很久前参加过今日头条的面试,遇到一个题,目前半部分是如何实现 LRU,后半部分是 Redis 中如何实现 LRU。

我的第一反应该是内存不够的场景下,淘汰旧内容的策略。LRU ... Least Recent Used,淘汰掉最不经常使用的。可以稍微多补充两句,因为计算机体系结构中,最大的最可靠的存储是硬盘,它容量很大,并且内容可以固化,但是访问速度很慢,所以需要把使用的内容载入内存中;内存速度很快,但是容量有限,并且断电后内容会丢失,并且为了进一步提升性能,还有CPU内部的 L1 Cache,L2 Cache等概念。因为速度越快的地方,它的单位成本越高,容量越小,新的内容不断被载入,旧的内容肯定要被淘汰,所以就有这样的使用背景。

LRU原理

在一般标准的操作系统教材里,会用下面的方式来演示 LRU 原理,假设内存只能容纳3个页大小,按照 7 0 1 2 0 3 0 4 的次序访问页。假设内存按照栈的方式来描述访问时间,在上面的,是最近访问的,在下面的是,最远时间访问的,LRU就是这样工作的。

但是如果让我们自己设计一个基于 LRU 的缓存,这样设计可能问题很多,这段内存按照访问时间进行了排序,会有大量的内存拷贝操作,所以性能肯定是不能接受的。

那么如何设计一个LRU缓存,使得放入和移除都是 O(1) 的,我们需要把访问次序维护起来,但是不能通过内存中的真实排序来反应,有一种方案就是使用双向链表。

基于 HashMap 和 双向链表实现 LRU 的

整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点,如图所示。

LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 head 代表双向链表的表头,tail 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。

下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:

save("key1", 7)

save("key2", 0)

save("key3", 1)

save("key4", 2)

get("key2")

save("key5", 3)

get("key2")

save("key6", 4)

相应的 LRU 双向链表部分变化如下:

s = save, g = get

总结一下核心操作的步骤:

  1. save(key, value),首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。如果不存在,需要构造新的节点,并且尝试把节点塞到队头,如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。get(key),通过 HashMap 找到 LRU 链表节点,因为根据LRU 原理,这个节点是最新访问的,所以要把节点插入到队头,然后返回缓存的值。

完整基于 Java 的代码参考如下

class DLinkedNode {String key;int value;DLinkedNode pre;DLinkedNode post;
}

LRU Cache

public class LRUCache {private Hashtable<Integer, DLinkedNode>cache = new Hashtable<Integer, DLinkedNode>();private int count;private int capacity;private DLinkedNode head, tail;public LRUCache(int capacity) {this.count = 0;this.capacity = capacity;head = new DLinkedNode();head.pre = null;tail = new DLinkedNode();tail.post = null;head.post = tail;tail.pre = head;}public int get(String key) {DLinkedNode node = cache.get(key);if(node == null){return -1; // should raise exception here.}// move the accessed node to the head;this.moveToHead(node);return node.value;}public void set(String key, int value) {DLinkedNode node = cache.get(key);if(node == null){DLinkedNode newNode = new DLinkedNode();newNode.key = key;newNode.value = value;this.cache.put(key, newNode);this.addNode(newNode);++count;if(count > capacity){// pop the tailDLinkedNode tail = this.popTail();this.cache.remove(tail.key);--count;}}else{// update the value.node.value = value;this.moveToHead(node);}}/*** Always add the new node right after head;*/private void addNode(DLinkedNode node){node.pre = head;node.post = head.post;head.post.pre = node;head.post = node;}/*** Remove an existing node from the linked list.*/private void removeNode(DLinkedNode node){DLinkedNode pre = node.pre;DLinkedNode post = node.post;pre.post = post;post.pre = pre;}/*** Move certain node in between to the head.*/private void moveToHead(DLinkedNode node){this.removeNode(node);this.addNode(node);}// pop the current tail.private DLinkedNode popTail(){DLinkedNode res = tail.pre;this.removeNode(res);return res;}
}

那么问题的后半部分,是 Redis 如何实现,这个问题这么问肯定是有坑的,那就是redis肯定不是这样实现的。

Redis的LRU实现

如果按照HashMap和双向链表实现,需要额外的存储存放 next 和 prev 指针,牺牲比较大的存储空间,显然是不划算的。所以Redis采用了一个近似的做法,就是随机取出若干个key,然后按照访问时间排序后,淘汰掉最不经常使用的,具体分析如下:

为了支持LRU,Redis 2.8.19中使用了一个全局的LRU时钟,server.lruclock,定义如下在此我向大家推荐一个架构学习交流裙。交流学习裙号:687810532,里面会分享一些资深架构师录制的视频录像,

很久前参加过今日头条的面试,遇到一个题,目前半部分是如何实现 LRU,后半部分是 Redis 中如何实现 LRU。

我的第一反应该是内存不够的场景下,淘汰旧内容的策略。LRU ... Least Recent Used,淘汰掉最不经常使用的。可以稍微多补充两句,因为计算机体系结构中,最大的最可靠的存储是硬盘,它容量很大,并且内容可以固化,但是访问速度很慢,所以需要把使用的内容载入内存中;内存速度很快,但是容量有限,并且断电后内容会丢失,并且为了进一步提升性能,还有CPU内部的 L1 Cache,L2 Cache等概念。因为速度越快的地方,它的单位成本越高,容量越小,新的内容不断被载入,旧的内容肯定要被淘汰,所以就有这样的使用背景。

LRU原理

在一般标准的操作系统教材里,会用下面的方式来演示 LRU 原理,假设内存只能容纳3个页大小,按照 7 0 1 2 0 3 0 4 的次序访问页。假设内存按照栈的方式来描述访问时间,在上面的,是最近访问的,在下面的是,最远时间访问的,LRU就是这样工作的。

但是如果让我们自己设计一个基于 LRU 的缓存,这样设计可能问题很多,这段内存按照访问时间进行了排序,会有大量的内存拷贝操作,所以性能肯定是不能接受的。

那么如何设计一个LRU缓存,使得放入和移除都是 O(1) 的,我们需要把访问次序维护起来,但是不能通过内存中的真实排序来反应,有一种方案就是使用双向链表。

基于 HashMap 和 双向链表实现 LRU 的

整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点,如图所示。

LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 head 代表双向链表的表头,tail 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。

下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:

save("key1", 7)

save("key2", 0)

save("key3", 1)

save("key4", 2)

get("key2")

save("key5", 3)

get("key2")

save("key6", 4)

相应的 LRU 双向链表部分变化如下:

s = save, g = get

总结一下核心操作的步骤:

  1. save(key, value),首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。如果不存在,需要构造新的节点,并且尝试把节点塞到队头,如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。get(key),通过 HashMap 找到 LRU 链表节点,因为根据LRU 原理,这个节点是最新访问的,所以要把节点插入到队头,然后返回缓存的值。

完整基于 Java 的代码参考如下

class DLinkedNode {String key;int value;DLinkedNode pre;DLinkedNode post;
}

LRU Cache

public class LRUCache {private Hashtable<Integer, DLinkedNode>cache = new Hashtable<Integer, DLinkedNode>();private int count;private int capacity;private DLinkedNode head, tail;public LRUCache(int capacity) {this.count = 0;this.capacity = capacity;head = new DLinkedNode();head.pre = null;tail = new DLinkedNode();tail.post = null;head.post = tail;tail.pre = head;}public int get(String key) {DLinkedNode node = cache.get(key);if(node == null){return -1; // should raise exception here.}// move the accessed node to the head;this.moveToHead(node);return node.value;}public void set(String key, int value) {DLinkedNode node = cache.get(key);if(node == null){DLinkedNode newNode = new DLinkedNode();newNode.key = key;newNode.value = value;this.cache.put(key, newNode);this.addNode(newNode);++count;if(count > capacity){// pop the tailDLinkedNode tail = this.popTail();this.cache.remove(tail.key);--count;}}else{// update the value.node.value = value;this.moveToHead(node);}}/*** Always add the new node right after head;*/private void addNode(DLinkedNode node){node.pre = head;node.post = head.post;head.post.pre = node;head.post = node;}/*** Remove an existing node from the linked list.*/private void removeNode(DLinkedNode node){DLinkedNode pre = node.pre;DLinkedNode post = node.post;pre.post = post;post.pre = pre;}/*** Move certain node in between to the head.*/private void moveToHead(DLinkedNode node){this.removeNode(node);this.addNode(node);}// pop the current tail.private DLinkedNode popTail(){DLinkedNode res = tail.pre;this.removeNode(res);return res;}
}

那么问题的后半部分,是 Redis 如何实现,这个问题这么问肯定是有坑的,那就是redis肯定不是这样实现的。

Redis的LRU实现

如果按照HashMap和双向链表实现,需要额外的存储存放 next 和 prev 指针,牺牲比较大的存储空间,显然是不划算的。所以Redis采用了一个近似的做法,就是随机取出若干个key,然后按照访问时间排序后,淘汰掉最不经常使用的,具体分析如下:

为了支持LRU,Redis 2.8.19中使用了一个全局的LRU时钟,server.lruclock,定义如下,

#define REDIS_LRU_BITS 24
unsigned lruclock:REDIS_LRU_BITS; /* Clock for LRU eviction */

默认的LRU时钟的分辨率是1秒,可以通过改变REDIS_LRU_CLOCK_RESOLUTION宏的值来改变,Redis会在serverCron()中调用updateLRUClock定期的更新LRU时钟,更新的频率和hz参数有关,默认为100ms一次,如下,

#define REDIS_LRU_CLOCK_MAX ((1<<REDIS_LRU_BITS)-1) /* Max value of obj->lru */
#define REDIS_LRU_CLOCK_RESOLUTION 1 /* LRU clock resolution in seconds */
void updateLRUClock(void) {server.lruclock = (server.unixtime / REDIS_LRU_CLOCK_RESOLUTION) &REDIS_LRU_CLOCK_MAX;
}

server.unixtime是系统当前的unix时间戳,当 lruclock 的值超出REDIS_LRU_CLOCK_MAX时,会从头开始计算,所以在计算一个key的最长没有访问时间时,可能key本身保存的lru访问时间会比当前的lrulock还要大,这个时候需要计算额外时间,如下,

/* Given an object returns the min number of seconds the object was never* requested, using an approximated LRU algorithm. */
unsigned long estimateObjectIdleTime(robj *o) {if (server.lruclock >= o->lru) {return (server.lruclock - o->lru) * REDIS_LRU_CLOCK_RESOLUTION;} else {return ((REDIS_LRU_CLOCK_MAX - o->lru) + server.lruclock) *REDIS_LRU_CLOCK_RESOLUTION;}
}

Redis支持和LRU相关淘汰策略包括,

  • volatile-lru 设置了过期时间的key参与近似的lru淘汰策略allkeys-lru 所有的key均参与近似的lru淘汰策略

当进行LRU淘汰时,Redis按如下方式进行的,

....../* volatile-lru and allkeys-lru policy */else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU){for (k = 0; k < server.maxmemory_samples; k++) {sds thiskey;long thisval;robj *o;de = dictGetRandomKey(dict);thiskey = dictGetKey(de);/* When policy is volatile-lru we need an additional lookup* to locate the real key, as dict is set to db->expires. */if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)de = dictFind(db->dict, thiskey);o = dictGetVal(de);thisval = estimateObjectIdleTime(o);/* Higher idle time is better candidate for deletion */if (bestkey == NULL || thisval > bestval) {bestkey = thiskey;bestval = thisval;}}}......

Redis会基于server.maxmemory_samples配置选取固定数目的key,然后比较它们的lru访问时间,然后淘汰最近最久没有访问的key,maxmemory_samples的值越大,Redis的近似LRU算法就越接近于严格LRU算法,但是相应消耗也变高,对性能有一定影响,样本值默认为5。

总结

看来,虽然一个简单的概念,在工业界的产品中,为了追求空间的利用率,也会采用权衡的实现方案。

默认的LRU时钟的分辨率是1秒,可以通过改变REDIS_LRU_CLOCK_RESOLUTION宏的值来改变,Redis会在serverCron()中调用updateLRUClock定期的更新LRU时钟,更新的频率和hz参数有关,默认为100ms一次,如下,

#define REDIS_LRU_CLOCK_MAX ((1<<REDIS_LRU_BITS)-1) /* Max value of obj->lru */
#define REDIS_LRU_CLOCK_RESOLUTION 1 /* LRU clock resolution in seconds */
void updateLRUClock(void) {server.lruclock = (server.unixtime / REDIS_LRU_CLOCK_RESOLUTION) &REDIS_LRU_CLOCK_MAX;
}

server.unixtime是系统当前的unix时间戳,当 lruclock 的值超出REDIS_LRU_CLOCK_MAX时,会从头开始计算,所以在计算一个key的最长没有访问时间时,可能key本身保存的lru访问时间会比当前的lrulock还要大,这个时候需要计算额外时间,如下,在此我向大家推荐一个架构学习交流裙。交流学习裙号:687810532,里面会分享一些资深架构师录制的视频录像

/* Given an object returns the min number of seconds the object was never* requested, using an approximated LRU algorithm. */
unsigned long estimateObjectIdleTime(robj *o) {if (server.lruclock >= o->lru) {return (server.lruclock - o->lru) * REDIS_LRU_CLOCK_RESOLUTION;} else {return ((REDIS_LRU_CLOCK_MAX - o->lru) + server.lruclock) *REDIS_LRU_CLOCK_RESOLUTION;}
}

Redis支持和LRU相关淘汰策略包括,

  • volatile-lru 设置了过期时间的key参与近似的lru淘汰策略allkeys-lru 所有的key均参与近似的lru淘汰策略

当进行LRU淘汰时,Redis按如下方式进行的,

....../* volatile-lru and allkeys-lru policy */else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU){for (k = 0; k < server.maxmemory_samples; k++) {sds thiskey;long thisval;robj *o;de = dictGetRandomKey(dict);thiskey = dictGetKey(de);/* When policy is volatile-lru we need an additional lookup* to locate the real key, as dict is set to db->expires. */if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)de = dictFind(db->dict, thiskey);o = dictGetVal(de);thisval = estimateObjectIdleTime(o);/* Higher idle time is better candidate for deletion */if (bestkey == NULL || thisval > bestval) {bestkey = thiskey;bestval = thisval;}}}......

Redis会基于server.maxmemory_samples配置选取固定数目的key,然后比较它们的lru访问时间,然后淘汰最近最久没有访问的key,maxmemory_samples的值越大,Redis的近似LRU算法就越接近于严格LRU算法,但是相应消耗也变高,对性能有一定影响,样本值默认为5。

总结

看来,虽然一个简单的概念,在工业界的产品中,为了追求空间的利用率,也会采用权衡的实现方案。

分享一个今日头条的面试题——LRU原理和Redis实现相关推荐

  1. LRU原理和Redis实现——一个今日头条的面试题

    很久前参加过今日头条的面试,遇到一个题,目前半部分是如何实现 LRU,后半部分是 Redis 中如何实现 LRU. 我的第一反应是操作系统课程里学过,应该是内存不够的场景下,淘汰旧内容的策略.LRU ...

  2. LRU原理和Redis实现——一个今日头条的面试题(转载)

    很久前参加过今日头条的面试,遇到一个题,目前半部分是如何实现 LRU,后半部分是 Redis 中如何实现 LRU. 我的第一反应是操作系统课程里学过,应该是内存不够的场景下,淘汰旧内容的策略.LRU ...

  3. 今日头条的面试题:LRU原理和Redis实现

    很久前参加过今日头条的面试,遇到一个题,目前半部分是如何实现 LRU,后半部分是 Redis 中如何实现 LRU. 我的第一反应是操作系统课程里学过,应该是内存不够的场景下,淘汰旧内容的策略.LRU ...

  4. 【039期】头条面试:说一说 LRU 原理和 Redis 如何实现?

    >>号外:关注"Java精选"公众号,回复"面试资料",免费领取资料!"Java精选面试题"小程序,3000+ 道面试题在线刷, ...

  5. java 今日头条面试_【面试分享】今日头条Java面试题,复习资料完整版PDF下载

    2021年,字节的技术岗依旧是最香的,而且随着字节的规模不断扩大,机会也越来越多.马上迎来金三银四,很多小伙伴都在撸题备战中. 2021年,字节的技术岗依旧是最香的,而且随着字节的规模不断扩大,机会也 ...

  6. 惊了!原来这就是今日头条的面试题!

    最近收到了一个大兄弟念叨,说他去面了今日头条,一路下来感觉自己还是蛮顺畅的,然后顺带给我大致说了一下今日头条的面试题. 顺便插个话,想要拥有百次面试的磨练吗,想要的小伙伴可以戳这里暗号:CSDN即可拥 ...

  7. 2020年开春最新面试!今日头条 Android 面试题及答案 (已拿到 offer)

    面试时间:2019.12.29 1~3面.2020.1.03 4~6面.2020.1.06 HR面 面试部门 + 岗位:商业化 - 高级 Android 开发工程师 面试感想:整体面得比较累,基础面. ...

  8. 分享一个超级狠的面试题与经验

    一定yaokan!!! 1.说说你对缓存的理解? 1.使用缓存的目的: 提高应用程序的性能,减少到数据库的访问次数 2.缓存的介质(缓存的存储位置) 内存:临时性存储空间 存取数据快  减少网络通信量 ...

  9. 今日头条的面试题(部分)

    1.给定一个有序数组,输出平方后消重结果中数字的个数,每次删除一个最大的数 比如: -2, -2, -1,0,1消重后有3个数: 0,0,1,2,3,4,5,5,6消重后有7个数 O(n)复杂度解法: ...

最新文章

  1. 浏览器内核_测量时间:从Java到内核再到
  2. C指针原理(18)-C指针基础
  3. xampp mysql 卸载_卸载Xampp并安装apache + mysql + php 过程
  4. oracle差异收集明细,Oracle收集表的数据与统计信息差异
  5. java虚拟机之三--理解Java虚拟机体系结构
  6. Android开发基础(四大组件及Intent)
  7. 19年北理考研计算机复试分数多少钱,2019年北京理工大学考研复试分数线已出现...
  8. onfigure: error: cannot find install-sh, install.sh, or shtool in
  9. python机器学习生物信息学
  10. 自备一个刷BIOS神器
  11. 华人运通高合HiPhiX维修手册电路图技术培训用户手册资料
  12. DMS/BSD/ADAS
  13. JavaScript实现网页截屏方法总结
  14. vue rsa加密 php解密,Vue项目中的RSA加解密
  15. MP4学习(四)ts-mp4源码阅读(2)MP4的解析流程
  16. VASP - Bader Charge Analysis
  17. 关闭腾讯网迷你版(登录qq后的广告弹窗)
  18. codeforces 574B 暴力+复杂度分析
  19. SAP ABAP GUI_DOWNLOAD中下载乱码的问题
  20. 高斯分布数学性质及推导(一):如何证明高斯分布的积分为1

热门文章

  1. Linux学习-修复win7下安装centos7双系统后,没有win7启动项
  2. php ms2,php-python2-python3跨语言rsa公钥加密私钥解密
  3. 基于android的防抖音直播,通过AirDroid无线投屏,在抖音上直播手机游戏
  4. Ubuntu16.04+Cuda8.0+Caffe+ Opencv3.2+Matlab2015b的配置、安装与编译(四)
  5. 这个感恩节,有三句话要说
  6. 【论文阅读】AI20 A Dirichlet process biterm-based mixture model for short text stream clustering
  7. 安卓高仿QQ头像截取升级版
  8. 暗影精灵4 安装双系统方法:win10 + ubuntu16.04 LTS
  9. Docker 的未来
  10. 给Android开发者的kotlin使用