/* Private functions:                                                        */
/*****************************************************************************/
/*
static uint8_t getSBoxValue(uint8_t num)
{return sbox[num];
}
*/
#define getSBoxValue(num) (sbox[(num)])
/*
static uint8_t getSBoxInvert(uint8_t num)
{return rsbox[num];
}
*/
#define getSBoxInvert(num) (rsbox[(num)])// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{unsigned i, j, k;uint8_t tempa[4]; // Used for the column/row operations// The first round key is the key itself.for (i = 0; i < Nk; ++i){RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];}// All other round keys are found from the previous round keys.for (i = Nk; i < Nb * (Nr + 1); ++i){{k = (i - 1) * 4;tempa[0]=RoundKey[k + 0];tempa[1]=RoundKey[k + 1];tempa[2]=RoundKey[k + 2];tempa[3]=RoundKey[k + 3];}if (i % Nk == 0){// This function shifts the 4 bytes in a word to the left once.// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]// Function RotWord(){const uint8_t u8tmp = tempa[0];tempa[0] = tempa[1];tempa[1] = tempa[2];tempa[2] = tempa[3];tempa[3] = u8tmp;}// SubWord() is a function that takes a four-byte input word and// applies the S-box to each of the four bytes to produce an output word.// Function Subword(){tempa[0] = getSBoxValue(tempa[0]);tempa[1] = getSBoxValue(tempa[1]);tempa[2] = getSBoxValue(tempa[2]);tempa[3] = getSBoxValue(tempa[3]);}tempa[0] = tempa[0] ^ Rcon[i/Nk];}
#if defined(AES256) && (AES256 == 1)if (i % Nk == 4){// Function Subword(){tempa[0] = getSBoxValue(tempa[0]);tempa[1] = getSBoxValue(tempa[1]);tempa[2] = getSBoxValue(tempa[2]);tempa[3] = getSBoxValue(tempa[3]);}}
#endifj = i * 4; k=(i - Nk) * 4;RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];}
}void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{KeyExpansion(ctx->RoundKey, key);memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
#endif// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
{uint8_t i,j;for (i = 0; i < 4; ++i){for (j = 0; j < 4; ++j){(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];}}
}// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{uint8_t i, j;for (i = 0; i < 4; ++i){for (j = 0; j < 4; ++j){(*state)[j][i] = getSBoxValue((*state)[j][i]);}}
}// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{uint8_t temp;// Rotate first row 1 columns to lefttemp           = (*state)[0][1];(*state)[0][1] = (*state)[1][1];(*state)[1][1] = (*state)[2][1];(*state)[2][1] = (*state)[3][1];(*state)[3][1] = temp;// Rotate second row 2 columns to lefttemp           = (*state)[0][2];(*state)[0][2] = (*state)[2][2];(*state)[2][2] = temp;temp           = (*state)[1][2];(*state)[1][2] = (*state)[3][2];(*state)[3][2] = temp;// Rotate third row 3 columns to lefttemp           = (*state)[0][3];(*state)[0][3] = (*state)[3][3];(*state)[3][3] = (*state)[2][3];(*state)[2][3] = (*state)[1][3];(*state)[1][3] = temp;
}static uint8_t xtime(uint8_t x)
{return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{uint8_t i;uint8_t Tmp, Tm, t;for (i = 0; i < 4; ++i){t   = (*state)[i][0];Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;Tm  = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp ;Tm  = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp ;Tm  = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp ;Tm  = (*state)[i][3] ^ t ;              Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp ;}
}// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
//       The compiler seems to be able to vectorize the operation better this way.
//       See https://github.com/kokke/tiny-AES-c/pull/34
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{return (((y & 1) * x) ^((y>>1 & 1) * xtime(x)) ^((y>>2 & 1) * xtime(xtime(x))) ^((y>>3 & 1) * xtime(xtime(xtime(x)))) ^((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */}
#else
#define Multiply(x, y)                                \(  ((y & 1) * x) ^                              \((y>>1 & 1) * xtime(x)) ^                       \((y>>2 & 1) * xtime(xtime(x))) ^                \((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \
#endif#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(state_t* state)
{int i;uint8_t a, b, c, d;for (i = 0; i < 4; ++i){a = (*state)[i][0];b = (*state)[i][1];c = (*state)[i][2];d = (*state)[i][3];(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);}
}// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(state_t* state)
{uint8_t i, j;for (i = 0; i < 4; ++i){for (j = 0; j < 4; ++j){(*state)[j][i] = getSBoxInvert((*state)[j][i]);}}
}static void InvShiftRows(state_t* state)
{uint8_t temp;// Rotate first row 1 columns to righttemp = (*state)[3][1];(*state)[3][1] = (*state)[2][1];(*state)[2][1] = (*state)[1][1];(*state)[1][1] = (*state)[0][1];(*state)[0][1] = temp;// Rotate second row 2 columns to righttemp = (*state)[0][2];(*state)[0][2] = (*state)[2][2];(*state)[2][2] = temp;temp = (*state)[1][2];(*state)[1][2] = (*state)[3][2];(*state)[3][2] = temp;// Rotate third row 3 columns to righttemp = (*state)[0][3];(*state)[0][3] = (*state)[1][3];(*state)[1][3] = (*state)[2][3];(*state)[2][3] = (*state)[3][3];(*state)[3][3] = temp;
}
#endif// #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)// Cipher is the main function that encrypts the PlainText.
static void Cipher(state_t* state, const uint8_t* RoundKey)
{uint8_t round = 0;// Add the First round key to the state before starting the rounds.AddRoundKey(0, state, RoundKey);// There will be Nr rounds.// The first Nr-1 rounds are identical.// These Nr rounds are executed in the loop below.// Last one without MixColumns()for (round = 1; ; ++round){SubBytes(state);ShiftRows(state);if (round == Nr) {break;}MixColumns(state);AddRoundKey(round, state, RoundKey);}// Add round key to last roundAddRoundKey(Nr, state, RoundKey);
}#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static void InvCipher(state_t* state, const uint8_t* RoundKey)
{uint8_t round = 0;// Add the First round key to the state before starting the rounds.AddRoundKey(Nr, state, RoundKey);// There will be Nr rounds.// The first Nr-1 rounds are identical.// These Nr rounds are executed in the loop below.// Last one without InvMixColumn()for (round = (Nr - 1); ; --round){InvShiftRows(state);InvSubBytes(state);AddRoundKey(round, state, RoundKey);if (round == 0) {break;}InvMixColumns(state);}}
#endif// #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)/*****************************************************************************/
/* Public functions:                                                         */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)
{// The next function call encrypts the PlainText with the Key using AES algorithm.Cipher((state_t*)buf, ctx->RoundKey);
}void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)
{// The next function call decrypts the PlainText with the Key using AES algorithm.InvCipher((state_t*)buf, ctx->RoundKey);
}#endif// #if defined(ECB) && (ECB == 1)#if defined(CBC) && (CBC == 1)static void XorWithIv(uint8_t* buf, const uint8_t* Iv)
{uint8_t i;for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size{buf[i] ^= Iv[i];}
}void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, uint32_t length)
{uintptr_t i;uint8_t *Iv = ctx->Iv;for (i = 0; i < length; i += AES_BLOCKLEN){XorWithIv(buf, Iv);Cipher((state_t*)buf, ctx->RoundKey);Iv = buf;buf += AES_BLOCKLEN;}/* store Iv in ctx for next call */memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf,  uint32_t length)
{uintptr_t i;uint8_t storeNextIv[AES_BLOCKLEN];for (i = 0; i < length; i += AES_BLOCKLEN){memcpy(storeNextIv, buf, AES_BLOCKLEN);InvCipher((state_t*)buf, ctx->RoundKey);XorWithIv(buf, ctx->Iv);memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);buf += AES_BLOCKLEN;}}#endif// #if defined(CBC) && (CBC == 1)#if defined(CTR) && (CTR == 1)/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
{uint8_t buffer[AES_BLOCKLEN];unsigned i;int bi;for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi){if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */{memcpy(buffer, ctx->Iv, AES_BLOCKLEN);Cipher((state_t*)buffer,ctx->RoundKey);/* Increment Iv and handle overflow */for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi){/* inc will overflow */if (ctx->Iv[bi] == 255){ctx->Iv[bi] = 0;continue;}ctx->Iv[bi] += 1;break;}bi = 0;}buf[i] = (buf[i] ^ buffer[bi]);}
}#endif// #if defined(CTR) && (CTR == 1)

2. aes.h

#ifndef _AES_H_
#define _AES_H_#include <stdint.h>// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES encryption in CBC-mode of operation.
// CTR enables encryption in counter-mode.
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
//  #define CBC 1#define CBC 0// 2020-07-27 by cui
#endif#ifndef ECB#define ECB 1
#endif#ifndef CTR
//  #define CTR 1#define CTR 0//2020-07-27 by cui
#endif#define AES128 1
//#define AES192 1
//#define AES256 1#define AES_BLOCKLEN 16// Block length in bytes - AES is 128b block only#if defined(AES256) && (AES256 == 1)#define AES_KEYLEN 32#define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)#define AES_KEYLEN 24#define AES_keyExpSize 208
#else#define AES_KEYLEN 16// Key length in bytes#define AES_keyExpSize 176
#endifstruct AES_ctx
{uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))uint8_t Iv[AES_BLOCKLEN];
#endif
};void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
#endif#if defined(ECB) && (ECB == 1)
// buffer size is exactly AES_BLOCKLEN bytes;
// you need only AES_init_ctx as IV is not used in ECB
// NB: ECB is considered insecure for most uses
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf);
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf);#endif// #if defined(ECB) && (ECB == !)#if defined(CBC) && (CBC == 1)
// buffer size MUST be mutile of AES_BLOCKLEN;
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
//        no IV should ever be reused with the same key
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);#endif// #if defined(CBC) && (CBC == 1)#if defined(CTR) && (CTR == 1)// Same function for encrypting as for decrypting.
// IV is incremented for every block, and used after encryption as XOR-compliment for output
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
//        no IV should ever be reused with the same key
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);#endif// #if defined(CTR) && (CTR == 1)#endif// _AES_H_

3. 示例

/* 特别注意,本算法一次只能加密16个字节,多于16个字节的加解密需要分多次调用实现 */

struct AES_ctx aes_s;
uint8_t key[16] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F};
uint8_t en_msg[16] = {0x31, 0x32, 0x33};   // 待加密的明文
uint8_t de_msg[16] = {0x31, 0x32, 0x33};   // 待解密的密文AES_init_ctx(&aes_s, key);          // 初始化 AES
AES_ECB_encrypt(&aes_s, en_msg);    // 加密后的密文覆盖掉原有的 en_msg
AES_ECB_decrypt(&aes_s, en_msg);    // 解密后的明文覆盖掉原有的 de_msg
/* 特别注意,本算法一次只能加密16个字节,多于16个字节的加解密需要分多次调用实现 */

AESECB加密算法 C 语言代码实现相关推荐

  1. rsa2048加密算法c语言代码,rsa加密算法c语言代码

    如何用C语言实现RSA算法? 上学期交的作业,已通过老师在运行时间上的测试 #include #include unsigned long prime1,prime2,ee; unsigned lon ...

  2. AES 加密算法c语言代码

    AES(Advanced Encryption Standard)是一种常用的对称加密算法,其使用的密钥长度可以是 128 位.192 位或 256 位.下面是一个使用 C 语言实现的 AES 加密算 ...

  3. rc4加密算法c语言代码,RC4加密算法C语言实现.docx

    页眉 页眉 PAGE PAGE # / 6 RC4 加密算法 C 语言实现 代码文件名 RC4.cpp Encrypt.h (代码详见后文) 备注:将以上两个文件放在相同的路径(建议不要放在中文路径下 ...

  4. aes算法的C语言实现代码,AES加密算法c语言实现代码

    AES加密算法c语言实现代码 #include "stdio.h" #include "memory.h" #include "time.h" ...

  5. DES和3DES加密算法C语言实现

    DES和3DES加密算法C语言实现 记录DES和3DES加密算法最简洁易懂的C语言源码 主要是要用到CBC这部分的算法,后边也有一个工具可以提供验证,因为网上的工具含有CBC的很少,也方便大家吧 之前 ...

  6. 解析 RC4 加密算法(C语言、python)

    目录 解析 RC4 加密算法(C语言.python): RC4加密算法是一种对称加密算法: 加密(解密)原理: RC4算法中的几个关键变量: RC4代码介绍: rc4初始化介绍: 包含三个参数: RC ...

  7. 遗传算法c语言程序,遗传算法c语言代码.doc

    遗传算法c语言代码 遗传算法代码 #include #include #include #include #include struct group //染色体的结构 { int city[citie ...

  8. 071_html语言代码

    1. ISO语言代码 1.1. 国际标准化组织(International Organization for Standardization, ISO)简称ISO, 是一个全球性的非政府组织, 是国际 ...

  9. 嵌入式C语言代码规范

    C语言代码规范 参考安富莱C语言编码规范 1.文件与目录 1.文件及目录的命名规定可用的字符集是[A-Z:a-z:0-9:._-]. 2.源文件名后缀用小写字母 .c 和.h. 3.文件的命名要准确清 ...

最新文章

  1. Linux图形分区编辑器 GParted Live 1.0 Beta 发布
  2. python多变量拟合_python-使用scipy拟合多个参数曲线
  3. HttpRequest中常见的四种ContentType【转载】
  4. 计算机软考网络管理员题,2020年计算机软考网络管理员考前测试题及答案
  5. Storm0.9.4安装 - OPEN 开发经验库
  6. bzoj2461 [BeiJing2011]符环 dp
  7. Uvalive 3713 - Astronauts(2-SAT)
  8. linux安装与登录
  9. Android NDK学习(1) 简介
  10. 项目部署:IIS部署后运行报错iconfont.woff:1 Failed to load resource: the server responded with a status of 404
  11. 递归系列——递归树与函数记忆化
  12. Android实现简单日历
  13. 更加清晰的报名要点讲解视频(附图文介绍)
  14. 解析:学Java好还是HTML5好?
  15. P处理的中有大量判断条件是的sql写法
  16. GIS制图的基础三点
  17. [C#] 内存占用释放
  18. 全球与中国锯棕榈提取物市场深度研究分析报告
  19. 【解决方法】友盟分享 已安装QQ,但总提示“没有安装手机QQ客户端”
  20. 阿龙学堂-VUE面试总结

热门文章

  1. js-xlsx 读取Excel解析
  2. 在Ubuntu上安装MySQL8.0数据库并使用Navicat远程访问
  3. 模拟电路设计(34)---脉宽调制型开关电路
  4. 1063: 最大公约与最小公倍
  5. winedt配制miktex路径设置
  6. 以太网(802.3)帧格式
  7. 苹果、google、微软的那些事(iPhone)
  8. java图片透明度,Java检查图像是否具有透明度
  9. 统计学中的第p百分位数的理解
  10. ectouch购物车添加勾选结算功能