目前有线高速数据传输(从数据中心到USB3.0)几乎或多或少都会用到以下介绍的均衡技术之一。

| 什么是均衡?

在介绍均衡之前,我们首先来了解一下Wireline Serdes系统。Serdes系统通常包含发送机(Transmitter,TX)、接收机(Receiver,RX)和传输通道(channel)三个部分。其中,发送机负责将并行的多路信号串化为单路信号,并将信号送入传输通道。接收机则负责接收串行信号,并将其解串化为多路信号。

图 1 常见的SerDes系统

如果传输通道是理想无损的传输线,那么发送机发送的信号就会完好无损的出现在接收端;接收机自然可以非常容易地恢复信号。然而,现实是由于传输通道存在趋肤效应和介质本身的损耗,传输通道往往表现出低通的特性。趋肤效应导致的损耗与信号频率的平方根成正比,而介质自身损耗与频率成正比。因此在频率较低时,通道的损耗主要由趋肤效应决定;而对于传输高频信号的通道,通常介质的损耗起主导作用。

图 2 PCB走线损耗与频率的关系

这里有一点需要说明的是,真正影响信号可靠传输的不是衰减本身,而是信道的衰减随频率变化。高低频信号的衰减差最终会导致码间干扰(Inter-Symbol Interference,ISI)。字面理解,码间干扰就是不同码元相互干扰。比如说,A时刻传输的“1”信号叠加到了B时刻传输的“0”信号上,使B时刻的信号幅度从0变为0.2。为什么高低频信号的衰减差就会导致码间干扰呢?因为信号高频分量的损失会使得信号边沿变缓,从而导致信号展宽。展宽后的信号可能会跨越多个单位时间间隔(1UI),就会出现上文提到的A时刻的信号叠加到B时刻上。信道的衰减越大,信号的展宽就越严重,叠加到其他时刻的信号上的比例也会越大。换句话说,SerDes系统需要真正解决并不是信号的衰减,而是高低频信号的衰减差。

图 3 信道衰减导致冲激响应展宽

通常我们会用眼图(eye diagram)来表征接收到信号的质量。眼图是将信号按单位时间间隔截取并叠加到一起得到波形图,形状类似与眼睛。只有当信号的眼图张开时,判决得到的信号才是无误码的。比如对于时钟信号(近似只含有一个频率分量)而言,在不考虑反射和噪声等情况下,即使经历了很大的衰减,其眼图仍然是张开的。接收端只需要放大信号,而不需要提供任何均衡补偿。但是对于一般的随机数据信号,其频谱分量非常丰富,包含从低频到高频的各种分量,因此如果高低频衰减差比较大,眼图就会闭合导致在接受端产生误码。

图 4 闭合的眼图和睁开的眼图

除了走线的导致的信号衰减外,另一个问题是芯片的封装以及PCB板的过孔(Via)将会引入阻抗非连续性,最终导致信号的反射和谐振。在信道中来回反射的信号将会叠加到接收端,也会形成码间干扰;而谐振则会将特定频率的信号滤除,在谐振频率处形成巨大的插入损耗。这一点体现在频率响应上,就是频率响应在谐振频率的深度凹陷。

图 5 (a)PCB的过孔引入的stub;以及(b)有/无stub的传输线的衰减变化 [Elad Alon, UC Berkeley]

信道的非理想性使信号产生码间干扰,导致信号的眼图闭合。而均衡就是在发送端或接收端补偿信道的非理想性,消除码间干扰,从而使接收端的眼图重新张开。从频域上理解,均衡是通过高通滤波器补偿信道的低通特性;从时域上理解,均衡是对脉冲响应信号(pulse response)重新塑形,把其能量限制在一个时间间隔(1UI)之内,从而避免码间干扰。

图 6 均衡示意图 [Sam Palermo, TAMU]

| 常见的均衡技术

常见收发器的均衡系统通常由发送端的前馈均衡(Feed Forward Equalizer,FFE),接收端的连续时间线性均衡(Continuous Time Linear Equalizer,CTLE)和判决反馈均衡(Decision Feedback Equalizer,DFE)组成。

图 7 常见收发器架构框图

1.前馈均衡(Feed Forward Equalizer,FFE)

FFE是SerDes系统中最常用的均衡技术。为了缓解接收端均衡的压力,通常SerDes的发送端会使用FFE技术对信号进行预均衡。FFE通常是通过有限冲激响应滤波器实现的,即将延时的信号按不同的权重(w-1,w0,…,wn)相加。控制权重的大小即可调整均衡强度。FFE的实质是使用数字线性高通滤波器提高信号的高频分量,实现信道的补偿。

图 8 FFE 示意图

还有一种更加通俗的理解。信道对信号的损耗主要出现在从0到1或从1到0跳转过程。而当传输的信号是一串1或一串0时,信号经历的衰减较小。因此,采用FFE技术的发送器就是在信号发生跳转时发送更多的能量,从而补偿跳转时的衰减。这种解释不一定准确,但可以帮助大家更容易理解FFE技术。

FFE实现方式简单,因此广泛地被应用于SerDes系统中。然而对于发送机而言,其输出最大摆幅往往受限于电源电压,因此无法无限增大。这就导致信号的实际摆幅随着FFE均衡强度地提高而减小。因此,在实际设计中,FFE的均衡强度通常小于10dB,从而保证信号的实际摆幅。

2.连续时间线性均衡(Continuous Time Linear Equalizer,CTLE)

CTLE技术的工作原理是直接通过线性模拟高通滤波器拟合信道的衰减,实现信道的补偿。信道的频率响应可以看做是一个低通滤波器。因此将信道和一个高通滤波器串联就能得到一个全通的滤波器。当然,在实际的模拟电路中并不存在高通滤波器,但是只要保证我们关心的带宽内呈现高通的特性就能满足均衡的要求。

图 9 CTLE电路与传输函数 [JSSC 2007]

需要说明的是,CTLE电路并不是放大高频信号,而是通过减小低频信号的方式补偿高低频的衰减差。因此,通常CTLE电路会与放大器配合使用。而CTLE最为人诟病的缺点是其在放大高频信号的同时也会放大高频噪声,因此会降低信噪比。此外,高频的CTLE电路需要保证非常大的带宽(通常稍大于信号的奈奎斯特频率),因此需要非常大的静态电流;同时,需要电感进行扩频,改善其频率响应。因此,CTLE往往伴随着巨大的面积和功耗开销。

3.判决反馈均衡(Decision Feedback Equalizer,DFE)

判决反馈均衡,顾名思义,就是将判决后的信号反馈到输入信号上。与FFE类似,DFE也是通过数字高频滤波器实现的。各个支路的权重则决定了均衡的强度。但与FFE不同的是,DFE是一种非线性均衡技术:判决后的信号为数字信号,而不是原输入信号经过延时得到的。因此,DFE可以只放大高频信号,而不放大高频噪声。

图 10 DFE电路的工作原理 [JSSCC 2009]

从时域上理解,DFE技术其实是在将信号的脉冲响应重新塑形。信道的低通特性使信号展宽,形成了长长的拖尾。前一个信号的拖尾既是对下一个信号码间干扰。而DFE是通过反馈消去信号的拖尾,将信号重新限制在一个时间间隔内(1UI)。

然而DFE的缺点也十分明显。因为其原理依赖于反馈环路,因此要求信号经过判决器和反馈网络的环路延时小于一个单位时间间隔(1UI)。只有满足这样的条件,反馈回来的信号才能消去相邻点上的码间干扰。因此,对于超高速SerDes而言,设计DFE是一件非常具有挑战性的事情。

| 结语

本文介绍了wireline高速数据传输的均衡技术,该技术目前已经广泛地用在各大高速有线数据传输中。

Wireline SerDes,高速信号的均衡技术相关推荐

  1. Serdes高速收发器和CDR技术

    目录 一.Serdes高速收发器 二.CDR技术 三.Comma码(K码) 今天学习一下 高速收发器 serdes 以及用到的CDR 技术 一.Serdes高速收发器 在传统的源同步传输中,数据和时钟 ...

  2. 高速串行总线设计基础(八)揭秘SERDES高速面纱之CML电平标准与预加重技术

    文章目录 前言 物理信号 预加重 差分传输线 参考资料 前言 对于数字工程师来说,我们可能关注的仅仅是本文中的差分信号电平标准以及预加重技术,CML电平标准是Transceiver技术的首选,在Xil ...

  3. 以太网口差分电平_高速串行总线设计基础(八)揭秘SERDES高速面纱之CML电平标准与预加重技术...

    前言 物理信号 预加重 差分传输线 参考资料 前言 对于数字工程师来说,我们可能关注的仅仅是本文中的差分信号电平标准以及预加重技术,CML电平标准是Transceiver技术的首选,在Xilinx的G ...

  4. SerDes结构之发送端前馈均衡技术(FFE)

    https://www.sohu.com/a/307013503_458015 首先,向善于分享知识的牛牛 提出表扬,本文转自牛牛同学!敬礼! 学过电子电路或者信号与系统课程的同学们,我们都知道:信号 ...

  5. xilinx管脚差分端接_高速串行总线设计基础(八)揭秘SERDES高速面纱之CML电平标准与预加重技术...

    前言 物理信号 预加重 差分传输线 参考资料 前言 对于数字工程师来说,我们可能关注的仅仅是本文中的差分信号电平标准以及预加重技术,CML电平标准是Transceiver技术的首选,在Xilinx的G ...

  6. pcb钻孔披锋改善报告_高速高频PCB技术 || 玻纤效应对高速信号的影响

    摘要:PCB信号传输的高频和高速化发展对印制电路板材料的选择.设计及制作提出了更高的要求,尤其是100G骨干网的发展,印制电路板上差分阻抗线要实现25Gbps的传输速率.当系统总线上的信号速率提升到G ...

  7. 高速串行总线设计基础(七)揭秘SERDES高速面纱之时钟校正与通道绑定技术

    文章目录 前言 时钟校正 接收和发送缓冲区 通道绑定 参考文献 前言 上篇文章讲了高速串行总线中的数据包核参考时钟的相关内容,见:高速串行总线设计基础(六)揭秘SERDES高速面纱之数据包与参考时钟要 ...

  8. 高速串行总线设计基础(五)揭秘SERDES高速面纱之多相数据提取电路与线路编码方案

    文章目录 前言 多相数据提取电路 线路编码方案 8B/10B编解码 运行差异(Running Disparity) 控制字符 Comma 检测 加扰技术 参考文献 前言 SERDES可以工作在多吉比特 ...

  9. [转载][转]无线衰落信道、多径与OFDM、均衡技术

    原文地址:[转]无线衰落信道.多径与OFDM.均衡技术作者:海阔天空 http://blog.sina.com.cn/s/blog_90b4c7ff010158zc.html 参见  张贤达 通信信号 ...

最新文章

  1. 国防科技大学教授:殷建平——计算机科学理论的过去、现在与未来
  2. linux远程关闭不中断
  3. 手动添加linux用户,Linux入门教程:如何手动创建一个Linux用户
  4. 应用系统集群解决方案
  5. 一对一语音视频直播双端原生+php后台源码
  6. java演练 猜奇偶小游戏开发 DB游戏必输的设计
  7. workbench 手动提交事务_mysql实现事务的提交和回滚实例
  8. 热电偶校验仪使用说明_APSL311系列压力校验仪
  9. python打开chrome浏览器登录用户名密码_[工具]Python获取Chrome浏览器已保存的所有账号密码...
  10. Lesson_6 作业_1 ---- 封装学生类
  11. 解决ajax请求返回Json无法解析\字符的问题
  12. julia: ubuntu下安装
  13. 声控报警器c语言程序,声控报警器(声控电路)
  14. 李宏毅机器学习笔记——深度学习
  15. 年龄的计算方式计算机函数,excel使用时间函数计算年龄 使用Excel函数计算年龄的三种方法...
  16. vue与ios和Android联调方法
  17. LED灯亮灭模拟小星星第一句
  18. 扩展中国剩余定理模板
  19. linux系统与window区别,Linux和windows操作系统有哪些区别
  20. 凯悦酒店集团完成收购Apple Leisure Group;复星旅文在第四届进博会上完成近10项国际合作签约 | 全球旅报...

热门文章

  1. 黑马“兔年限定”春节礼盒准时送达,快来领!
  2. EXCEL表格使用VBA编程设置绘图区尺寸
  3. 利用python实现蚂蚁森林自动偷能量
  4. 不良事件总结怎么写_一份年度护理不良事件报告是怎样写成的
  5. 获取复选框的状态判断复选框是否选中状态
  6. 游戏日常运营数据:DAU分解及留存
  7. 什么是云计算, 什么是 IaaS, PaaS, SaaS
  8. python中\r 的意义
  9. Python使用forward,left,right等画多颜色图形
  10. 我的谷歌变成了金色传说!