电子技术——伪NMOS逻辑电路

伪NMOS逻辑反相器

下图展示了从CMOS修改而来的CMOS反相器:


在这里只有 Q N Q_N QN​ 接入输入端电压,同时 Q P Q_P QP​ 接地。 Q P Q_P QP​ 相当于是 Q N Q_N QN​ 的负载。当我们深入研究这个电路之前,首先这个电路存在一个显然的优点:每一个输入变量只连接了一个晶体管。因此受到扇入效应影响的传播延迟可以得到改善。

图(a)很像CMOS反相器,因此我们称为伪NMOS逻辑反相器。为了比较,我们将简短的介绍一下伪NMOS逻辑反相器两个旧的形式。最早的使用增强型MOSFET作为负载,如图(b)。这个电路的缺点是电压摆幅太小,噪声容限太低,具有过高的静态功率耗散。由于以上原因,这种电路已经过时了,在这之后被耗散型NMOS负载所替代了,如图©。

首先,当耗散型NMOS处于 V G S = 0 V_{GS} = 0 VGS​=0 的时候,相当于一个恒流源,可以作为一个绝佳的负载源。然而,不久人们意识到耗散型NMOS受到体效应的影响,工作点可能会发生较大的偏移,导致电流源性能下降。虽然耗散型NMOS负载的性能要优于增强型NMOS负载,但是生产耗散型NMOS负载需要额外的步骤和成本。尽管耗散型负载的NMOS已经几乎完全被CMOS所替代,我们依然能够在特定的场合看到耗散型负载的NMOS。基于以上,本书中我们不再讲解耗散型负载的NMOS。

伪NMOS逻辑反相器很像过去的耗散型负载的NMOS,但是性能相对得到提升,而且还可以直接兼容现有的CMOS电路。

静态特性

首先, Q N Q_N QN​ 的漏极电流为:

i D N = 1 2 k n ( v I − V t ) 2 , v O ≥ v I − V t i_{DN} = \frac{1}{2} k_n (v_I -V_t)^2, v_O \ge v_I - V_t iDN​=21​kn​(vI​−Vt​)2,vO​≥vI​−Vt​

i D N = k n [ ( v I − V t ) v O − 1 2 v O 2 ] , v O ≤ v I − V t i_{DN} = k_n[(v_I - V_t)v_O - \frac{1}{2}v_O^2], v_O \le v_I - V_t iDN​=kn​[(vI​−Vt​)vO​−21​vO2​],vO​≤vI​−Vt​

i D P = 1 2 k p ( V D D − V t ) 2 , v O ≤ V t i_{DP} = \frac{1}{2}k_p(V_{DD} - V_t)^2, v_O \le V_t iDP​=21​kp​(VDD​−Vt​)2,vO​≤Vt​

i D P = k p [ ( V D D − V t ) ( V D D − v O ) − 1 2 ( V D D − v O ) 2 ] , v O ≥ V t i_{DP} = k_p[(V_{DD} - V_t)(V_{DD} - v_O) - \frac{1}{2}(V_{DD} - v_O)^2], v_O \ge V_t iDP​=kp​[(VDD​−Vt​)(VDD​−vO​)−21​(VDD​−vO​)2],vO​≥Vt​

我们在这里假设 V t n = − V t p = V t V_{tn} = -V_{tp} = V_t Vtn​=−Vtp​=Vt​ 来简化计算。发现 i D N i_{DN} iDN​ 和 v I v_I vI​ 的两个输入状态有关,而 i D P i_{DP} iDP​ 无关,我们可以做出驱动负载曲线图:

  1. 负载曲线当 v I = V D D v_I = V_{DD} vI​=VDD​ 的时候表现出一个较小的饱和负载电流,可以在设计上使得 k n k_n kn​ 比 k p k_p kp​ 大4-10倍即可。这种反相器称为比例型,并且比例为 r ≡ k n / k p r \equiv k_n / k_p r≡kn​/kp​ 比例参数决定了VTC的全部特征,包括 V O L , V I L , V I H V_{OL},V_{IL},V_{IH} VOL​,VIL​,VIH​ 等等,也决定了噪声容限。选择一个较高的 r r r 可以减小 V O L V_{OL} VOL​ 并且获得一个较大的噪声容限。
  2. 只有 v O ≤ V t v_O \le V_t vO​≤Vt​ 的时候 Q P Q_P QP​ 才表现为电流源,其他情况 Q P Q_P QP​ 将进入三极管区。

考虑两个极端的情况,当 v I = 0 v_I = 0 vI​=0 的时候, Q N Q_N QN​ 截止而 Q P Q_P QP​ 也工作在截止区,此时没有电流,静态功率为零,对应图中的点A。当 v I = V D D v_I = V_{DD} vI​=VDD​ 的时候,对应于点E。相对于CMOS反相器,此时 V O L V_{OL} VOL​ 并不等于零,这是一个显然的缺点。另外一个缺点是存在静态功率 P D = I s t a t × V D D P_D = I_{stat} \times V_{DD} PD​=Istat​×VDD​ 。

VTC特性

下图展示了伪NMOS的VTC特性曲线:


如图所示,在VTC曲线总共有四个区域,对应了 Q N Q_N QN​ 和 Q P Q_P QP​ 的四种的状态不同的区域,如图:


对于区域一(AB段), Q N Q_N QN​ 截止而 Q P Q_P QP​ 处于三极管区,此时:

v O = V O H = V D D v_O = V_{OH} = V_{DD} vO​=VOH​=VDD​

对于区域二(BC段), Q N Q_N QN​ 饱和而 Q P Q_P QP​ 仍然处于三极管区,通过联立漏极电流方程,假设 k n = r k p k_n = rk_p kn​=rkp​ 我们得到:

v O = V t + ( V D D − V t ) 2 − r ( v I − V t ) 2 v_O = V_t + \sqrt{(V_{DD} - V_t)^2 -r(v_I - V_t)^2} vO​=Vt​+(VDD​−Vt​)2−r(vI​−Vt​)2 ​

我们带入 d v O / d v I = − 1 d v_O / d v_I = -1 dvO​/dvI​=−1 并且 v I = V I L v_I = V_{IL} vI​=VIL​ :

V I L = V t + V D D − V t r ( r + 1 ) V_{IL} = V_t + \frac{\sqrt{V_{DD} - V_t}}{\sqrt{r(r+1)}} VIL​=Vt​+r(r+1) ​VDD​−Vt​ ​​

中点 V M V_M VM​ 当 v O = v I v_O = v_I vO​=vI​ :

V M = V t + V D D − V t r + 1 V_M = V_t + \frac{\sqrt{V_{DD} - V_t}}{\sqrt{r + 1}} VM​=Vt​+r+1 ​VDD​−Vt​ ​​

最后,区域二的终点C可以通过带入 v O = v I − V t v_O = v_I - V_t vO​=vI​−Vt​ ,这是 Q N Q_N QN​ 的饱和条件,C点之后进入三极管区。

对于区域三,这个区域我们不感兴趣,终点D可以由 v O = V t v_O = V_t vO​=Vt​ 得到。

对于区域四(DE段),带入漏极电流方程可以得到:

v O = ( v I − V t ) − ( v I − V t ) 2 − 1 r ( V D D − V t ) 2 v_O = (v_I - V_t) - \sqrt{(v_I - V_t)^2 - \frac{1}{r}(V_{DD} - V_t)^2} vO​=(vI​−Vt​)−(vI​−Vt​)2−r1​(VDD​−Vt​)2 ​

带入 d v O / d v I = − 1 d v_O / d v_I = -1 dvO​/dvI​=−1 以及 v I = V I H v_I = V_{IH} vI​=VIH​ 得到:

V I H = V t + 2 3 r ( V D D − V t ) V_{IH} = V_t + \frac{2}{\sqrt{3r}}(V_{DD} - V_t) VIH​=Vt​+3r ​2​(VDD​−Vt​)

同时带入 v I = V D D v_I = V_{DD} vI​=VDD​ 得到:

V O L = ( V D D − V t ) [ 1 − 1 − 1 r ] V_{OL} = (V_{DD} - V_t)[1 - \sqrt{1 - \frac{1}{r}}] VOL​=(VDD​−Vt​)[1−1−r1​ ​]

此时的静态饱和电流为:

I s t a t = 1 2 k p ( V D D − V t ) 2 I_{stat} = \frac{1}{2} k_p (V_{DD} - V_t)^2 Istat​=21​kp​(VDD​−Vt​)2

最后:

N M L = V t − ( V D D − V t ) [ 1 − 1 − 1 r − 1 r ( r + 1 ) ] NM_L = V_t - (V_{DD} - V_t)[1 - \sqrt{1 - \frac{1}{r}} - \frac{1}{\sqrt{r(r+1)}}] NML​=Vt​−(VDD​−Vt​)[1−1−r1​ ​−r(r+1) ​1​]

N M H = ( V D D − V t ) ( 1 − 2 3 r ) NM_H = (V_{DD} - V_t) (1 - \frac{2}{\sqrt{3r}}) NMH​=(VDD​−Vt​)(1−3r ​2​)

最后,我们发现 V D D V_{DD} VDD​ 和 V t V_t Vt​ 由工艺决定,唯一可以控制的参数是 r r r 。

动态响应

通过平均估计法,我们可以算出:

t P L H = α p C k p V D D t_{PLH} = \frac{\alpha_p C}{k_p V_{DD}} tPLH​=kp​VDD​αp​C​

这里:

α p = 2 / [ 7 4 − 3 ( V t V D D ) + ( V t V D D ) 2 ] \alpha_p = 2 / [\frac{7}{4} - 3(\frac{V_t}{V_{DD}}) + (\frac{V_t}{V_{DD}})^2] αp​=2/[47​−3(VDD​Vt​​)+(VDD​Vt​​)2]

同样的:

t P H L ≃ α n C k n V D D t_{PHL} \simeq \frac{\alpha_n C}{k_n V_{DD}} tPHL​≃kn​VDD​αn​C​

这里:

α n = 2 / [ 1 + 3 4 ( 1 − 1 r ) − ( 3 − 1 r ) ( V t V D D ) + ( V t V D D ) 2 ] \alpha_n = 2 / [1 + \frac{3}{4}(1 - \frac{1}{r}) - (3 - \frac{1}{r})(\frac{V_t}{V_{DD}}) + (\frac{V_t}{V_{DD}})^2] αn​=2/[1+43​(1−r1​)−(3−r1​)(VDD​Vt​​)+(VDD​Vt​​)2]

对于极大的 r r r 我们可以估计:

α n ≃ α p \alpha_n \simeq \alpha_p αn​≃αp​

尽管伪NMOS反相器的动态响应和CMOS反相器的差不多,但是伪NMOS反相器存在一个特殊的问题,因为 k p k_p kp​ 比 k n k_n kn​ 小 r r r 倍。那么 t P L H t_{PLH} tPLH​ 大约比 t P H L t_{PHL} tPHL​ 大 r r r 倍。此时电路表现出一种非对称的动态响应。然而,与CMOS反相器相比,伪NMOS反相器的扇入数量更少,因此具有更小的有效电容。

设计

设计伪NMOS逻辑电路包括选择比例 r r r 和每个MOS的宽长比。

  1. 比例 r r r 决定了VTC曲线中所有的断点。越大的 r r r 那么 V O L V_{OL} VOL​ 就越小,具有更大的噪声容限,但是越大的 r r r 会使得反相器的动态响应越不对称,对于PMOS需要更大的硅面积。因此,选择 r r r 需要在噪声容限和硅面积和 t P t_P tP​ 中做出妥协。
  2. 一旦 r r r 确定,我们可以选择较小的 ( W / L ) n (W/L)_n (W/L)n​ 来减小器件体积并且能获得一个较小的 C C C 。同样的,较小的 ( W / L ) p (W/L)_p (W/L)p​ 可以保持较小的 I s t a t I_{stat} Istat​ 和 P D P_D PD​ 。另一方面,我们也可以选择较大的 W / L W/L W/L 来获得较低的 t P t_P tP​ 和更快的响应速度。对于普通(高速)器件, ( W / L ) p (W/L)_p (W/L)p​ 通常在 50uA 到 100uA 之间,对于 V D D = 1.8 V V_{DD} = 1.8V VDD​=1.8V ,此时 P D P_D PD​ 在 90uW 和 180uW 之间。

门电路

伪NMOS逻辑电路还可以用于门电路,如下图是一个四变量输入的NOR和NAND逻辑门电路:


与CMOS相比,伪NMOS的NOR和NAND只需要五个晶体管即可,而CMOS则需要八个。在伪NMOS逻辑门中,NOR比NAND更受欢迎,因为NOR是晶体管并联结构,可以降低NMOS的尺寸。

总结

伪NMOS逻辑电路适合大部分时间都是高电平输出的逻辑门电路(此时静态功耗为零,只有低电平输出才有静态功耗)。此外,若从高到低的电平跃迁是主要的,那么就可以根据需求降低传播延迟。一种特殊是设计是内存芯片的地址解码器和只读储存器。

电子技术——伪NMOS逻辑电路相关推荐

  1. 数字电子技术基础 - 时序逻辑电路

    1 概述 1.1 时序逻辑电路的特点 功能:任一时刻的输出不仅取决于该时刻的输入,还与电路原来的状态有关. 电路结构:包含存储电路和组合电路:存储器状态和输入变量共同决定输出. 1.2 时序电路的一般 ...

  2. 数字逻辑对偶式_数字电子技术实验——组合逻辑电路的设计

    实验目的: (1)掌握组合逻辑电路设计的一般步骤 (2)掌握用TTL基本门电路进行组合电路设计的方法 (3)学会如何查找线路的故障 实验仪器: (1)数字电路试验箱 (2)数字万用表 (3)集成块若干 ...

  3. 数字电子技术之时序逻辑电路

    时序逻辑电路是比较重要的内容,里面的知识点在很多地方都会应用到,比如强化学习领域经常要用到下一个状态对当前状态产生的影响,所以这块"硬骨头"一定要啃下来 分析与设计 计数器 计数器 ...

  4. 数字电子技术之组合逻辑电路

    分析与设计 常用中规模组合逻辑器件 加法器 数值比较器 编码器 译码器 数据选择器 数据分配器 竞争与冒险 分析与设计 组合逻辑电路的分析方法 [例1] 逐层推导得到函数表达式: 最终得到F表达式: ...

  5. 以下不属于时序逻辑电路的有_电工电子技术(不建议浪费时间学习的科目)

    (声明:本资料来自网络,侵权请告知删除.文末有全套高清版资料下载链接,敬请下载学习) 2019年7月在天津召开的土力学及岩土工程年会上,有一场青年教师的土力学讲课竞赛,由我作一些点评,其中关于土颗粒与 ...

  6. 《数字电子技术基础》6.4 时序逻辑电路——设计方法(FSM)有限状态机

    前言 <数字电子技术基础>第6.4节学习笔记,本人在编写Verilog时序逻辑代码时,关于这一部分的状态图需要好好学一下. 6.4.1 同步时序逻辑电路的设计方法 一般步骤 一.逻辑抽象, ...

  7. 《数字电子技术基础》4.4/6.5 组合逻辑/时序逻辑电路中的竞争-冒险

    前言 <数字电子技术基础>第4.4节和第6.5节 组合逻辑电路和时序逻辑电路中的竞争-冒险现象学习笔记 4.4 组合逻辑电路中的竞争-冒险 4.4.1 竞争-冒险现象及其成因 之前讨论组合 ...

  8. multism中ui和uo应该怎么表示_Multisim在模拟与数字电子技术中的应用(最终版)最新版...

    <Multisim在模拟与数字电子技术中的应用.doc>由会员分享,可免费在线阅读全文,更多与<Multisim在模拟与数字电子技术中的应用(最终版)>相关文档资源请在帮帮文库 ...

  9. 最全最走心:数电-数字电子技术 复试/面试知识点大总结 (3-6更新中)

     · 本文原文源自星峰研学电子通信电气考研,并在偏离重点的原文基础上大改特改.原文如下,由自己选择: <数字电子技术>经典面试121题(一) <数字电子技术>经典面试121题( ...

最新文章

  1. 基于RDKit探索DrugBank(demo)
  2. ​网页图表Highcharts实践教程之图表代码构成
  3. svn版本控制git(github)
  4. javascript技术教程蔡敏_程序员都必掌握的前端教程之JavaScript基础教程(上)
  5. OPenCV膨胀函数dilate()的使用
  6. 电商等大型网站高可用,高负载架构借鉴方案(转载)
  7. react学习(22)---需要export
  8. 前端学习(3001):vue+element今日头条管理--项目初始化总结
  9. python对象的引用_Python 对象引用、可变性和垃圾回收
  10. java自动化高频面试题
  11. Helix QAC软件下载安装使用试用
  12. 2020年四季度混合型基金数据分析
  13. VPX视频叠加板卡学习资料第199篇:基于Xilinx FPGA XC5VFX100T的6U VPX视频叠加板卡
  14. 不恢复余数除法原理_小学数学基础概念大全,家长收藏起来,一条一条讲给孩子听。能全背下来的,考试也不带怕的了!...
  15. 下载英文图书的几个网站
  16. [高通SDM450][Android9.0]CTA认证--蓝牙、WIFI申请权限
  17. windows下安装you-get的简要记录
  18. 域名遭到劫持怎么办?
  19. [译] 为数字优先新闻编辑室开发文本编辑器
  20. java abc输出bca_面试题24(写一个函数,例如:给你的 a b c 则输出 abc acb bac bca cab c...

热门文章

  1. linux - linux查看磁盘空间/查看文件分区(挂载点)/查看文件大小
  2. 全球IT服务“十分天下有其一”,中软国际的底气来自何方?
  3. DSX2-8000如何校准?校准流程?
  4. github获取token
  5. 细细私语,看喜欢的书
  6. 玩转全志F1C200s 烧录 flash 镜像
  7. Oracle数据库后端优化建议
  8. 嵌套交叉验证的一致特征(Consensus features nested cross-validation)
  9. 听音乐用什么蓝牙耳机好?听音乐音质好的蓝牙耳机推荐
  10. 考研复试——线性代数