importtensorflow as tf

tf.reset_default_graph()#配置神经网络的参数

INPUT_NODE = 784OUTPUT_NODE= 10IMAGE_SIZE= 28NUM_CHANNELS= 1NUM_LABELS= 10

#第一层卷积层的尺寸和深度

CONV1_DEEP = 32CONV1_SIZE= 5

#第二层卷积层的尺寸和深度

CONV2_DEEP = 64CONV2_SIZE= 5

#全连接层的节点个数

FC_SIZE = 512

#定义卷积神经网络的前向传播过程。这里添加了一个新的参数train,用于区分训练过程和测试过程#在这个程序中将用到dropout方法,dropout方法可以进一步提升模型可靠性并防止过拟合#dropout过程只在训练时使用

definference(input_tensor, train, regularizer):#声明第一层卷积层的变量并实现前向传播过程。

#通过使用不同的命名空间来隔离不同层的变量,这可以让每一层中的变量命名

#只需要考虑当前层的作用,而不需要担心重命名的问题。和标准LeNet-5模型不大一样,

#这里定义的卷积层输入为28*28*1的原始MNIST图片像素,因为卷积层中使用了全0填充

#所以输出为28*28*32的矩阵

with tf.variable_scope('layer1-conv1'):

conv1_weights= tf.get_variable("weight",

[CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],

initializer=tf.truncated_normal_initializer(stddev=0.1)

)

conv1_biases= tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))#使用边长为5,深度为32的过滤器,过滤器移动的步长为1,且使用全0填充

conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')

relu1=tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))#实现第二城池化层的前向传播过程。这里选用最大池化层,池化层过滤器的边长为2,

#使用全0填充且移动的步长为2.这一层的输入是上一层的输出,也就是28*28*32

#的矩阵。输出为14*14*32的矩阵

with tf.name_scope('layer2-pool1'):

pool1= tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')#声明第三层卷积层的变量并实现前向传播过程。这一层输入为14*14*32的矩阵

#输出为14*14*64的矩阵

with tf.variable_scope('layer3-conv2'):

conv2_weights= tf.get_variable("weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],

initializer=tf.truncated_normal_initializer(stddev=0.1))

conv2_biases= tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))#使用边长为5,深度为64的过滤器,过滤器移动的步长为1,且使用全0填充

conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')

relu2=tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))#实现第四层池化层的前向传播过程。这一层和第二层的结构是一样的。这一层的输入为

#14*14*64的矩阵,输出为7*7*64的矩阵

with tf.name_scope('layer4-pool2'):

pool2= tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')#将第四层池化层的输出转化为第五层全连接层的输入格式,第四层的输出为7*7*64的矩阵

#然而第五层全连接层需要的输入格式为向量,所以在这里需要将这个7*7*64的矩阵拉直成一个向量

#pool2.get_shape函数可以得到第四层输出矩阵的维度而不需要手工计算

#注意因为每一层神经网络的输入输出都为一个batch的矩阵,所以这里得到的维度也包含了一个batch中数据的个数

pool_shape =pool2.get_shape().as_list()#计算将矩阵拉直成向量之后的长度,这个长度就是矩阵长宽及深度的乘积。注意在这里pool_shape[0]为一个batch中数据的个数

nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]#通过tf.reshape函数将第四层的输出变成一个batch向量

reshaped =tf.reshape(pool2, [pool_shape[0], nodes])#声明第五层全连接的变量并实现前向传播过程。这一层的输入是拉直之后的一组向量

#向量长度为3136,输出是一组长度为512的向量。

#引入了dropout的概念,dropout在训练时会随机将部分节点的输出改为0

#dropout可以避免过拟合问题,从而使得模型在测试数据上的效果更好

#dropout一般只在全连接层而不是卷积层或者池化层使用

with tf.variable_scope('layer5-fc1'):

fc1_weights= tf.get_variable("weight", [nodes, FC_SIZE],

initializer=tf.truncated_normal_initializer(stddev=0.1))#只用全连接层的权重需要加入正则化

if regularizer !=None:

tf.add_to_collection('losses', regularizer(fc1_weights))

fc1_biases= tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))

fc1= tf.nn.relu(tf.matmul(reshaped, fc1_weights) +fc1_biases)iftrain:

fc1= tf.nn.dropout(fc1, 0.5)#声明第六层的变量并实现前向传播过程。这一层的输入为一组长度为512的向量

#输出为一组长度为10的向量。这一层的输出通过Softmax之后就得到了最后的分类结果

with tf.variable_scope('layer6-fc2'):

fc2_weights= tf.get_variable("weight", [FC_SIZE, NUM_LABELS],

initializer=tf.truncated_normal_initializer(stddev=0.1))if regularizer !=None:

tf.add_to_collection('losses', regularizer(fc2_weights))

fc2_biases= tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))

logit= tf.matmul(fc1, fc2_weights) +fc2_biasesreturnlogitimportosimportnumpy as npfrom tensorflow.examples.tutorials.mnist importinput_data#配置神经网络的参数

BATCH_SIZE = 100LEARNING_RATE_BASE= 0.8LEARNING_RATE_DECAY= 0.99REGULARAZTION_RATE= 0.0001TRAINING_STEPS= 20000MOVING_AVERAGE_DECAY= 0.99

#模型保存的路径和文件名

MODEL_SAVE_PATH = "E:\\MNIST_data\\"MODEL_NAME= "model1.ckpt"

deftrain(mnist):#定义输入输出placeholder

x = tf.placeholder(tf.float32, [BATCH_SIZE,#第一维表示一个batch中样例的个数

IMAGE_SIZE,

IMAGE_SIZE,#第二维和第三维表示图片的尺寸

NUM_CHANNELS], #第四维表示图片的深度,对于RGB格式的图片,深度为5

name='x-input')

y_= tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')

regularizer=tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)#直接使用inference中定义的前向传播过程

y =inference(x, True, regularizer)

global_step= tf.Variable(0, trainable=False)#定义损失函数、学习率、滑动平均操作以及训练过程

variable_averages =tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)

variable_averages_op=variable_averages.apply(tf.trainable_variables())

cross_entropy= tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))

cross_entropy_mean=tf.reduce_mean(cross_entropy)

loss= cross_entropy_mean + tf.add_n(tf.get_collection('losses'))

learning_rate= tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples /BATCH_SIZE,

LEARNING_RATE_DECAY)

train_step= tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step);

with tf.control_dependencies([train_step, variable_averages_op]):

train_op= tf.no_op(name='train')#初始化Tensorflow持久化类

saver =tf.train.Saver()

with tf.Session() as sess:

tf.global_variables_initializer().run()#在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独立的程序来完成

for i inrange(TRAINING_STEPS):

xs, ys=mnist.train.next_batch(BATCH_SIZE)

reshaped_xs=np.reshape(xs, (BATCH_SIZE,

IMAGE_SIZE,

IMAGE_SIZE,

NUM_CHANNELS))

_, loss_value, step= sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})#每40轮保存一次模型

if i % 40 ==0:#输出当前训练情况。这里只输出了模型在当前训练batch上的损失函数大小

#通过损失函数的大小可以大概了解训练的情况。在验证数据集上的正确率信息

#会有一个单独的程序来生成

print("After %d training step(s),loss on training batch is %g" %(step, loss_value))#保存当前的模型。注意这里给出了global_step参数,这样可以让每个被保存模型的文件末尾加上训练的轮数

#比如"model1.ckpt-41"表示训练41轮之后得到的模型

saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)def main(argv=None):

mnist= input_data.read_data_sets("E:\\MNIST_data", one_hot=True)

train(mnist)

main()#if __name__ == '__main__':#main()

python实现lenet_吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集...相关推荐

  1. 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集...

    import tensorflow as tf# 输入数据 from tensorflow.examples.tutorials.mnist import input_datamnist = inpu ...

  2. Python 手写数字识别 MNIST数据集下载失败

    目录 一.MNIST数据集下载失败 1 失败的解决办法(经验教训): 2 亲测有效的解决方法: 一.MNIST数据集下载失败 场景复现:想要pytorch+MINIST数据集来实现手写数字识别,首先就 ...

  3. 【Tensorflow学习三】神经网络搭建八股“六步法”编写手写数字识别训练模型

    神经网络搭建八股"六步法"编写手写数字识别训练模型 Sequential用法 model.compile(optimizer=优化器,loss=损失函数,metrics=[&quo ...

  4. TensorFlow基础12-(keras.Sequential模型以及使用Sequential模型 实现手写数字识别)

    记录TensorFlow听课笔记 文章目录 记录TensorFlow听课笔记 一,Sequential模型 二,实现手写数字识别 一,Sequential模型 二,实现手写数字识别 #使用Sequen ...

  5. 【卷积神经网络CNN 实战案例 GoogleNet 实现手写数字识别 源码详解 深度学习 Pytorch笔记 B站刘二大人 (9.5/10)】

    卷积神经网络CNN 实战案例 GoogleNet 实现手写数字识别 源码详解 深度学习 Pytorch笔记 B站刘二大人 (9.5/10) 在上一章已经完成了卷积神经网络的结构分析,并通过各个模块理解 ...

  6. 深度学习--TensorFlow(项目)Keras手写数字识别

    目录 效果展示 基础理论 1.softmax激活函数 2.神经网络 3.隐藏层及神经元最佳数量 一.数据准备 1.载入数据集 2.数据处理 2-1.归一化 2-2.独热编码 二.神经网络拟合 1.搭建 ...

  7. 深度学习100例 | 第25天-卷积神经网络(CNN):中文手写数字识别

    大家好,我是『K同学啊』! 接着上一篇文章 深度学习100例 | 第24天-卷积神经网络(Xception):动物识别,我用Xception模型实现了对狗.猫.鸡.马等四种动物的识别,带大家了解了Xc ...

  8. 神经网络初探(BP 算法、手写数字识别)

    神经网络的结构就不说了,网上一大堆-- 这次手写数字识别采用的是 sigmoid 激活函数和 MSE 损失函数. 虽然网上说这种方式比不上 softmax 激活函数和交叉熵损失函数,后者更适合用于分类 ...

  9. 如何使用TensorFlow和VAE模型生成手写数字

    全部 VAE 代码:https://github.com/FelixMohr/Deep-learning-with-Python/blob/master/VAE.ipynb 自编码器是一种能够用来学习 ...

最新文章

  1. 获取SpringBean对象工具类
  2. tabbar怎么些_vue 做的tabBar组件
  3. ASP.NET Core 集成测试中结合 WebApplicationFactory 使用 SQLite 内存数据库
  4. 史上最全的Visual Studio Code安装C/C++环境,若不行头砍给你。
  5. JavaScript实现复选框全选与全不选的效果
  6. 厉害了!VMware ESXi安装记录,附下载
  7. 对方差,协方差,相关系数,协方差矩阵的理解与比较
  8. linux普通用户修改root密码及获取root权限
  9. 移动App 网络优化细节探讨
  10. ppm\℃是什么意思/
  11. 别头疼了,你要的算法和数据结构的学习路线来了!
  12. 2020美容师(初级)考试题库及美容师(初级)模拟考试
  13. 《有效的单元测试》一第2章 寻 求 优 秀
  14. android 监听home back,Android中监听Home键的4种方法总结
  15. 集合框架·List集合简介
  16. 判断股票代码是上海市场SH还是深圳市场SZ
  17. 搜索引擎下拉html,Vue实现百度下拉提示搜索功能
  18. html点击展开盒子变大,JS实现点击按钮控制Div变宽、增高及调整背景色的方法
  19. ajax远程调用,jquery中的ajax方法怎样通过JSONP进行远程调用
  20. 网络配线架如何接线打线

热门文章

  1. 使用Jenkins,GitHub和Docker的最先进的持续集成和部署管道
  2. 单元测试 问题描述_单元测试技巧:创建描述性测试
  3. 使用log4j2免费分配日志记录
  4. java nio的演进_Java接口的防御性API演进
  5. hadoop3 禁用ec_Hadoop + Amazon EC2 –更新的教程
  6. ant 构建_有用的Ant构建标签
  7. 实践中的弹性基础架构
  8. JSF范围教程– JSF / CDI会话范围
  9. 怎样编写测试类测试分支_测试技巧–不编写测试
  10. java自动gc_具有Java 7中自动资源管理功能的GC