传统推荐系统算法(一):协同过滤(Collaborative Filtering,CF)

一、协同过滤的定义

“协同过滤”可以理解为协同大家的评价、反馈来对巨量的信息进行过滤,并筛选出目标用户可能感兴趣的信息。协同过滤主要有两种算法:
基于用户的协同过滤(UserCF):给用户推荐和他兴趣相似的其他用户喜欢的产品
基于物品的协同过滤(ItemCF):给用户推荐和他之前喜欢的物品相似的物品

二、协同过滤的通俗理解

以UserCF为例:
(1)电商网站的商品库里一共有4 件商品:游戏机、某小说、某杂志和某品
牌电视机。
(2)用户X访问该网站,网站需要决定是否向X推荐电视机,即需要预测X是否喜欢这台电视机。可以利用的数据有X对其他商品的评价以及其他客户对商品的评价。用点赞表示“好评”,踩表示“差评”。此时用户、商品、评价构成了带有标识的有向图。
(3)将该有向图转换为矩阵,该矩阵命名为共现矩阵,用户名为行坐标,商品为列坐标,用户评价作为矩阵的元素值,为方便计算,可将好评设为1,差评设为-1,无评价为0(如果用户对商品有具体评分值,则取具体评分值)。

(4)生成共现矩阵后,问题就变成了预测问好的值。协同过滤的本质就是考虑与自己兴趣相似的用户的意见。因此首先就要找到与X兴趣最相近的n个用户(Top n,n为超参数),然后综合这n个相似用户对电视机的评价来预测X对电视机的评价。
(5)在共现矩阵中可以发现,B、C和X的行向量相近,因此将B、C选为Top n(n取2)相似用户,并发现B、C对电视机的评价都是负面的。
(6)因为相似用户对电视机给出差评,所以预测X对电视机也是差评,因此该网站不会对X推荐电视机这一物品。

三、用户相似度的计算

在共现矩阵中,行向量代表一个用户对所有商品的评价,即一行行向量代表一个用户向量。那么计算用户i与用户j的相似度问题就是计算用户向量i与用户向量j的相似度,两个向量之间常见的相似度计算有如下几种:
(1)余弦相似度
余弦相似度衡量了向量i与向量j之间的夹角大小。当夹脚越小时,两个用户向量月相似。公式如下:

(2)皮尔逊相关系数
相比余弦相似度,皮尔逊相关系数通过使用用户平均分对各独立评分进行修正,减小了用户评分偏置的影响。

四、最终结果的排序

在进行完上述过程后,可以计算出用户向量间的相似程度,并选出最相似的Top n用户,基于Top n用户的已有评价来对目标用户进行预测。最常用的方法是利用用户相似度和相似用户的评价加权平均获得用户的评价预测, 用下面式子表示:

还有一种方式如下, 这种方式考虑的更加全面, 依然是用户相似度作为权值, 但后面不单纯的是其他用户对物品的评分, 而是该物品的评分与此用户的所有评分的差值进行加权平均, 这时候考虑到了有的用户内心的评分标准不一的情况, 即有的用户喜欢打高分, 有的用户喜欢打低分的情况。

在获得用户 u u u对不同物品的评价预测后, 最终的推荐列表根据预测评分进行排序得到。 至此, 基于用户的协同过滤算法的推荐过程完成。

五、UserCf的实例


在上图中,判断是否将物品5推荐给用户Alice

即预测Alice会对物品5打出4.87分,因此可以推荐。

import pandas as pd
import numpy as np
def loadData():items={'A': {1: 5, 2: 3, 3: 4, 4: 3, 5: 1},'B': {1: 3, 2: 1, 3: 3, 4: 3, 5: 5},'C': {1: 4, 2: 2, 3: 4, 4: 1, 5: 5},'D': {1: 4, 2: 3, 3: 3, 4: 5, 5: 2},'E': {2: 3, 3: 5, 4: 4, 5: 1}}users={1: {'A': 5, 'B': 3, 'C': 4, 'D': 4},2: {'A': 3, 'B': 1, 'C': 2, 'D': 3, 'E': 3},3: {'A': 4, 'B': 3, 'C': 4, 'D': 3, 'E': 5},4: {'A': 3, 'B': 3, 'C': 1, 'D': 5, 'E': 4},5: {'A': 1, 'B': 5, 'C': 5, 'D': 2, 'E': 1}}return items,usersitems, users = loadData()
item_df = pd.DataFrame(items).T
user_df = pd.DataFrame(users).T"""计算用户相似性矩阵"""
similarity_matrix = pd.DataFrame(np.zeros((len(users), len(users))), index=[1, 2, 3, 4, 5], columns=[1, 2, 3, 4, 5])# 遍历每条用户-物品评分数据
for userID in users:for otheruserId in users:vec_user = []vec_otheruser = []if userID != otheruserId:for itemId in items:   # 遍历物品-用户评分数据itemRatings = items[itemId]        # 这也是个字典  每条数据为所有用户对当前物品的评分if userID in itemRatings and otheruserId in itemRatings:  # 说明两个用户都对该物品评过分vec_user.append(itemRatings[userID])vec_otheruser.append(itemRatings[otheruserId])# 这里可以获得相似性矩阵(共现矩阵)similarity_matrix[userID][otheruserId] = np.corrcoef(np.array(vec_user), np.array(vec_otheruser))[0][1]#similarity_matrix[userID][otheruserId] = cosine_similarity(np.array(vec_user), np.array(vec_otheruser))[0][1]print(similarity_matrix)"""计算前n个相似的用户"""
n = 2
similarity_users = similarity_matrix[1].sort_values(ascending=False)[:n].index.tolist()    # [2, 3]   也就是用户1和用户2"""计算最终得分"""
base_score = np.mean(np.array([value for value in users[1].values()]))
weighted_scores = 0.
corr_values_sum = 0.
for user in similarity_users:  # [2, 3]corr_value = similarity_matrix[1][user]            # 两个用户之间的相似性mean_user_score = np.mean(np.array([value for value in users[user].values()]))    # 每个用户的打分平均值weighted_scores += corr_value * (users[user]['E']-mean_user_score)      # 加权分数corr_values_sum += corr_value
final_scores = base_score + weighted_scores / corr_values_sum
print('用户Alice对物品5的打分: ', final_scores)
user_df.loc[1]['E'] = final_scores
user_dfprint(user_df)

UserCF算法存在两个重大问题:

(1)数据稀疏性
一个大型的电子商务推荐系统一般有非常多的物品,用户可能买的其中不到1%的物品,不同用户之间买的物品重叠性较低,导致算法无法找到一个用户的邻居,即偏好相似的用户。这导致UserCF不适用于那些正反馈获取较困难的应用场景(如酒店预订, 大件商品购买等低频应用)

(2)算法扩展性
基于用户的协同过滤需要维护用户相似度矩阵以便快速的找出Top n相似用户, 该矩阵的存储开销非常大,存储空间随着用户数量的增加而增加,不适合用户数据量大的情况使用。

由于UserCF技术上的两点缺陷, 导致很多电商平台并没有采用这种算法, 而是采用了ItemCF算法实现最初的推荐系统。

六、基于物品的协同过滤(ItemCF)

ItemCf通过计算共现矩阵中物品列向量的相似度得到物品之间的相似矩阵,再找到用户的历史正反馈物品的相似物品进行排序和推荐,即ItemCF算法并不利用物品的内容属性计算物品之间的相似度, 主要通过分析用户的行为记录计算物品之间的相似度, 该算法认为, 物品a和物品c具有很大的相似度是因为喜欢物品a的用户大都喜欢物品c。
具体步骤如下:
(1)基于历史数据,构建以用户(假设用户总数为m) 为行坐标,物品(物品总数为n) 为列坐标的mXn 维的共现矩阵。
(2)计算共现矩阵两两列向量间的相似性(相似度的计算方式与用户相似度的计算方式相同),构建nXn 维的物品相似度矩阵。
(3)获得用户历史行为数据中的正反馈物品列表。
(4)利用物品相似度矩阵,针对目标用户历史行为中的正反馈物品,找出相似的Top k 个物品,组成相似物品集合。
(5)对相似物品集合中的物品,利用相似度分值进行排序,生成最终的推荐列表。

继续以上面的例子来进行实例演示:


根据皮尔逊相关系数, 可以找到与物品5最相似的2个物品是item1和item4(n=2),计算最终得分:

传统推荐系统算法(一):协同过滤(Collaborative Filtering,CF)相关推荐

  1. 推荐系统:协同过滤collaborative filtering

    http://blog.csdn.net/pipisorry/article/details/51788955 (个性化)推荐系统构建三大方法:基于内容的推荐content-based,协同过滤col ...

  2. 基于关联规则(Apriori)+协同过滤(collaborative filtering)实现电影推荐系统

    基于关联规则算法+协同过滤算法的电影推荐系统 一.前言 1.数据集介绍 2.方法概述 3.运行环境 二.数据准备与预处理 1.数据熟悉 2.数据读取 3.数据预处理 3.1 无用属性删除 3.2 缺失 ...

  3. 机器学习实战(十三)推荐系统(协同过滤 Collaborative Filtering)

    目录 0. 前言 1. 相似度 1.1. 欧式距离(Euclidean metric) 1.2. 皮尔逊相关系数(Pearson correlation coefficient) 1.3. 余弦相似度 ...

  4. 协同过滤(collaborative filtering)

    Author: Summer; Email: huangmeihong11@sina.com Datawhale 协同过滤简介 协同过滤是推荐算法中最常用的算法之一,它根据user与item的交互,发 ...

  5. 在线音乐推荐网 Python+Django+Mysql开发技术 基于用户、物品的协同过滤推荐算法 个性化音乐推荐系统 音乐网站+协同过滤推荐算法 机器学习、分布式大数据、人工智能开发

    在线音乐推荐网 Python+Django+Mysql开发技术 基于用户.物品的协同过滤推荐算法 个性化音乐推荐系统 音乐网站+协同过滤推荐算法 机器学习.分布式大数据.人工智能开发 MusicRec ...

  6. 推荐系统知识梳理——协同过滤

    注:本次为参加datawhale的打卡活动~详细资料在team-learning-rs 核心系列内容: 协同过滤算法: 包括基于用户的协同过滤(UserCF)和基于商品的协同过滤(ItemCF),这是 ...

  7. python协同过滤算法_协同过滤算法介绍及算法实现

    一.协同过滤算法简介 协同过滤算法是一种较为著名和常用的推荐算法,它基于对用户历史行为数据的挖掘发现用户的喜好偏向,并预测用户可能喜好的产品进行推荐.也就是常见的"猜你喜欢",和& ...

  8. 经典推荐算法之协同过滤

    本文是个人在学习过程中的总结,如有错误或者不全面的地方,请大家指正,谢谢! 一. 协同过滤算法简介 二. 基于用户的协同过滤算法 2.1 实例 2.2 相似度计算方式 2.2.1 余弦相似度 2.2. ...

  9. 推荐算法-基于协同过滤的推荐算法

    推荐算法-基于协同过滤的推荐算法 在如今信息量呈爆炸式增长的时代,谷歌百度等搜索引擎为人们查找信息提供了便利,帮助用户快速查找有价值的信息.然而此类查询方式是大众化的,无法根据个人兴趣为用户展示相关的 ...

  10. 推荐系统组队学习——协同过滤

    文章目录 一.协同过滤介绍 二.相似度度量方法 1. 杰卡德(Jaccard)相似系数 2. 余弦相似度 3. 皮尔逊相关系数 三.基于用户的协同过滤 原理 编程实现 UserCF优缺点 四.基于物品 ...

最新文章

  1. 计算文本文件中各个词(中英文)出现的频率
  2. 【LInux】查看Linux系统版本信息
  3. 正则表达式贪婪模式及最短匹配
  4. 使用批处理执行sql 语句
  5. [Vuex系列] - Module的用法(终篇)
  6. javaPNS进阶-高级推送技巧
  7. 生成六位验证码python代码
  8. 中科院发布了目标追踪数据集,1万多条视频,150万个边界框 | 快来下载
  9. MySQL 存储过程参数:in、out、inout
  10. logout退出功能是怎么实现的?login登陆功能室怎么实现的
  11. centos 安装LibreOffice word转PDF导出
  12. MapGuide/AIMS在台湾?
  13. QNX Hypervisor —— 设备
  14. LaTex多张子图并排排列方法
  15. java小游戏大鱼吃小鱼入门(音乐添加+鱼头转向+背景移动+背景泡泡效果)
  16. 【转载】CSDI2018广州关于《Nginx》的分享(附文字速录与PPT)
  17. 1143-最长公共子序列(最长公共子序列)
  18. 《WinForm开发系列之控件篇》Item2 BindingNavigator
  19. 如何还原服务器db文件的原有模式,dbPaaS该如何进行备份恢复管理?
  20. python3or5的值_详解python中and和or的返回值

热门文章

  1. Vue开发历程---音乐播放器
  2. 2020年全球石英晶振行业现状、竞争格局及未来发展趋势分析,5G推动万物互联,带动行业需求「图」
  3. linux下低格u盘,拯救U盘,一个靠谱的强制低格的工具
  4. ISO27001认证步骤及证书年审
  5. 人工智能资源下载2024G
  6. WP全新COS美女写真网站整站源码+两套下载站模板
  7. 使用KXML解析xml数据
  8. csol修改本地服务器,CSOL简单地控制台优化+显卡优化 低配也能流畅运行
  9. 天刀论剑显示服务器,《天涯明月刀ol》服务器维护公告 天下镖和论剑优化
  10. sklearn机器学习之分类决策树(泰坦尼克号幸存者数据集)