Contents

  • Library and Extension FAQ

    • General Library Questions

      • How do I find a module or application to perform task X?
      • Where is the math.py (socket.py, regex.py, etc.) source file?
      • How do I make a Python script executable on Unix?
      • Is there a curses/termcap package for Python?
      • Is there an equivalent to C’s onexit() in Python?
      • Why don’t my signal handlers work?
    • Common tasks
      • How do I test a Python program or component?
      • How do I create documentation from doc strings?
      • How do I get a single keypress at a time?
    • Threads
      • How do I program using threads?
      • None of my threads seem to run: why?
      • How do I parcel out work among a bunch of worker threads?
      • What kinds of global value mutation are thread-safe?
      • Can’t we get rid of the Global Interpreter Lock?
    • Input and Output
      • How do I delete a file? (And other file questions...)
      • How do I copy a file?
      • How do I read (or write) binary data?
      • I can’t seem to use os.read() on a pipe created with os.popen(); why?
      • How do I run a subprocess with pipes connected to both input and output?
      • How do I access the serial (RS232) port?
      • Why doesn’t closing sys.stdout (stdin, stderr) really close it?
    • Network/Internet Programming
      • What WWW tools are there for Python?
      • How can I mimic CGI form submission (METHOD=POST)?
      • What module should I use to help with generating HTML?
      • How do I send mail from a Python script?
      • How do I avoid blocking in the connect() method of a socket?
    • Databases
      • Are there any interfaces to database packages in Python?
      • How do you implement persistent objects in Python?
      • Why is cPickle so slow?
      • If my program crashes with a bsddb (or anydbm) database open, it gets corrupted. How come?
      • I tried to open Berkeley DB file, but bsddb produces bsddb.error: (22, ‘Invalid argument’). Help! How can I restore my data?
    • Mathematics and Numerics
      • How do I generate random numbers in Python?

General Library Questions

How do I find a module or application to perform task X?

Check the Library Reference to see if there’s a relevant standard library module. (Eventually you’ll learn what’s in the standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another Web search engine. Searching for “Python” plus a keyword or two for your topic of interest will usually find something helpful.

Where is the math.py (socket.py, regex.py, etc.) source file?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or other compiled language. In this case you may not have the source file or it may be something like mathmodule.c, somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:

  1. modules written in Python (.py);

  2. modules written in C and dynamically loaded (.dll, .pyd, .so, .sl, etc);

  3. modules written in C and linked with the interpreter; to get a list of these, type:

    import sys
    print sys.builtin_module_names
    

How do I make a Python script executable on Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with #! followed by the path of the Python interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program. Almost all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

#!/usr/bin/env python

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at all. In that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh
""":"
exec python $0 ${1+"$@"}
"""

The minor disadvantage is that this defines the script’s __doc__ string. However, you can fix that by adding

__doc__ = """...Whatever..."""

Is there a curses/termcap package for Python?

For Unix variants the standard Python source distribution comes with a curses module in the Modules subdirectory, though it’s not compiled by default. (Note that this is not available in the Windows distribution – there is no curses module for Windows.)

The curses module supports basic curses features as well as many additional functions from ncurses and SYSV curses such as colour, alternative character set support, pads, and mouse support. This means the module isn’t compatible with operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes that fall into this category.

For Windows: use the consolelib module.

Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit().

Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

handler(signum, frame)

so it should be declared with two arguments:

def handler(signum, frame):...

Common tasks

How do I test a Python program or component?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module and runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all functionality encapsulated in either functions or class methods – and this sometimes has the surprising and delightful effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore the program should avoid depending on mutating global variables, since this makes testing much more difficult to do.

The “global main logic” of your program may be as simple as

if __name__ == "__main__":main_logic()

at the bottom of the main module of your program.

Once your program is organized as a tractable collection of functions and class behaviours you should write test functions that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each module. This sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make coding much more pleasant and fun by writing your test functions in parallel with the “production code”, since this makes it easy to find bugs and even design flaws earlier.

“Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if __name__ == "__main__":self_test()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unavailable by using “fake” interfaces implemented in Python.

How do I create documentation from doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating API documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

How do I get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large module to learn. Here’s a solution without curses:

import termios, fcntl, sys, os
fd = sys.stdin.fileno()oldterm = termios.tcgetattr(fd)
newattr = termios.tcgetattr(fd)
newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO
termios.tcsetattr(fd, termios.TCSANOW, newattr)oldflags = fcntl.fcntl(fd, fcntl.F_GETFL)
fcntl.fcntl(fd, fcntl.F_SETFL, oldflags | os.O_NONBLOCK)try:while 1:try:c = sys.stdin.read(1)print "Got character", repr(c)except IOError: pass
finally:termios.tcsetattr(fd, termios.TCSAFLUSH, oldterm)fcntl.fcntl(fd, fcntl.F_SETFL, oldflags)

You need the termios and the fcntl module for any of this to work, and I’ve only tried it on Linux, though it should work elsewhere. In this code, characters are read and printed one at a time.

termios.tcsetattr() turns off stdin’s echoing and disables canonical mode. fcntl.fnctl() is used to obtain stdin’s file descriptor flags and modify them for non-blocking mode. Since reading stdin when it is empty results in an IOError, this error is caught and ignored.

Threads

How do I program using threads?

Be sure to use the threading module and not the thread module. The threading module builds convenient abstractions on top of the low-level primitives provided by the thread module.

Aahz has a set of slides from his threading tutorial that are helpful; see http://www.pythoncraft.com/OSCON2001/.

None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads no time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

import threading, timedef thread_task(name, n):for i in range(n): print name, ifor i in range(10):T = threading.Thread(target=thread_task, args=(str(i), i))T.start()time.sleep(10) # <----------------------------!

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The reason is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task(name, n):time.sleep(0.001) # <---------------------!for i in range(n): print name, ifor i in range(10):T = threading.Thread(target=thread_task, args=(str(i), i))T.start()time.sleep(10)

Instead of trying to guess a good delay value for time.sleep(), it’s better to use some kind of semaphore mechanism. One idea is to use the Queue module to create a queue object, let each thread append a token to the queue when it finishes, and let the main thread read as many tokens from the queue as there are threads.

How do I parcel out work among a bunch of worker threads?

Use the Queue module to create a queue containing a list of jobs. The Queue class maintains a list of objects and has a .put(obj) method that adds items to the queue and a .get() method to return them. The class will take care of the locking necessary to ensure that each job is handed out exactly once.

Here’s a trivial example:

import threading, Queue, time# The worker thread gets jobs off the queue.  When the queue is empty, it
# assumes there will be no more work and exits.
# (Realistically workers will run until terminated.)
def worker():print 'Running worker'time.sleep(0.1)while True:try:arg = q.get(block=False)except Queue.Empty:print 'Worker', threading.currentThread(),print 'queue empty'breakelse:print 'Worker', threading.currentThread(),print 'running with argument', argtime.sleep(0.5)# Create queue
q = Queue.Queue()# Start a pool of 5 workers
for i in range(5):t = threading.Thread(target=worker, name='worker %i' % (i+1))t.start()# Begin adding work to the queue
for i in range(50):q.put(i)# Give threads time to run
print 'Main thread sleeping'
time.sleep(5)

When run, this will produce the following output:

Running worker
Running worker
Running worker
Running worker
Running worker
Main thread sleeping
Worker <Thread(worker 1, started)> running with argument 0
Worker <Thread(worker 2, started)> running with argument 1
Worker <Thread(worker 3, started)> running with argument 2
Worker <Thread(worker 4, started)> running with argument 3
Worker <Thread(worker 5, started)> running with argument 4
Worker <Thread(worker 1, started)> running with argument 5
...

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be set via sys.setcheckinterval(). Each bytecode instruction and therefore all the C implementation code reached from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that “look atomic” really are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are ints):

L.append(x)
L1.extend(L2)
x = L[i]
x = L.pop()
L1[i:j] = L2
L.sort()
x = y
x.field = y
D[x] = y
D1.update(D2)
D.keys()

These aren’t:

i = i+1
L.append(L[-1])
L[i] = L[j]
D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ __del__() method when their reference count reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists. When in doubt, use a mutex!

Can’t we get rid of the Global Interpreter Lock?

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor server machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that (almost) all Python code can only run while the GIL is held.

Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the “free threading” patches) that removed the GIL and replaced it with fine-grained locking. Unfortunately, even on Windows (where locks are very efficient) this ran ordinary Python code about twice as slow as the interpreter using the GIL. On Linux the performance loss was even worse because pthread locks aren’t as efficient.

Since then, the idea of getting rid of the GIL has occasionally come up but nobody has found a way to deal with the expected slowdown, and users who don’t use threads would not be happy if their code ran at half the speed. Greg’s free threading patch set has not been kept up-to-date for later Python versions.

This doesn’t mean that you can’t make good use of Python on multi-CPU machines! You just have to be creative with dividing the work up between multiple processes rather than multiple threads. Judicious use of C extensions will also help; if you use a C extension to perform a time-consuming task, the extension can release the GIL while the thread of execution is in the C code and allow other threads to get some work done.

It has been suggested that the GIL should be a per-interpreter-state lock rather than truly global; interpreters then wouldn’t be able to share objects. Unfortunately, this isn’t likely to happen either. It would be a tremendous amount of work, because many object implementations currently have global state. For example, small integers and short strings are cached; these caches would have to be moved to the interpreter state. Other object types have their own free list; these free lists would have to be moved to the interpreter state. And so on.

And I doubt that it can even be done in finite time, because the same problem exists for 3rd party extensions. It is likely that 3rd party extensions are being written at a faster rate than you can convert them to store all their global state in the interpreter state.

And finally, once you have multiple interpreters not sharing any state, what have you gained over running each interpreter in a separate process?

Input and Output

How do I delete a file? (And other file questions...)

Use os.remove(filename) or os.unlink(filename); for documentation, see the os module. The two functions are identical; unlink() is simply the name of the Unix system call for this function.

To remove a directory, use os.rmdir(); use os.mkdir() to create one. os.makedirs(path) will create any intermediate directories in path that don’t exist. os.removedirs(path) will remove intermediate directories as long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.rmtree().

To rename a file, use os.rename(old_path, new_path).

To truncate a file, open it using f = open(filename, "r+"), and use f.truncate(offset); offset defaults to the current seek position. There’s also os.ftruncate(fd, offset) for files opened with os.open(), where fd is the file descriptor (a small integer).

The shutil module also contains a number of functions to work on files including copyfile()copytree(), and rmtree().

How do I copy a file?

The shutil module contains a copyfile() function. Note that on MacOS 9 it doesn’t copy the resource fork and Finder info.

How do I read (or write) binary data?

To read or write complex binary data formats, it’s best to use the struct module. It allows you to take a string containing binary data (usually numbers) and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

import structf = open(filename, "rb")  # Open in binary mode for portability
s = f.read(8)
x, y, z = struct.unpack(">hhl", s)

The ‘>’ in the format string forces big-endian data; the letter ‘h’ reads one “short integer” (2 bytes), and ‘l’ reads one “long integer” (4 bytes) from the string.

For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

I can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read() is a low-level function which takes a file descriptor, a small integer representing the opened file. os.popen() creates a high-level file object, the same type returned by the built-in open() function. Thus, to read n bytes from a pipe p created with os.popen(), you need to use p.read(n).

How do I run a subprocess with pipes connected to both input and output?

Use the popen2 module. For example:

import popen2
fromchild, tochild = popen2.popen2("command")
tochild.write("input\n")
tochild.flush()
output = fromchild.readline()

Warning: in general it is unwise to do this because you can easily cause a deadlock where your process is blocked waiting for output from the child while the child is blocked waiting for input from you. This can be caused by the parent expecting the child to output more text than it does or by data being stuck in stdio buffers due to lack of flushing. The Python parent can of course explicitly flush the data it sends to the child before it reads any output, but if the child is a naive C program it may have been written to never explicitly flush its output, even if it is interactive, since flushing is normally automatic.

Note that a deadlock is also possible if you use popen3() to read stdout and stderr. If one of the two is too large for the internal buffer (increasing the buffer size does not help) and you read() the other one first, there is a deadlock, too.

Note on a bug in popen2: unless your program calls wait() or waitpid(), finished child processes are never removed, and eventually calls to popen2 will fail because of a limit on the number of child processes. Calling os.waitpid() with the os.WNOHANG option can prevent this; a good place to insert such a call would be before calling popen2 again.

In many cases, all you really need is to run some data through a command and get the result back. Unless the amount of data is very large, the easiest way to do this is to write it to a temporary file and run the command with that temporary file as input. The standard module tempfile exports a mktemp() function to generate unique temporary file names.

import tempfile
import osclass Popen3:"""
    This is a deadlock-safe version of popen that returns
    an object with errorlevel, out (a string) and err (a string).
    (capturestderr may not work under windows.)
    Example: print Popen3('grep spam','\n\nhere spam\n\n').out
    """def __init__(self,command,input=None,capturestderr=None):outfile=tempfile.mktemp()command="( %s ) > %s" % (command,outfile)if input:infile=tempfile.mktemp()open(infile,"w").write(input)command=command+" <"+infileif capturestderr:errfile=tempfile.mktemp()command=command+" 2>"+errfileself.errorlevel=os.system(command) >> 8self.out=open(outfile,"r").read()os.remove(outfile)if input:os.remove(infile)if capturestderr:self.err=open(errfile,"r").read()os.remove(errfile)

Note that many interactive programs (e.g. vi) don’t work well with pipes substituted for standard input and output. You will have to use pseudo ttys (“ptys”) instead of pipes. Or you can use a Python interface to Don Libes’ “expect” library. A Python extension that interfaces to expect is called “expy” and available from http://expectpy.sourceforge.net. A pure Python solution that works like expect is pexpect.

How do I access the serial (RS232) port?

For Win32, POSIX (Linux, BSD, etc.), Jython:

http://pyserial.sourceforge.net

For Unix, see a Usenet post by Mitch Chapman:

https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on top of C streams, which in turn are a medium-level layer of abstraction on top of (among other things) low-level C file descriptors.

For most file objects you create in Python via the built-in file constructor, f.close() marks the Python file object as being closed from Python’s point of view, and also arranges to close the underlying C stream. This also happens automatically in f‘s destructor, when fbecomes garbage.

But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by C. Runningsys.stdout.close() marks the Python-level file object as being closed, but does not close the associated C stream.

To close the underlying C stream for one of these three, you should first be sure that’s what you really want to do (e.g., you may confuse extension modules trying to do I/O). If it is, use os.close:

os.close(0)   # close C's stdin stream
os.close(1)   # close C's stdout stream
os.close(2)   # close C's stderr stream

Network/Internet Programming

What WWW tools are there for Python?

See the chapters titled Internet Protocols and Support and Internet Data Handling in the Library Reference Manual. Python has many modules that will help you build server-side and client-side web systems.

A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/WebProgramming.

Cameron Laird maintains a useful set of pages about Python web technologies at http://phaseit.net/claird/comp.lang.python/web_python.

How can I mimic CGI form submission (METHOD=POST)?

I would like to retrieve web pages that are the result of POSTing a form. Is there existing code that would let me do this easily?

Yes. Here’s a simple example that uses httplib:

#!/usr/local/bin/pythonimport httplib, sys, time# build the query string
qs = "First=Josephine&MI=Q&Last=Public"# connect and send the server a path
httpobj = httplib.HTTP('www.some-server.out-there', 80)
httpobj.putrequest('POST', '/cgi-bin/some-cgi-script')
# now generate the rest of the HTTP headers...
httpobj.putheader('Accept', '*/*')
httpobj.putheader('Connection', 'Keep-Alive')
httpobj.putheader('Content-type', 'application/x-www-form-urlencoded')
httpobj.putheader('Content-length', '%d' % len(qs))
httpobj.endheaders()
httpobj.send(qs)
# find out what the server said in response...
reply, msg, hdrs = httpobj.getreply()
if reply != 200:sys.stdout.write(httpobj.getfile().read())

Note that in general for percent-encoded POST operations, query strings must be quoted using urllib.urlencode(). For example, to sendname=Guy Steele, Jr.:

>>>

>>> import urllib
>>> urllib.urlencode({'name': 'Guy Steele, Jr.'})
'name=Guy+Steele%2C+Jr.'

What module should I use to help with generating HTML?

You can find a collection of useful links on the Web Programming wiki page.

How do I send mail from a Python script?

Use the standard library module smtplib.

Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP listener.

import sys, smtplibfromaddr = raw_input("From: ")
toaddrs  = raw_input("To: ").split(',')
print "Enter message, end with ^D:"
msg = ''
while True:line = sys.stdin.readline()if not line:breakmsg += line# The actual mail send
server = smtplib.SMTP('localhost')
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it is /usr/lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out. Here’s some sample code:

import osSENDMAIL = "/usr/sbin/sendmail"  # sendmail location
p = os.popen("%s -t -i" % SENDMAIL, "w")
p.write("To: receiver@example.com\n")
p.write("Subject: test\n")
p.write("\n") # blank line separating headers from body
p.write("Some text\n")
p.write("some more text\n")
sts = p.close()
if sts != 0:print "Sendmail exit status", sts

How do I avoid blocking in the connect() method of a socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the connect(), you will either connect immediately (unlikely) or get an exception that contains the error number as .errnoerrno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet. Different OSes will return different values, so you’re going to have to check what’s returned on your system.

You can use the connect_ex() method to avoid creating an exception. It will just return the errno value. To poll, you can call connect_ex()again later – 0 or errno.EISCONN indicate that you’re connected – or you can pass this socket to select to check if it’s writable.

Databases

Are there any interfaces to database packages in Python?

Yes.

Python 2.3 includes the bsddb package which provides an interface to the BerkeleyDB library. Interfaces to disk-based hashes such as DBMand GDBM are also included with standard Python.

Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files, sockets or windows), and the shelve library module uses pickle and (g)dbm to create persistent mappings containing arbitrary Python objects. For better performance, you can use the cPickle module.

A more awkward way of doing things is to use pickle’s little sister, marshal. The marshal module provides very fast ways to store noncircular basic Python types to files and strings, and back again. Although marshal does not do fancy things like store instances or handle shared references properly, it does run extremely fast. For example, loading a half megabyte of data may take less than a third of a second. This often beats doing something more complex and general such as using gdbm with pickle/shelve.

Why is cPickle so slow?

By default pickle uses a relatively old and slow format for backward compatibility. You can however specify other protocol versions that are faster:

largeString = 'z' * (100 * 1024)
myPickle = cPickle.dumps(largeString, protocol=1)

If my program crashes with a bsddb (or anydbm) database open, it gets corrupted. How come?

Databases opened for write access with the bsddb module (and often by the anydbm module, since it will preferentially use bsddb) must explicitly be closed using the .close() method of the database. The underlying library caches database contents which need to be converted to on-disk form and written.

If you have initialized a new bsddb database but not written anything to it before the program crashes, you will often wind up with a zero-length file and encounter an exception the next time the file is opened.

I tried to open Berkeley DB file, but bsddb produces bsddb.error: (22, ‘Invalid argument’). Help! How can I restore my data?

Don’t panic! Your data is probably intact. The most frequent cause for the error is that you tried to open an earlier Berkeley DB file with a later version of the Berkeley DB library.

Many Linux systems now have all three versions of Berkeley DB available. If you are migrating from version 1 to a newer version use db_dump185 to dump a plain text version of the database. If you are migrating from version 2 to version 3 use db2_dump to create a plain text version of the database. In either case, use db_load to create a new native database for the latest version installed on your computer. If you have version 3 of Berkeley DB installed, you should be able to use db2_load to create a native version 2 database.

You should move away from Berkeley DB version 1 files because the hash file code contains known bugs that can corrupt your data.

Mathematics and Numerics

How do I generate random numbers in Python?

The standard module random implements a random number generator. Usage is simple:

import random
random.random()

This returns a random floating point number in the range [0, 1).

There are also many other specialized generators in this module, such as:

  • randrange(a, b) chooses an integer in the range [a, b).
  • uniform(a, b) chooses a floating point number in the range [a, b).
  • normalvariate(mean, sdev) samples the normal (Gaussian) distribution.

Some higher-level functions operate on sequences directly, such as:

  • choice(S) chooses random element from a given sequence
  • shuffle(L) shuffles a list in-place, i.e. permutes it randomly

There’s also a Random class you can instantiate to create independent multiple random number generators.

from: https://docs.python.org/2/faq/library.html

Python常见问题(4):Python库与扩展 Library and Extension FAQ相关推荐

  1. Python 常见问题 之 python 安装包下载安装速度慢 的 快速解决方法(之一)

    Python 常见问题 之 python 安装包下载速度慢 的 快速解决方法(之一) 目录

  2. python android 扩展库,Python模块进阶、标准库、扩展库

    模块进阶 Python有一套很有用的标准库(standard library).标准库会随着Python解释器,一起安装在你的电脑中的. 它是Python的一个组成部分.这些标准库是Python为你准 ...

  3. Python中第三方的库(library)、模块(module),包(package)的安装方法以及ImportError: No module named...

    Python中,想要安装第三方安装包,即third library,package等,对于熟悉的人来说,很简单. 但是对于新手,至少对于之前的我,很难,往往只是安装一个很小的包,都被搞得一头雾水. 现 ...

  4. 微课|玩转Python轻松过二级(1.6节):导入和使用标准库、扩展库对象

    适用教材: 董付国.<玩转Python轻松过二级>.清华大学出版社,2018. 第1章  Python概述 1.6  标准库与扩展库对象的导入与使用 图书购买链接 京东:https://i ...

  5. 微课|中学生可以这样学Python(1.5节):标准库与扩展库对象的导入

    适用教材: 董付国,应根球.<中学生可以这样学Python>.清华大学出版社,2017. 第1章  Python概述 1.5  标准库与扩展库对象的导入和使用 京东购买链接:https:/ ...

  6. Python导入标准库和扩展库对象的几种方式

    Python中的对象大概可以分为三类:内置对象.标准库对象和扩展库对象.其中内置对象是直接编译进解释器的可以直接使用,没有对应的Python源代码:标准库对象是随Python安装的,但是需要导入才能使 ...

  7. 【OpenCV图像处理入门学习教程六】基于Python的网络爬虫与OpenCV扩展库中的人脸识别算法比较

    OpenCV图像处理入门学习教程系列,上一篇第五篇:基于背景差分法的视频目标运动侦测 一.网络爬虫简介(Python3) 网络爬虫,大家应该不陌生了.接下来援引一些Jack-Cui在专栏<Pyt ...

  8. Python常见问题(5):Python扩展与嵌入 Extending/Embedding FAQ

    Contents Extending/Embedding FAQ Can I create my own functions in C? Can I create my own functions i ...

  9. Python 之 使用 PIL 库做图像处理

    http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html Python 之 使用 PIL 库做图像处理 1. 简介. 图像 ...

最新文章

  1. Ubuntu 系统使用命令打开某个目录下的代码文件
  2. Docker部署Zookeeper集群
  3. STL二级配置器allocate的解析
  4. MyBatis框架:延迟加载策策略、一级缓存、二级缓存
  5. django-oscar-paypal出现UnicodeEncodeError: 'latin-1' codec can't encode characters in position XXXX
  6. 投入100亿,一所新“交通大学”选址定了!校名却让网友吵翻…
  7. 迈普路由器访问控制列表配置命令_如何选购企业路由器?选购企业路由器需注意什么...
  8. yolov5模型部署:Nvidia使用TensorRT部署yolov5s模型
  9. VSCode 中使用Git实践,学会了效率翻倍
  10. Harmony OS — TextField输入框
  11. NBU备份恢复Vmware
  12. 草图大师:SketchUp 2019 for Mac
  13. 1分钟链圈 | 有趣!BM评价V神新共识算法:这是「非拜占庭容错机制」的终结者...
  14. 计算机卡慢解决方法,电脑慢的快速解决办法 四种方法电脑速度变快10倍
  15. 【Android】PC端同步手机画面
  16. 1041 考试座位号 (15 分)
  17. 编码,隐匿在计算机软硬件背后的语言读书笔记(6/7/8)
  18. oracle量子,量子计算
  19. 图片不大于100kb怎么调?怎么自定义压缩图片大小?
  20. json数据和本地存储

热门文章

  1. 支付产品必懂的会计基础及如何应用
  2. 除了数据属性,Vue 实例还提供了一些有用的实例属性与方法。它们都有前缀 $,以便与用户定义的属性区分开来。
  3. GMIS 2017大会戴文渊演讲:构建AI商业大脑
  4. 看一眼凌晨四点的哈佛,就会明白中国缺什么
  5. 腾讯创始人马化腾:14年经验得失总结
  6. JVM - 列出JVM默认参数及运行时生效参数
  7. RocketMQ-初体验RocketMQ(11)-过滤消息_自定义Java类筛选消息
  8. 小班计算机游戏教案,幼儿园小班游戏教案
  9. java越权发送邮件_已登录用户 越权 访问action方法怎么解决?
  10. C#教程5:操作算子(2)